The Case for Pesticide Surveillance in a National EPHT Network

New York City Department of Health & Mental Hygiene J. Bryan Jacobson, MPH Daniel Kass, MSPH Wendy McKelvey, Ph.D. Caroline Bragdon, MPH

Topics

- Existing Pesticide Surveillance Efforts
- Differing Nature of NYC Pesticide Findings
- Gaps in National Surveillance Systems
- A Framework for National Surveillance

Existing National Pesticide Surveillance Systems

- Toxic Exposure Surveillance System (TESS)
- NIOSH Sentinel Event Notification System for Occupational Risk (SENSOR)
- CDC National Health and Nutrition Examination Survey (NHANES)
- USGS National Water-Quality Assessment (NAWQA) Program
- USDA Pesticide Data Program (PDP)

TESS

- National warehouse of standardized data from Poison Control Centers (62 participating centers in 2004)
- TESS includes data on populations from all 50 states & Washington, DC
- Data includes (where available)
 - Individual data (age, gender, geographic descriptor)
 - Agent data (pesticide product or type, location of exposure)
 - Clinical / symptom data (symptom, medical consequence)
- Effective in capturing data on exposures to children due to parental / caregiver concern
- Aggregate data available for fee

Source: Annual Report, 2004, American Association of Poison Control Centers Toxic Exposure Surveillance System (TESS) at http://www.aapcc.org/2004.htm

TESS Limitations

- Data often self-reported over the phone
 - No confirmation of poisoning or symptoms
- Activity type or occupation of exposed individual not captured
- Strong evidence of under-reporting by physicians and hospitals to PCCs
- Captures only acute pesticide exposures

TESS Highlights (2004)

- Greatest number of reported exposures were from pyrethroids, rodenticides, and DEET
- Children < 6 years of age are:</p>
 - 52% of exposure cases overall
 - 89% of rodenticide cases
 - 69% of DEET cases
 - 83% of borate/boric acid cases
- Trends 2002 to 2004:
 - 105% increase for DEET insect repellents
 - 46% increase for pyrethroids
 - 11% increase for pyrethrins
 - 27% decrease for organophosphates

Source: AAPCC TESS Annual Reports, 2002-2004, at http://www.aapcc.org/annual.htm

SENSOR

- NIOSH State health department partnerships for pesticide illness and injury surveillance
- Begun in 1987, covers 12 states (2006)
 - Funded States: CA, MA, MI, NM, NY, OR, TX, WA
 - Unfunded States: AZ, FL, IA, LA
- Sources of reports are principally:
 - Health care providers
 - Poison Control Centers
 - Workers' compensation records

SENSOR Data

Data includes:

- Individual level: age, race/ethnicity, gender
- Agent: product and type, exposure circumstances, route of exposure, occupation, activity at time of exposure, use of PPE
- Clinical / symptom data: biological monitoring, medical consequence, symptom
- Useful tool to highlight emerging problems and occupational exposures and risks
- Provides information on possible risk factors for investigation and intervention
- Most of the largest states participate
- Some case follow-up data available

SENSOR Limitations

- Majority of cases collected are occupational
- Data not collected nationally
- Under reporting problems (Calvert, 2001):
 - Workers may not seek medical attention
 - Cases may be misdiagnosed
 - Health care workers or other officials may not make required report of cases
- Only provides information on acute exposures

SENSOR Highlights

Frequent reporting of case data in MMWRs:

- Unintentional Topical Lindane Ingestions United States, 1998-2003 (June 3, 2005 / 54(21);533-535)
- Surveillance for Acute Insecticide-Related Illness Associated with Mosquito-Control Efforts - Nine States, 1999-2002 (July 11, 2003 / 52(27);629-634)
- Peer-reviewed journal articles using SENSOR data:
 - Acute pesticide-related illness among emergency responders, 1993-2002. (Calvert, Barnett, Mehler, et al., 2006)
 - Acute Illnesses Associated With Pesticide Exposure at School (Alarcon, Calvert, et al., 2005)
 - Acute Pesticide-Related Illnesses Among Working Youths, 1998-1999 (Calvert, Mehler, Rosales, et al., 2003)

NHANES Pesticide Biomonitoring

- NHANES involves an interview, clinical examination and biomonitoring
- Representative sample of U.S. population
- Biomonitoring of commonly used pesticides or their metabolites

NHANES Data

- Provides actual exposure estimates for the general population
- Useful source of background exposure level to compare with other monitoring or poisoning data.
- Presents exposure levels at the 50th, 90th and 95th percentiles of the population.
- Stratifies exposure by age group, gender, and race/ethnicity

NHANES Limitations

- No regional specificity or further subgroup differentiation
- Specific sources of exposure are unknown and for some metabolites indeterminate
- Epidemiology not well established to link metabolite levels to health outcomes
- Biomonitoring reflects recent and not necessarily chronic exposure.

