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Abstract 
 
The methods and models used for the adaptive harvest management (AHM) of mid-continent 
mallards have been reviewed and revised.  This revision was motivated by recognition of two 
important concerns about the current methods:  bias at the “balance equation” level arising from 
unknown bias in underlying monitoring data; and an underestimate of the variance of the 
predictions from the models, due to the omission of several components of the variance.  In the 
revised set of models: (1) the balance equation bias is corrected by including an empirical 
adjustment to the survival and reproductive rates; (2) the survival sub-models are re-
parameterized to better reflect uncertainty about the additive and compensatory hypotheses; (3) 
the recruitment sub-models are re-estimated; and (4) the prediction error includes all variance 
components, and is inflated to reflect uncertainty in the total variance of predicted population 
size.  These revisions to the AHM protocol suggest that the optimal strategy, using the current 
regulatory alternatives, will call for liberal regulations less often in the Mississippi, Central, and 
Pacific Flyways than it has in the past, with a corresponding increase in the frequency of more 
conservative regulations.  The revisions also have resulted in different conclusions about the best 
predictive models for mid-continent mallards—the model weights suggest much less evidence 
for the hypotheses of additive hunting mortality and strongly density-dependent reproductive 
rates compared to results using the old protocol.   
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BACKGROUND 
 
The population models upon which harvest regulations for midcontinent mallards are based have 
been in place since 1995. The basic structure of the models, alternative hypotheses of population 
dynamics, and support for each hypothesis (i.e., model “weights”) are subject to continuous 
review by parties both internal and external to the AHM process. For the last two years, the 
AHM Working Group (AHMWG) has been focusing on two especially important concerns about 
the existing models for mid-continent mallards, and is making certain revisions this year. 
 
Apparent bias in reproductive or survival rates.—The current population models for mid-
continent mallards share a common structure referred to as the balance equation. The balance 
equation is essentially an accounting tool, which predicts population size in a given year based 
on population size (N), reproduction (R), and survival (S) from the previous year. In theory, N, 
R, and S from a given year should perfectly predict N the next year. In fact, they do not (Fig. 1). 
Predicted population sizes are higher on average than those observed in the population surveys. 
The source and cause of the bias in estimates of survival and reproductive rates are unknown, but 
data-collection programs are being carefully scrutinized. 
 
Updating model weights.—The purpose of annually updating model weights is to eventually 
identify the model providing the most accurate predictions over time, based on a comparison of 
the observed population size with those predicted under each alternative model.  Model weights 
are highly influential in determining optimal harvest strategies because they determine the degree 
to which a single set of biological hypotheses (i.e., a particular model) dominates the 
optimization.  The AHM Working Group has identified a shortcoming in the current procedure 
for updating model weights due to the omission of certain random errors common to all 
predictive models. The inclusion of these prediction errors in the updating procedure will 
minimize the chances of major shifts in model weights in any single year, and help ensure that 
model weights accurately support the model(s) with the best predictive ability. 
 
The purpose of this report is to describe the AHM Working Group’s efforts to address these 
modeling issues.  Final decisions regarding modification of the model set for mid-continent 
mallards will be made after the USFWS has discussed resulting management implications with 
the Flyway Councils, States, and the general public. 
 
 

DATA SETS 
 

Reproductive Rates 
 
To estimate fall age ratios of mid-continent mallards (defined as those banded in areas 
encompassed by the traditional survey area of the Waterfowl Breeding Ground Population and 
Habitat  Survey [or May aerial survey, MAS], strata 1-18, 20-50, and 75-77), we first wanted to 
ensure that the various sources of data we used described approximately the same population of 
birds.  We used Munro and Kimball (1982) to identify the states in which $80% of the harvest 
was derived from birds in the MAS (banding reference areas 1-7, 12-13 [Anderson and Henny 
1972]).  We obtained the harvest data from 1961-1995 for those states from the Division of 
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Migratory Bird Management (unpub. data), and divided the sex-specific annual harvests of 
young by those of adults to estimate the harvest age ratios. 
 
We then obtained banding and recovery files for mallards banded during 1961-95 from the U.S. 
Geological Survey’s Bird Banding Laboratory (BBL).  We used only data from normal, wild 
mallards that were banded during July-September, and that were shot or found dead during the 
hunting season.  For birds banded within the MAS and the states of Michigan, Minnesota, and 
Wisconsin, we calculated annual direct recovery rates (Anderson and Henny 1972) and annual 
harvest rates (i.e., direct recovery rates divided by band-reporting rates) for each cohort, to use in 
estimating fall age ratios (i.e., harvest age ratios divided by the differential vulnerability of 
young relative to adults).  To estimate harvest rates, we used estimates of band-reporting rates 
reported by Nichols et al. (1995).  However, because Nichols et al. (1995) did not have sufficient 
numbers of banded birds to estimate reporting rates for all age and sex classes, we imputed 
values for the missing cohorts (C.T. Moore, unpub. data). 
 
We calculated fall age ratios (young/adult) for males and females separately using the following 
3 methods, ranging from very fine-grained (method 1) to coarse-grained (method 3) analyses: 
 
Method 1 (“Fall M1”).—We used the harvest rates calculated above (using geographic variation 
in band-reporting rates) to estimate cohort-specific harvest rates for each year and banding 
reference area.  We then calculated, from the MAS data, the proportion of the spring mallard 
population in each of the banding reference areas for each year.  Next, we multiplied the year-, 
cohort-, and reference-area specific harvest rates by the population proportions, and summed 
these products to estimate annual, population-weighted harvest rates for each cohort.  Finally, we 
divided the harvest rates of young by those for adults to obtain annual vulnerability estimates.  
To estimate annual fall age ratios, we divided the annual harvest age ratios by the annual 
vulnerability estimates. 
 
