Ozonation of Produced Water from Oil Production Wells

T. Klasson, C. Tsouris, S. Jones, M. Dinsmore, D. DePaoli, S. Robinson, A. Walker, S. Yiacoumi, V. Vithayaveroj, and R. Counce

> Oak Ridge National Laboratory Georgia Institute of Technology University of Tennessee

Abstract

In the process of pumping oil from wells, the oil industry generates "produced water," which is usually seawater contaminated with various organic substances. Before produced water is returned to the environment, it needs to be treated for organics. One method to eliminate organic substances from produced water is oxidation, using ozone. Several experiments have been conducted in this study to investigate the effectiveness of ozone in oxidizing organic substances in real produced water from two oil companies. In these experiments, ozone was produced by a corona-discharge ozone generator and flushed through a large batch reactor containing a stir bar. Produced water was then injected in the reactor. Gas and water samples were taken at varying intervals from 0 to approximately 1600 minutes. Samples were analyzed for concentration of CO₂, extractable organics, ozone, and organic acids. Results show that organic compounds can be successfully removed from produced water with the use of ozone. Heating the produced water improved the rate of removal. This information was used for preliminary design and cost estimation.

Objectives

Decrease the amount of extractable organics from produced water

 Investigate the use of ozone for the oxidation of organics

Investigate ozonation at room temperature (23°C) and at 80°C

Setup

4-L batch reactor containing ozone and produced water
 Sealed with Teflon-lined stoppers for injections and sampling
 Mixing provided by a stir

bar

Methods

Ozone Analysis: Wet chemistry test based on oxidation of indigo blue
 Acids Analysis: Ion Chromatography
 CO₂ Analysis: Gas Chromatograph
 Water Soluble Organics: Extraction with PCE and infrared absorption spectroscopy

Procedure

- Flush ozone through reactor containing stir bar for approximately one hour prior to experiment
- Add 200mL produced water and 10mL 4N HCL
- Sample water phase and gas phase
- Take samples from 0 to approximately 1600 min at various intervals depending upon disappearance of ozone
- Analyze for ozone and CO₂ at time of sampling
- Extract liquid samples with PCE; allow to sit overnight; and measure IR absorbency

Ozonation of Produced Water

Summary results from large-scale batch experiments conducted with Company Asupplied produced water at 23°C.

Ozonation of Produced Water

Summary results from large-scale batch experiments conducted with Company Asupplied produced water at 80°C.

Ozonation of Produced Water

Summary results from large-scale batch experiments conducted with Company Bsupplied produced water at 23°C.

Ozonation of Produced Water

Summary results from large-scale batch experiments conducted with Company Bsupplied produced water at 80°C.

Acid Analysis

Amount of acid versus prolonged treatment with ozone in Company A produced water.

Results Acid Analysis

Amount of acid versus prolonged treatment with ozone in Company B produced water.

Rate of Disappearance of Extractable Materials

Source Of Produced Water	k- Value with 95% Confidence [L/(mg·min)]	
	22ºC	30⁰C
Synthetic		0.000120-0.000138
Company A	0.0000505-0.0000880	0.000297-0.000396
(duplicate experiment)	0.0000506-0.000115	
Company B	0.000231-0.000400	0.000867-0.00104

Identification of Dichloromethane Extractables

Synthetic

Company A

Company B

Fr	<u>mono</u>	hic Analysis		
	Capital Cost Estimate for	Installed Ozonation System for Produced Water Treatment		
		indistince off removal, 100% of 020nc provided from any		
Input	400 Chemical Engin	400 Chemical Engineering Cost Index		
Variables	1100 Marshall and Swift Cost Index			
	10000 Produced water production rate (bbl/day)			
	 A Hexane-extractable materials removed (HEM) (mg/L) Besidence time in ozonation contact vessel (min) 			
	10.0 Ozone requirement (mg ozone/mg HEM)			
Output	262.85	HEM input (lb/ day)		
Values	2628.49	Ozone demand (lb/day)		
	\$2,524,167	Cost of ozonation system (installed) ¹		
		(excluding piping, pump, ozone contact vessel, and buildings)		
	17500	Volume of ozone contact vessel (100% excess) (gal)		
	2339	Volume of ozone contact vessel (100% excess) (cu ft)		
	9.0	Diameter of ozone contact vessel $(H/D = 4)$ (ft)		
	36.2	Height of ozone contact vessel $(H/D = 4)$ (ft)		
	2	Low Pressure and Carbon Steel Cost Factor, F_c		
	\$225,032	Cost of plastic-lined ozone contact vessel (uninstalled)		
	\$225,032	Installation cost of plastic-lined ozone contact vessel (100% of cost)		
	11	Pump Size Power Requirement (kW)		
	\$16,410	Cost of carbon steel centrifugal pump (uninstalled)		
	\$29,538	Installation cost of carbon steel centrifugal pump (180% of cost)		
	\$80,400	Cost of piping for ozone contact vessel (uninstalled)		
	\$80,400	Installation cost of piping for ozone contact vessel (100% of cost)		
	\$3,180,978	Total cost of complete ozone system		
		(excluding protective buildings)		
	\$3,857,626	Fixed Capital Investment		
		(including protective buildings)		

Conclusions

- Organic Acids are not attacked or destroyed by the ozone.
- The rate of disappearance of the extractables is of first order.
- The degradation rates and ozone demands of the extractable organics were slightly better at higher operating temperatures.
- The products contained halogenated compounds.

An economic evaluation indicated that a system for 75% conversion of extractable organics would have a fixed capital cost in the range of \$3.2 million, with an annual operating cost of \$1.1 million (or \$7.31/1000 gal). The estimation was based on a produced water flow rate of 10,000 bbl/day (17,500 gal/hr), an initial content of 100 ppm of hexane-extractable organics, a liquid residence time of 30 minutes, and an ozone consumption of 10 g ozone/g PEM.

Acknowledgments

- This work was conducted at Oak Ridge National Laboratory, which is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-000R22725
 - National Petroleum Technology Office in the DOE Office of Fossil Energy
- DOE Energy Research Undergraduate Laboratory Fellowships
- Higher Education Research Experiences at ORNL in conjunction with Oak Ridge Institute for Science and Education