NHANES Highlights

Data trends from '99-'00 to '01-'02:

- OP metabolites:
 - Dimethylthiophosphate (creatinine corrected) levels lower in all groups & percentiles
 - Diethylphosphate (creatinine corrected) showed a similar trend possible reflecting reduction or phase out of some OP uses
 - Chropyrifos metabolite, TCPy (creatinine corrected) showed a slight increase
- Herbicides:
 - 2,4-D levels remained fairly stable but increased amongst Non-Hispanic blacks
- Pyrethroid metabolites first analyzed in '01-'02
 - 3-Phenoxybenzoic Acid levels were detected in most groups
 - cis & trans -3-(2,2-Dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid were detected
 - Cypermethrin and Permethrin exposures seem to be most common source of these pyrethroid metabolites

Other National Data Sources

- USGS National Water-Quality Assessment (NAWQA) Program
 - Collected since 1991
 - Data from ground water wells and some surface water
 - Data on sediments and fish
 - Limitations:
 - Seasonal variations, limited sampling locations
- USDA Pesticide Data Program (PDP)
 - Monitoring of food pesticide residues through state agricultural departments/other agencies
 - Special concern for foods heavily consumed by infants and children
 - Limitations:
 - Limited number of commodity samples analyzed
 - Difficult to estimate individual dietary exposure

Pesticide Surveillance in EPHT

California pesticide tracking

- Using California Pesticide Use Reports (PUR) for exposures' effect on birth outcomes and early childhood development
- Determining utility of PUR data as an exposure metric through comparison with biomonitoring data
- Oregon pesticide illness surveillance
 - Incorporating SENSOR surveillance data into EPHT
- Wisconsin pesticide tracking
 - Linking cholinesterase levels, biomonitoring, water levels and incident reports of drift and overspray.
- NYC pesticide tracking
 - Using state use reporting data, biomonitoring, poisoning surveillance, and population survey data.

NYC Pesticide Tracking Data Sources

- Population surveys
 - Community Health Survey
 - Use of illegal and off-the-shelf pesticides
 - Prevalence of cockroach infestation
 - Relationship between cockroach infestation and asthma
 - Housing & Vacancy Survey
 - Prevalence of rodent infestations
 - Relationship between rodent infestation and asthma and housing disrepair
 - NYC Health & Nutrition Examination Survey
 - Population based comparison of NYC to National Pesticide Exposure.

NYC Pesticide Tracking Data Sources

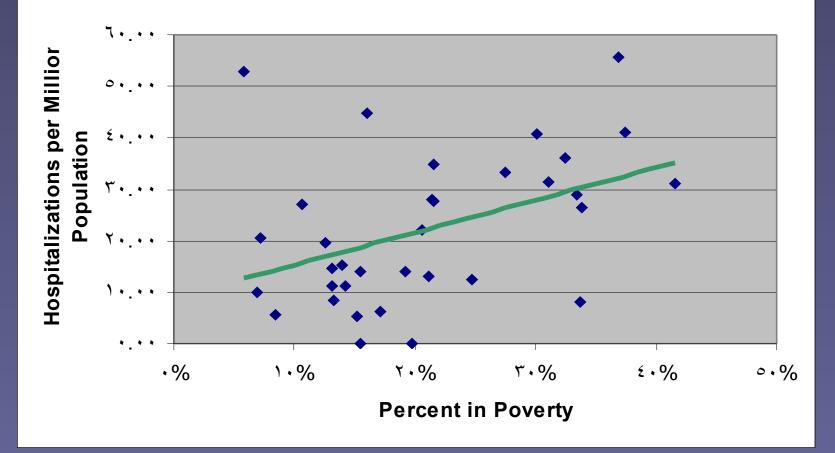
- State Pesticide Use Registry
 Patterns of pesticide use in urban areas
 Poison Control Center
 Data on possible pesticide poisoning or
 - Data on possible pesticide poisoning or exposure
- Hospitalization and ED Data
 - Data on pesticide poisoning and illness

Findings of Community Health Survey:

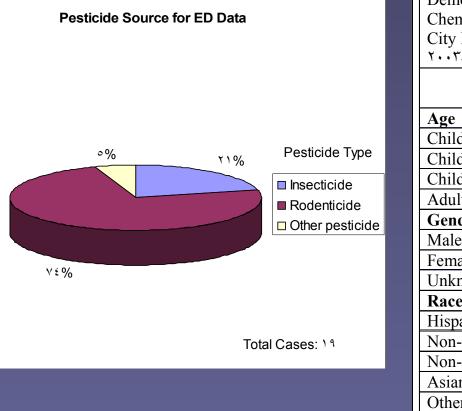
Percent of Households Using Sprays, Bombs or Foggers