Method 2 (“Fall M2”).—We calculated annual direct recovery rates for each cohort and divided 
the recovery rate of young by that for adults to estimate annual vulnerability estimates for each 
reference area.  As in the first method, we calculated the proportion of the spring mallard 
population in each of the banding reference areas for each year.  We then multiplied the year- 
and reference-area-specific estimates of vulnerability by the corresponding population 
proportion.  Finally, we summed these products within each year to obtain annual population-
weighted estimates of vulnerability.  The annual harvest age ratios were divided by the annual 
vulnerability estimates to estimate annual fall age ratios. 
 
Method 3 (“Fall M3”).—We calculated annual direct recovery rates pooled over reference areas 
for each cohort and divided the recovery rate of young by that for adults to estimate annual 
vulnerability estimates.  The annual harvest age ratios were divided by the annual vulnerability 
estimates to estimate annual fall age ratios. 
 
We also considered using fixed, rather than annual, vulnerability adjustments.  To calculate these 
fixed adjustments, we averaged the annual vulnerability estimates for 1961-1995 for each of the 
three methods described above.  These fixed adjustments were then divided into the annual 
harvest age-ratios to produce three additional fall age-ratio series for each sex. 
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Survival Rates 
 
Age- and sex-specific survival rates for each year, 1961-95, were computed under model H1 
from Brownie et al. (1985).  We included reference areas 2-6, 12, and the part of areas 13 and 14 
that matched with the MAS area.  We could not include reference areas 1 and 7 due to sparse 
data.  We computed annual survival estimates for the entire mid-continent in each of two ways.  
First, we pooled data from all references listed above to produce one survival estimate for each 
year.  Second, we conducted separate analyses for each reference area, and then averaged the 
survival rates, weighting each estimate by population size for that reference area based on the 
MAS.  Here we did not include area 14 because abundance estimates were not available for a 
sufficient number of years for MN, MI, and WI. 
 
We obtained band recovery data from the USGS Bird Banding Laboratory.  We used only data 
from normal, wild mallards banded July-September and shot or found dead during the hunting 
season.  Solicited and unsolicited band recoveries were included. 
 

Kill Rates 
 
Age- and sex-specific kill rates for each year, 1961-86, were computed from band recoveries, 
based on a survival model that partitions annual survival rate into survival during the hunting 
season and survival during all other times of the year combined (Johnson et al. 1993). We 
conducted separate analyses for each banding reference area and then averaged results across 
reference areas, weighting by population size from the MAS. We included reference areas 2-6, 
12, and the part of area 13 that is included in the MAS.  We ignored reference areas 1 and 7 due 
to sparse data, and area 14 because abundance estimates were not available for a sufficient 
number of years for MN, MI, and WI. 
 
We used only normal wild mallards banded July-September and shot or found dead during the 
hunting season. To convert recovery rates to kill rates we assumed crippling loss of 20% 
(Anderson and Burnham 1976).  To account for reporting rates we incorporated geographical 
variation in estimated reporting rate based on Nichols et al. (1995). We incorporated the reward 
and control band data from that 1988-91 study directly into our analysis.  Reward bands and 
solicited bands were assigned a reporting rate of 1.0 throughout the analysis. 
 

Other Data 
 
Breeding Population Size.—We used the May breeding population size (BPOP) estimates from 
the traditional mid-continent mallard strata (breeding reference areas 1-7, 12, and 13, Anderson 
and Henny 1972).  We did not include the “Lake States” (Minnesota, Wisconsin, and Michigan) 
in the BPOP totals for analysis because those state surveys began later (1968, 1973, and 1992, 
respectively) than the surveys for the traditional areas.  For model-building purposes, we used 
BPOPs from 1961-1996.  For model updating, we used data from 1996-2001. 
 
Ponds.—We considered two sets of pond data: the traditional estimate of May ponds (Canadian 
ponds only), and estimates of total ponds (including U.S. ponds).  The Canadian pond data is 
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available from 1961-present, and the U.S. (and thus, total) pond data is available from 1974-
present. 
 

DEVELOPING AND CORRECTING THE BALANCE EQUATION MODEL 
 

The Balance Equation, Anniversary Dates, and Sex Ratio 
 
The annual survival rates and the fall age-ratio can be combined in a model that accounts for 
changes in the population size (Fig. 2).  Because the midpoint of the banding is August, the 
survival rate estimates encompass the period Augustt to Augustt+1.  Thus, the population model 
most naturally has an anniversary date of August.  A fraction, mP, of the pre-harvest adult 
population is male (total size of the adult male pre-harvest population is PAM), the remainder, 1 – 
mP, is female (total size, PAF).  The age-ratios, Rt, estimate the number of immature females per 
adult female in the pre-harvest population.  If we assume an equal sex ratio at hatching and equal 
summer survival for male and female juveniles, then the number of juveniles in the pre-harvest 
population is given by 2RtPAF.  We assume that half of these juveniles in the fall are female, and 
if they survive, become adult females in the following year.  The annual survival rates for all of 
the age/sex classes (St, age/sex) are estimated from the banding data, and can be applied to the 
numbers in each class to predict the number of adult males and females in the August population 
in the following year. 
 
In order to compare the predictions from this population model to observed changes in the 
population size as measured by the MAS, we needed to change from an August-to-August 
population model to a May-to-May population model (Fig. 3).  Two assumptions were needed to 
make this transition:  (a) adult summer survival (from May to August) is constant over time, but 
may differ by sex; and (b) the summer survival of first-year birds is the same as that of adults of 
the same sex.  The BPOP is divided into males (NAM) and females (NAF) with a male fraction of 
m (different from the pre-harvest male fraction, mP).  Since the age-ratios are measured in the fall 
flight, a female must survive the summer (with survival rate φF

sum) in order to successfully 
reproduce.  The survival rates of juveniles cover only a portion of the annual cycle (from August 
to May), and so must have the summer survival portion of them removed (hence the division by 
φF

sum and φM
sum in Fig. 3).  Aggregating these elements, the predicted number of females in the 

next year is 
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the predicted number of males is 
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and the full “balance equation” that predicts the breeding population size in the next year is 
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BPOP BPOP mS m S R S St t t AM t AF t t JF t JM F
sum

M
sum

+ = + − + +1 1, , , ,( ) φ φc h{ } . (3) 

 
 
Thus, to predict the BPOP in the next year, in addition to the survival rates, age-ratio, and current 
BPOP, we needed estimates of the male fraction (m) and the ratio of female to male summer 
survival (φF

sum/φM
sum, note that we only needed to know the ratio, not the sex-specific values).  In 

this model, we assumed that both of these quantities were fixed and known, a necessary 
assumption because there are not operational programs to monitor either quantity.  We estimated 
the inverse of the summer survival ratio (ψ = φM

sum/φF
sum) by using the results of the survival 

sub-model estimation (see “Survival Sub-models”, below).  We assumed that differences in 
survival in the absence of harvest were due to differences in summer survival between sexes (i.e., 
that the post-harvest to May survival was the same for both sexes).  For the additive survival 
model,  
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For the compensatory survival model, ψ = 1.084.  For the balance equation calculations, we 
averaged these two values, and used ψ = 1.115. 
 
To estimate m, the male fraction in the breeding population, we expressed the balance equation 
in matrix form 
 

N
N
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S RS
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1 0
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ψ
,  (5) 

 
substituted the mean values for the survival rates and age-ratios, and calculated the right 
eigenvector of the transition matrix.  The right eigenvector gives the stable sex structure of a 
population growing according to equation 5 with constant survival and reproductive rates.  The 
mean values for the survival and reproductive rates were from the data sets selected below (see 
“Choosing the Data Sets”, SAM = 0.6932, SAF = 0.6196, SJM = 0.6203, SJF = 0.5932, and R = 
0.8256).  With a ratio of male to female summer survival rates of ψ = 1.115, the estimated May 
male fraction obtained from the eigenvector was 0.5246.  The corresponding August male 
fraction (mP), calculated in the same manner (but dropping ψ from the equation) was 0.5517. 
 

Choosing the Data Sets 
 
As noted above (“Data Sets”), we had multiple survival and age-ratio datasets to consider.  In the 
process of revising the mid-continent mallard models, we had one primary goal:  to increase the 
predictive ability of the models.  This goal applied to selection of the datasets, as well as to all 
subsequent decisions about the models.  To evaluate the predictive ability of the datasets, we ran 
each possible combination of survival and age-ratio datasets through an August-to-August 
balance equation (equation 3 without the summer survival ratio, and with m set to 0.55) to 
predict a relative change in population size (λt = Pt + 1/Pt).  We then compared these predicted 
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changes in population size with the observed changes in population size from the May Aerial 
Survey (BPOPt + 1/BPOPt), calculating a correlation coefficient over the 35-year time series 
(1961-1995).  While the anniversary dates of the predicted and observed changes do not match, 
we reasoned that we did not need to be concerned with the time scale adjustments here because 
those adjustments were all constant across years and would not greatly change the correlations. 
 
We considered two annual survival datasets (weighted by reference area, and pooled across 
reference areas).  We considered 12 different age-ratio datasets, differing by sex (female vs. male 
age-ratios), type of vulnerability adjustment (annual vs. fixed), and method of calculating 
vulnerabilities (M1, M2, or M3).  The results for 5 of these summarize the results for the rest 
(Table 1).  For calculating the correlation between predicted and observed changes in population 
size, a fixed vulnerability adjustment (no matter what the value of the vulnerability) gives the 
same results as using the raw harvest age-ratio.  The results for only one of the male age-ratio 
datasets are shown, the rest follow the same pattern as the female age-ratio datasets.  
 
The correlations between the predicted and observed population size changes ranged from 0.38 
to 0.67 (Table 1).  In all cases, the weighted survival-rate dataset outperformed the pooled 
survival rate dataset, female age-ratios outperformed the corresponding male age-ratios, and age-
ratios using vulnerability adjustments based on direct recovery rates (M2 and M3) outperformed 
those using vulnerability adjustments based on estimated harvest rates (M1).  Of considerable 
interest, age-ratios that included a fixed adjustment for vulnerability (represented in Table 1 by 
the harvest age-ratios) performed better than age-ratios that included an annual adjustment for 
vulnerability.  This suggests that the reductions in bias that come from including annual 
vulnerability adjustments do not compensate for the increase in variance of vulnerability 
estimates. 
 
Thus, the combination of datasets that resulted in the highest correlation between predicted and 
observed changes in population size contained the weighted survival rates and the fixed-
vulnerability female age-ratios.  But, there were three fixed-vulnerability female age-ratio 
datasets (differing in whether the vulnerability was based on M1, M2, or M3), all of which 
produced nearly the same correlation since they differed only by a multiplicative constant.  Of 
the age-ratio datasets that used annual vulnerability adjustments, the dataset that used pooled 
direct recovery rates to estimate vulnerability (“Fall M3”) produced the highest correlation 
between predicted and observed population changes.  This suggested to us that the vulnerability 
adjustments calculated with this method were the most accurate.  Therefore, we calculated a 
mean vulnerability adjustment from the annual vulnerability adjustments produced by this 
method (1961-1995), and applied that constant vulnerability adjustment (1.751 young 
female:adult female) to the harvest age-ratios.  The resulting set of fall age-ratios became the 
recruitment dataset we used in all subsequent analyses. 
 

Estimating Bias in the Balance Equation 
 
When the chosen survival and recruitment datasets were used in a May-to-May balance equation 
(equation 3, with m = 0.5246 and ψ = 1.115), the predicted population sizes (BPOPt + 1) were 
greater on average than the corresponding observed population sizes (Fig. 1).  The average over-
prediction was 10.8%. 
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We considered the following three hypotheses for the bias:  (1) bias in the annual survival rates 
only, with all four age/sex classes having the same proportional bias; (2) bias in the age-ratios 
only; and (3) bias equally divided between survival rates and age-ratios.  We expressed these 
hypotheses as modified balance equations.  The survival-bias-only hypothesis suggests the 
following balance equation: 
 

BPOP BPOP mS m S R S St S t t AM t AF t t JF t JM F
sum

M
sum

+ = + − + +1 1γ φ, , , ,( ) c h{ }φ . (6) 

 
The correction factor, γS, is the same for each survival rate and can be factored to the front of the 
equation.  The recruitment-bias-only hypothesis suggests the following correction: 
 

BPOP BPOP mS m S R S St t t AM t AF R t t JF t JM F
sum

M
sum

+ = + − + +1 1, , , ,( ) γ φc h{ }φ . (7) 

 
Here, the correction factor, γR, adjusts only the age-ratio, not the entire equation.  The hybrid 
hypothesis puts two correction factors into the equation, in the same positions as indicated in 
equations 6 and 7.   
 