Parks and Open Space 13.5% - 20% 20.1% - 30% 30.1% - 40% 40.1% - 50% 50% or more

Source: CHS, 2003

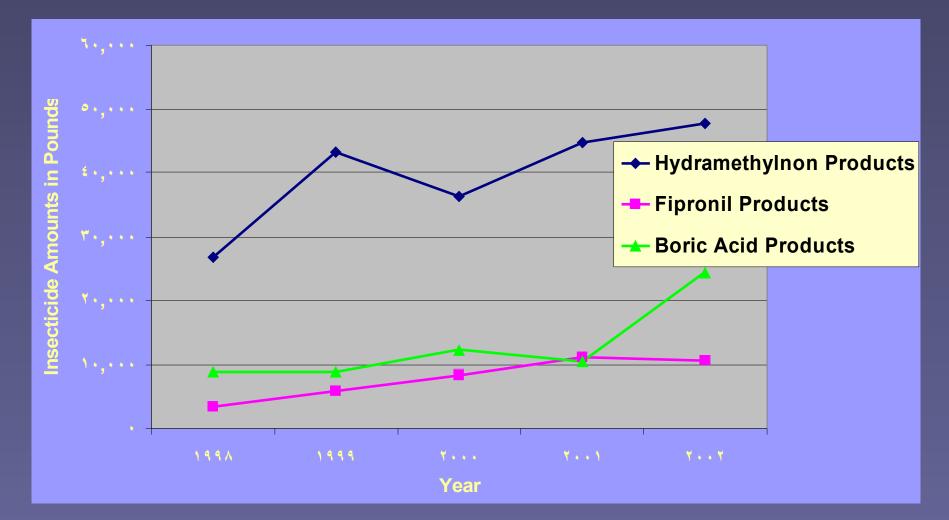

Findings of Housing & Vacancy Survey: Rodent Sightings and Current Asthma in NYC Households

	Current Asthma	No Current Asthma	Total
Rodents	72 K	509 K	581 K
	(12%)	(88%)	(100%)
No	119 K	1,867 K	1,986 K
Rodents	(6%)	(94%)	(100%)
Total	191 K	2,376 K	2,567 K
	(7%)	(93%)	(100%)


Source: HVS, 2002

Findings of Hospitalization Data:

Pesticide-Related Poisonings to NYC Residents, ۲۰۰۱-۲۰۰۳, by Neighborhood Poverty with Linear Trend Line


Findings of Emergency Department Data:

Demographic Profile of Pesticide and all other Chemical Poisoning Cases in a Sample of $\gamma \in$ New York City Emergency Departments in a Selection of Weeks, $\gamma \cdot \cdot \tau_{-} \gamma \cdot \cdot \epsilon$

	Number (%) of Pesticide		
	Poisoning Cases		
Age			
Child, <\ year	۲ (۱۰%)		
Child, \-° year	۱ ± (٧ ± %)		
Child, ٦-١٨ year	• (•%)		
Adult, >۱^ year	٣ (١٦%)		
Gender			
Male	۱۱ (۵۸%)		
Female	٤ (۲۱%)		
Unknown	٤ (۲۱%)		
Race/Ethnicity			
Hispanic	٦ (٣٢%)		
Non-Hispanic Black	۷ (۳۷%)		
Non-Hispanic White	۲ (۱۱%)		
Asian	۱ (۵%)		
Other	۱ (°%)		
Unknown	۲ (۱۱%)		
Total	۱۹ (۱۰۰%)		

Findings of State Pesticide Use Data: "Best Practice" Products Trends in NYC 1998-2002

Source: NYS DEC PSURS

Gaps in National Surveillance

- Local findings from data not represented in national surveillance systems
 - Pesticide use and infestation patterns differ based on SES and demographic factors
 - Population survey data show patterns of household and illegal pesticide use
 - Commercial pesticide use not a part of national surveillance systems
 - Non-occupational poisoning and illness data gathered through hospitalization and ED data
 - Many of ED poisoning cases involve children
- No chronic hazard or exposure data
- No single location/source available for complete portrait of exposures

A Framework for National Surveillance

- National EPHT reporting of TESS data
- Strengthen ties between SENSOR and EPHT states
- Leveraging drinking water surveillance for pesticide surveillance
- Pilot efforts to increase dietary sampling for pesticide residues

A Framework for National Surveillance

- Leveraging hospitalization (and ED) data tracking for asthma and MI for the purpose of pesticide tracking
- Enhanced biomonitoring through community/state HANES
- Supporting addition of pest and pesticide questions on population surveys (e.g., BRFSS, Housing Surveys, etc.)

Benefits of a National Pesticide Surveillance Network

- Better fulfill objectives of Healthy People 2010:
 - 8-27. Increase or maintain the number of Territories, Tribes, and States, and the District of Columbia that monitor diseases or conditions that can be caused by exposure to environmental hazards.
 - 8-25. Reduce exposure of the population to pesticides, heavy metals, and selected environmental chemicals, as measured by blood and urine concentrations of the substances or their metabolites.
 - 8-24. Reduce exposure to pesticides as measured by urine concentrations of metabolites.

Benefits of a National Pesticide Surveillance Network

- Findings of an improved pesticide surveillance system have secondary benefits:
 - Better targeted educational efforts for at-risk groups
 - More appropriate programmatic efforts
 - More targeted enforcement of existing regulations
 - More effective public policy interventions