We used a least squares approach to estimate the correction factors.  Using the annual (1961-
1995) values for the age-ratios and four survival rates, the fixed constants m and ψ, and the 
observed May populations sizes (BPOPt), we derived the values for the correction factors that 
minimized the sum of squared differences between the observed and predicted May population 
sizes (BPOPt + 1, 1962-1996).  For the survival-bias-only hypothesis, the correction factor is γS = 
0.8965 (SSE = 21.01 × 1012).  For the recruitment-bias-only hypothesis, the correction factor is 
γR = 0.7396 (SSE = 18.68 × 1012).  Note that, based on the observed data from 1961-1995, the 
recruitment-bias-only hypothesis is a better predictor than the survival-bias-only hypothesis, as 
evidenced by the smaller SSE. 
 
To estimate simultaneous correction factors for a hybrid-bias hypothesis, we chose initial values 
for γS and γR that were midway between the single-source-bias values and 1.  Then, conditioning 
on one of these initial values, we calculated the value for the other that minimized the sum of 
squared differences, as above.  Conditional on γS = 0.9483, the SSE is minimized with γR = 
0.8543.  Conditional on γR = 0.8698, the SSE is minimized with γS = 0.9476.  We took the 
midpoint between these two pairs of estimates.  Thus, for the hybrid-bias hypothesis, we used γS 
= 0.9479 and γR = 0.8620.  Use of these correction factors in the balance equation removes the 
obvious bias (compare Fig. 4 to Fig. 1). 
 
We argue below (under “Optimal Equilibrium Points”) that there is not a practical difference in 
performance between the survival-bias-only and recruitment-bias-only hypotheses.  Thus, we 
have proposed retaining only the hybrid-bias hypothesis for developing the optimal policies and 
updating model weights.  Hypotheses about the cause of the bias will continue to be examined 
outside of the formal adaptive management structure, both by examination of balance equation 
predictions and consideration of external studies.  As such information becomes available, we 
anticipate that it will be incorporated into the mallard models. 
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DEVELOPING THE SUB-MODELS 
 

Survival Sub-models 
 
There were two reasons to rebuild the survival sub-models, rather than just retaining the ones 
used previously.  First, because we were concerned about introducing additional sources of bias, 
we wanted the annual survival rates used in the balance equation analysis to be the response 
variable for development of the survival sub-models.  Second, we wanted to reconsider the 
nature of our uncertainty about the survival rates (specifically, uncertainty about the survival rate 
in the absence of harvest).   
 
In the development of the previous set of survival models (Johnson et al. 1997), band-recovery 
data were used in an ultra-structural model (Smith and Reynolds 1992) to estimate non-hunting-
season survival, assuming a crippling loss of 0.2 (Anderson and Burnham 1976) and a band-
reporting rate of 0.32 (Nichols et al. 1991).  The estimated degree of additivity, β, was 0.93 
(G.W. Smith, pers. comm.), indicating that the data showed substantially more support for the 
additive model than the compensatory model.  The non-hunting-season survival calculated in this 
manner was then used as the basis for developing both the additive and compensatory models.  
That is, both models were assumed to have the same survival in the absence of harvest. 
 
We believe there are two ways we can improve the set of survival sub-models.  First, the 
previous additive and compensatory models did not fit the data equally well.  Since the non-
hunting-season survival was estimated assuming a largely additive model, yet applied to both 
models, the additive model fit the data well, but the compensatory model did not.  Second, as an 
expression of uncertainty about the effects of hunting on survival, the previous strategy for 
developing the two survival sub-models suggests high certainty about the survival rate when the 
harvest rate is zero (because both models predict the same rate), but low certainty when the 
survival rate is in the realm of experience (because that’s where the two models differ the most).  
We think the nature of the uncertainty is exactly the opposite.  We have the most confidence 
about the annual survival rates when the harvest rate is in the realm of experience.  We have the 
most uncertainty about annual survival rates when the harvest rate is zero, since we’ve never 
observed that situation.   
 
To address these concerns, we took the following approach to developing the survival sub-
models.  For each reference area, we estimated the annual survival rates and kill rates for each 
age and sex (see “Data Sets” above).  We assumed that survival in the absence of harvest was the 
same for adults and juveniles of the same sex (thus, we assumed that all the differences in annual 
survival rates for adults and juveniles was due to differences in kill rates).  We considered two 
models for the relationship between annual survival rates and kill rates:  the additive model 
 

S s Kt sex age sex
A

t sex age, , , , ,= −0 1d i , (8) 
 
and the compensatory model 
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Independently for each model and each sex, we estimated the s0 parameter by finding the value 
that minimized the sum of squared differences between the observed and predicted annual 
survival rates.  For example, for males in reference area 2, the estimated non-hunting-season 
survival rates were 0.73 and 0.59 for the additive and compensatory models, respectively (Fig. 
5B).  If a common s0 is assumed for the two models, and is chosen to minimize the sum of 
squared differences under both models simultaneously, the estimated non-hunting-season 
survival is 0.65 (Fig. 5A).  However, note that estimating a common s0 produces two models, 
neither of which fit the data very well—the additive model consistently under-predicts the annual 
survival rate, and the compensatory model consistently over-predicts the annuals survival rate.  
Instead, estimating the non-hunting-season survival rate independently (Fig. 5B) gives two 
alternative models that fit the data equally well. 
 
To combine the estimates of non-hunting-season survival across reference areas (2-6, 12, 13), we 
weighted by the May population sizes (BPOPs).  These weighted averages determined the two 
survival submodels used in subsequent steps.  The additive survival submodel followed equation 
8, with = 0.7896 and  = 0.6886.  The compensatory submodel followed equation 9, with 

 = 0.6467 and  = 0.5965. 

s M
A
0, s F

A
0,

s M
C
0, s F

C
0,

 
These results seem counterintuitive because the true survival in the absence of harvest should be 
the same regardless of the model for the effect of harvest.  But, we do not know the true survival 
rate in the absence of harvest.  We have better knowledge of the annual survival rate under 
moderate to liberal harvest rates.  Thus, we actually expect the survival in the absence of harvest 
to be higher under the additive model, because just as increasing kill rates reduces annual 
survival under the additive model, decreasing kill rates should raise annual survival.  In contrast, 
under the compensatory model, reducing the kill rate below (1 – s0) should have no effect on the 
annual survival rate.  The important change here is that the point of reference should be our 
range of experience, namely annual survival rates under moderate to liberal kill rates, not annual 
survival rates in the absence of harvest.  Uncertainty about the nature of the effect of harvest on 
survival implies uncertainty about the survival rate in the absence of harvest. 
 
For several years, the AHM working group has been pursuing more mechanistic alternatives for 
the survival models (Johnson et al. 1993), such as alternatives that include density-dependence.  
Such investigations are not within the scope of this current set of revisions, but are underway. 
 

Recruitment Sub-models 
 
The primary reason for rebuilding the recruitment sub-models was to use the same set of age-
ratios that were used in the balance equation analysis.  We also reconsidered how to express the 
alternative hypotheses about the effect of breeding population size on recruitment. 
 
The response variable for the recruitment analysis was female age-ratio, corrected using a 
constant vulnerability term (the same data set chosen for the balance equation analysis).  The 
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predictor variables were May Canadian ponds and the breeding population size (BPOP).  We fit 
a linear model to the data for 1961-1995 (Table 2), but did not reconsider the model selection 
procedures described in Johnson et al. (1997).  Regression diagnostics did not indicate any 
violations of the assumptions of linear regression. 
 
To generate alternative hypotheses, we calculated the 80% confidence ellipsoid for all the 
parameters (Draper and Smith 1981), using 
 

β β ν− ′ ′ − ≤b X X bb g b g ps Fp
2

0 2, , .  (10) 
 
where β is a point in the parameter space, b is the vector of least squares parameter estimates, X 
is the design matrix, p is the number of parameters, ν is the error degrees of freedom, and s2 is 
the mean squared error.  We chose the two points on this ellipsoid with the largest and smallest 
values for the BPOP slope to generate the weak and strong density-dependent models, 
respectively.  The weak density-dependent model was 
 

R Ponds BPOPt t= + −0 7166 01083 0 0373. . . t

t

 (11) 
 
and the strong density-dependent model was 
 

R Ponds BPOPt t= + −11390 01376 01131. . . . (12) 
 
Predicted values for these two models, at the mean value of 3.36 million ponds, are shown in 
Fig. 6. 
 
The previous recruitment models (Johnson et al. 1997) were formed in a slightly different 
manner—the least squares estimate for the parameters was used as the weak density-dependent 
model, and the minimum on the 95% confidence ellipsoid was used as the strong density-
dependent model.  We felt that this created an unequal pair of models, since the two models were 
not equally supported by the data.  Instead, we chose two models that were on the same 
confidence ellipsoid.  We chose the 80% confidence ellipsoid because we felt it was the largest 
ellipsoid that produced predictions that were biologically reasonable. 
 
We considered the use of “Total Ponds” (Canadian and U.S. May ponds) as a predictor instead of 
just Canadian May ponds.  While Total Ponds explains more of the variance in recruitment, the 
time series is shorter (1974 forward), and this made the confidence ellipsoid substantially larger, 
made it difficult to estimate the autoregressive model for ponds (see “Ponds Sub-model” below), 
and increased the overall variance of the predictions in the model (see “Estimating Prediction 
Variance” below).  Work is underway to consider a more comprehensive revision of the 
recruitment sub-models, including consideration of total ponds as well as other variables, and 
other functional forms.  We expect development of new recruitment models within the next two 
years. 
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Ponds Sub-model 
 
We modeled the annual variation in the Canadian May ponds (1961-1995) as a first-order 
autoregressive process.  The autoregressive parameter was marginally significant (P =  0.045).  
The estimated model was 
 

Ponds Pondst+ = + t t+1 2 2127 0 3420. . ε  (13) 
 
where εt is normally distributed with mean 0 and variance MSE = 1.2567 (ponds are in millions).  
The mean value for Canadian ponds in this model is 3.363 million. 
 
This model improves upon the previous model for pond dynamics (Johnson et al. 1997) by (1) 
using a formal autoregressive-moving-average (ARMA) model to estimate the parameters, rather 
than an ad hoc linear regression approach, and (2) properly accounting for the full variance in 
annual changes in ponds (the previous model included variance due to fluctuations in rainfall, 
but omitted the mean squared error of the regression). 
 

Differential Vulnerability to Harvest 
 
The survival sub-models predict annual survival rates in four age-sex classes from kill rates of 
those same four classes.  We use differential vulnerabilities relative to adult males to predict the 
kill rates of the other three age-sex classes.  In the next section (“Harvest Rates”), we develop a 
model for predicting adult male kill rate as a function of the regulations package. 
 
In order to maintain consistency, when developing estimates of differential vulnerability we used 
the same sex-, age-, year-, and reference area-specific kill rates that were used to develop the 
survival sub-models above.  We calculated sex-, age-, year-, and reference area-specific 
differential vulnerabilities by dividing the appropriate kill rate by the corresponding kill rate for 
adult males.  For each sex/age class and year, we weighted these differential vulnerabilities 
across reference areas (2-6, 12, 13) by BPOP.  We then averaged these annual values (1961-
1986) to arrive at the final sex- and age-specific vulnerabilities.  These values were dJM = 1.5407, 
dAF = 0.7191, and dJF = 1.1175. 
 

Harvest Rates 
 
The final sub-model predicts kill rates from the current regulatory alternatives.  We relied on an 
existing assessment for regulation-specific predictions of the mean harvest rate (U.S. Fish and 
Wildlife Service, Adaptive Harvest Management: 2001 Duck Hunting Season, U.S. Dept. 
Interior, Washington, D.C., 47 pp.; available online at http://migratorybirds.fws.gov/mgmt/ahm/ 
ahm-intro.htm).  We assumed regulation-specific harvest rates were distributed normally, and 
that standard deviations were 20% of the mean (Johnson et al. 1997).  We also used standard 
Bayesian statistical techniques to update the predicted harvest rates under the liberal alternative, 
based on observed harvest rates during the recent liberal seasons (Johnson, F. A., J. A. Royle, 
and M. C. Runge.  2002.  Framework-date extensions and the adaptive management of mallard 
harvests, U.S. Fish and Wildlife Service, Washington, D.C.,10 pp.; available online at 
http://migratorybirds.fws.gov/mgmt/ahm/ahm-intro.htm).  This updating, which was based on 

http://migratorybirds.fws.gov/mgmt/ahm/ahm-intro.htm
http://migratorybirds.fws.gov/mgmt/ahm/ahm-intro.htm
http://migratorybirds.fws.gov/mgmt/ahm/ahm-intro.htm
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harvest rates observed during the 1998-2001 hunting seasons, resulted in a decrease in the mean 
harvest rate under the liberal alternative from 0.1305 to 0.1210, and a decrease in the standard 
deviation from 20% to 18% of the mean.  Harvest rates of cohorts other than adult males were 
predicted using the constant rates of differential vulnerability provided above.  We also used a 
constant crippling loss rate of 0.2 to translate harvest rates to kill rates. 
 

Lake States 
 
The model development to this point has not included the Lake States (Wisconsin, Minnesota, 
and Michigan) in the measurements of the breeding population size, primarily because full data 
sets are not available from those areas to allow appropriate analysis.  Lake States mallards have 
been included in the mid-continent mallard AHM models since 1997 by assuming that 
population dynamics for mallards in the Lake States are similar to those in the traditional mid-
continent region.  We recommend continuing these methods, that is, scaling up the predictions to 
reflect the proportionate increase in the population size due to the inclusion of the Lake States.  
Issues relevant to this adjustment include:  (1) the recruitment sub-models use the breeding 
population size from the traditional area only, because these data were used to develop the sub-
models; and (2) for the purposes of model weight updating (see “Model Weight Updating” 
below) we only use the population sizes from the traditional survey area. 
 
From 1992 through 2001, when BPOP data were available for all Lake States, the proportion of 
the total mid-continent BPOP (reference areas 1-7, 12, 13, and 14) that was in the Lake States 
(reference area 14) had a mean of 0.1083 and a standard deviation of 0.0212.  We assumed a 
normal distribution with these parameter values to make the conversion between traditional and 
total BPOPs. 
 
 

ESTIMATING PREDICTION VARIANCE 
 
Using the balance equation and sub-models provided above, predictions of breeding population 
size in year t + 1 depend only on specification of a regulatory alternative, an estimate of 
Canadian ponds in year t, and an estimate of population size in year t.  For the period in which 
comparisons were possible, we were interested in how well these predictions corresponded with 
observed population sizes.  In making these comparisons, we were primarily concerned with how 
well the bias-corrected balance equation and the reproductive and survival sub-models 
performed.  Therefore, we relied on estimates of adult male kill rates (1961-1986) rather than 
regulatory alternatives as inputs (effectively separating the partial controllability component 
from the rest of the model). 
 
We assumed that the errors in the predictions from the overall model were multiplicative and 
lognormally distributed, that is  
 

ln ~ ln ,BPOP N BPOPt
obs

t
pred

+ +1
2σc h1 . (14) 

 
We estimated σ2 by comparing the observed BPOPs with those predicted by the overall model, 
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$ ln lnσ 2 21
1= − −∑n BPOP BPOPt

obs
t
pred

t
e j c h . (15) 

 
We were concerned about obtaining a variance estimate that was too small, either by chance, or 
because our time series was too short.  Therefore, we calculated an 80% confidence interval for 
the variance 
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 (16) 

 
and used the upper value as our prediction variance (equivalent to multiplying  by 1.518, 
since n = 26) .  We obtained four estimates of the prediction variance, depending on whether we 
assumed survival was additive or compensatory, and whether recruitment was strongly or weakly 
density-dependent.  We took the square root of each variance and averaged over the four sets of 
assumptions.  The final estimate for the total prediction error was 

$σ 2

$σ  = 0.1558.  This is 
equivalent to a coefficient of variation of about 17%.   
 
The previous estimate of variance was developed by simulating the contributions of several 
variance components, including the estimates of sampling error from the May aerial surveys, but 
it did not include error from the balance equation or the recruitment or survival sub-models.  Our 
new method for estimating variance improves upon the old method in three ways—the new 
variance estimate:  (1) has a formal distribution (equation 14), rather than an empirical 
distribution, and so avoids the inherent problem of estimating tail probabilities (P.B. Conn and 
W.L. Kendall, pers. comm.); (2) includes all possible sources of variance, because it is estimated 
holistically rather than piecemeal; and (3) is suitably inflated to guard against underestimation.  
While this larger variance will appear to slow learning, it more accurately reflects the uncertainty 
in our predictions, and so we expect it will reduce the dramatic shifts in model likelihoods we 
observed when updating model weights previously. 
 
 

PROPERTIES OF THE FINAL MODEL SET 
 
Based on the analyses described above, we specified a revised set of models for mid-continent 
mallards that includes four alternatives: 
 
 ScRs: compensatory survival, and strongly density-dependent reproduction; 
 ScRw: compensatory survival, and weakly density-dependent reproduction;  
 SaRs: additive survival, and strongly density-dependent reproduction;  
 SaRw: additive survival, and weakly density-dependent reproduction. 
 
All four of these alternative models share the same balance equation, which has bias corrections 
equally apportioned between survival rates and age-ratios.  The four models also use the same 
prediction variance. 
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Optimal Equilibrium Points 
 
We used the methods of Runge and Johnson (2002) to calculate the optimal equilibrium points 
for each model.  The logic of this analysis is as follows.  Under a particular model, suppose you 
harvest at a fixed rate for a long period of time, allowing the population to reach an equilibrium 
size.  You can calculate the annual harvest derived from that equilibrium with that harvest rate.  
Now, consider all possible fixed harvest rates, and choose the one that results in the highest 
annual harvest.  That’s the “optimal equilibrium point,” which is the point where harvest is 
maximized, and the point that the state-dependent optimal policies seek to move toward. 
 
The decision whether to adjust the balance equation bias by correcting survival or recruitment 
rates does not have a large effect on the equilibrium dynamics (Fig. 7).  Because the equilibrium 
dynamics drive the state-dependent optimal decision strategy, the method of correcting the bias 
also is not likely to strongly affect the decision policy.  In the interest of parsimony, we decided 
to consider only the hybrid correction method, as described above.  The four alternative models 
under consideration all correct the bias in this way. 
 
The equilibrium population sizes as a function of adult male harvest rate are shown for the four 
alternative models (Fig. 8, Table 3).  The four models differ substantially in their predictions 
regarding the potential carrying capacity.  This result is a realistic expression of uncertainty, 
since we have never observed what the mid-continent mallard population would do in the 
absence of harvest.  The four models have relatively similar optimal equilibrium points (just 
under 6 million for three of the models, and near 9 million for the fourth), but require 
substantially different harvest rates to achieve those equilibria (ranging from 9% to 28%).  Thus, 
these four models, while all quite plausible given our current understanding of mallard 
population dynamics, capture a range of uncertainty about management implications. 
 

Optimal State-Dependent Policies 
 
We derived optimal harvest strategies for each of the four models using stochastic dynamic 
programming (Lubow 1995), conditioning on the current set of regulatory alternatives and the 
current objective function:  maximizing long-term cumulative harvest subject to a devaluation of 
harvest when the population falls below the North American goal of 8.8 million.  (Note that this 
goal was increased from 8.7 million to reflect the 1998 revision of the North American 
Waterfowl Management Plan.)  We also simulated these policies for long time periods to 
understand their expected dynamics. 
 
Under the compensatory models (ScRs and ScRw, Figs. 9A and 9B), the optimal policy is to 
have a liberal season (current estimate of harvest rate = 0.12), regardless of population size or 
number of ponds, because at any harvest level less than 20%, harvest has no effect on the 
population size.  Under the strongly density-dependent model (ScRs), the density-dependence 
regulates the population and keeps it within narrow bounds.  Under the weakly density-
dependent model (ScRw), the density-dependence does not exert as strong a regulatory effect, 
and the population size fluctuates greatly. 
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To understand the optimal policies for the additive models (SaRs and SaRw), it’s necessary to 
first consider what the optimal policies would be if the North American goal were not used to 
devalue harvest (Figs. 9E and 9F).  For the strongly density-dependent model (SaRs), the optimal 
policy is to always use liberal regulations, resulting in a mean population size of 6.7 million 
(Table 4).  This is higher than the optimal equilibrium point of 6.0 million (Table 3), because the 
optimal harvest rate (14.8%) cannot be achieved with the liberal package.  At low population 
sizes, the optimal strategy is “knife-edged” (i.e., it jumps from a closed season to a liberal 
package over a narrow range of BPOP), for the following two reasons:  (1) the large amount of 
overlap in the harvest rates under the various packages; and (2) the benefit of moving the 
population size back toward the equilibrium point as quickly as possible.  For the weakly 
density-dependent model (SaRw, Fig. 9F), the optimal policy is much more conservative than 
under the other models, because this model results in a lower potential for population growth.  
The optimal harvest rate (Table 3) is 9.1%, which is lower than the expected harvest rate under 
both the moderate and liberal packages.  The mean population size under the optimal state-
dependent policy, 8.1 million, is close to the optimal equilibrium population size of 8.7 million.  
Because of the low growth potential under this model, if the population size drifts below about 7 
million, the optimal policy calls for closing the season in order to allow the population to return 
to higher levels.   
 
When the North American goal is included in the objective function for the additive models, the 
optimal policies become more conservative (Figs. 9C and 9D).  The reason is that the optimal 
equilibrium points for both of these models (SaRs and SaRw) are considerably below the North 
American goal.  So, the optimal policy needs to seek a balance between maximizing harvest, yet 
avoiding having that harvest devalued too much.  The more conservative strategies increase the 
mean population size (for SaRs, from 6.7 million to 7.1 million; and for SaRw, from 8.1 million 
to 9.2 million).  This shift to a more conservative strategy is reflected in the expected frequency 
of each regulatory package (Table 4). 
 
 

MODEL WEIGHT UPDATING 
 
Model weights were calculated as Bayesian probabilities, which reflect the cumulative ability of 
the individual alternative models to predict observed changes in population size.  The Bayesian 
probability for each model is a function of the model’s previous (or prior) weight and the 
likelihood of the observed population size under the model.  We used Bayes’ theorem to 
calculate model weights from a comparison of predicted and observed population sizes for the 
years 1996-2001, starting with equal model weights in 1995.  For the purposes of updating, we 
predicted the BPOP in the traditional survey area (reference areas 1-7, 12, and 13) in year t + 1, 
from the traditional BPOP, May ponds, and adult male harvest rate in year t. 
 
For 5 of the past 6 years, the likelihoods of the four models have been quite similar, and thus 
have provided little evidence favoring any models (Table 5).  Further, in 4 of the past 6 years, the 
observed BPOP has been within the range of predictions from the four models.  Thus, 
collectively the models have done a good job of prediction.  In 1999, however, the observed 
BPOP was considerably higher than the expected value under any of the models (although it was 
not unreasonable with regard to the predicted distributions).  The effect of this one year was to 
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favor those models that tended to predict higher population sizes, namely, ScRw and SaRw, and 
the collective weight associated with these two models increased from 55.3% to 85.3%.  The 
current (2001) model weights suggest the weakly density-dependent model is favored 86.3% to 
13.7% over the strongly density-dependent model; and there is roughly equal evidence for the 
compensatory (45.7%) and additive (54.3%) models.  For comparison, under the old AHM 
protocol (balance equation, submodels, and variances), only one model (SaRs) would have any 
significant weight associated with it in 2001 (Table 5). 
 
Under the optimal harvest strategy associated with the set of four models and their 2001 weights 
(and including the North American goal), the liberal alternative is expected to be chosen 52.5% 
of the time, with closed seasons 22.3% of the time, and a small portion of time spent in the other 
packages (Table 4, Fig. 10).  The population size would be expected to average 7.2 million. 
 
 

FUTURE WORK 
 
The AHM Working Group, in conjunction with colleagues in federal, state, and private 
institutions, has continuously scrutinized the models and methods used to generate harvest 
regulations through the AHM process.  The set of revisions described herein represents the 
culmination of more than 2 years of analysis and careful deliberation, a process that is annually 
documented in the AHM reports (available online at http://migratorybirds.fws.gov/reports/ 
reports.html). 
 
We expect that there will be additional improvements made in the AHM models and methods in 
the future, as new data, analyses, methods, and insights become available.  While the AHM 
Working Group has the primary responsibility for pursuing such technical improvements, the 
process is open to, and is enhanced by, contributions from other scientists. 
 
We recognize a number of areas where future work is needed to improve the AHM models.  
Some of this work is on-going and is documented in previous AHM reports, but was beyond the 
scope of the revisions we could include this year.  (1) Improving recruitment sub-models.  
Efforts are underway to develop better models of recruitment to reflect uncertainty about the 
functional form of density-dependence, and to capture large-scale landscape changes using an 
expanded set of predictors (including the distribution of ponds in both the U.S. and Canada).  (2) 
Improving survival sub-models.  We are continuing to develop a more mechanistic model for the 
compensatory hypothesis.  (3) Understanding the cause of the balance equation bias.  In the 
work described in this report, we used an empirical correction for the bias in the balance 
equation.  We intend to continue to look for patterns in this bias, and track it on an annual basis.  
In addition, there is an external study that is investigating whether there is any bias in the age-
ratio data.  (4) Improving the updating procedure.  Currently, only information about changes in 
the population size is used to adjust model weights.  We are exploring whether we can also use 
information about observed annual survival rates and age-ratios to inform the model weight 
updating.  (5) Improving estimates of harvest rate.  The new reward-band study will provide 
better estimates of harvest rates, which will be incorporated into the AHM mallard models 
annually. 
 

http://migratorybirds.fws.gov/reports/reports.html
http://migratorybirds.fws.gov/reports/reports.html
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Table 1.  Correlation between observed annual changes in BPOP and predicted changes in 
BPOP, using the balance equation and various data sets. 
Combination Age-ratio Data Set Survival Data Set Correlation 
1 Fall M1 (female) Pooled 0.383 
2 Fall M1 (female) Weighted 0.464 
3 Fall M2 (female) Pooled 0.556 
4 Fall M2 (female) Weighted 0.637 
5 Fall M3 (female) Pooled 0.575 
6 Fall M3 (female) Weighted 0.657 
7 Harvest (female) Pooled 0.593 
8 Harvest (female) Weighted 0.671 
9 Harvest (male) Pooled 0.533 
10 Harvest (male) Weighted 0.608 
 
 
Table 2.  Linear regression of female fall age-ratio on Canadian ponds (Ponds) and breeding 
population size (BPOP), 1961-1995.  Note that Ponds and BPOP were both expressed in 
millions. 
The regression equation is 
R(t) = 0.928 + 0.123 Ponds(t) - 0.0752 BPOP(t) 
 
Predictor        Coef       StDev          T        P 
Constant       0.9278      0.1126       8.24    0.000 
Ponds(t)      0.12293     0.01803       6.82    0.000 
BPOP(t)      -0.07518     0.01710      -4.40    0.000 
 
S = 0.1149      R-Sq = 61.3%     R-Sq(adj) = 58.9% 
 
Analysis of Variance 
Source            DF          SS          MS         F        P 
Regression         2     0.66868     0.33434     25.33    0.000 
Residual Error    32     0.42237     0.01320 
Total             34     1.09105 

 
 
Table 3.  Carrying capacity and optimal equilibrium characteristics for the four alternative 
models.  The population sizes and total harvest are expressed in millions, and include the 
traditional survey areas and the Lake States.  The carrying capacity is the equilibrium population 
size in the absence of harvest.  The optimal equilibrium point (Neq

*) is the population size that 
provides the greatest annual harvest (Heq

*) when subjected to the optimal harvest rate (h*). 
Model Carrying Capacity Neq

* h* Heq
* 

ScRs  7.07 5.58 0.282 1.57 
ScRw  5.77 5.75 0.184 1.06 
SaRs 10.50 6.00 0.148 0.89 
SaRw 16.17 8.72 0.091 0.79 
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Table 4.  Expected performance characteristics of optimal, model-specific harvest strategies for 
mid-continent mallards.  Each optimal policy was simulated, under the model used to generate it,  
for 500 years.  The statistics shown were calculated from the last 400 years of the simulation. 
 BPOP Expected frequency of regulations 
Model Mean Variance C VR R M L 
ScRs 6.83 2.33 0 0 0 0 100 
ScRw 5.23 6.73 0 0 0 0 100 
SaRs, no NA goal 6.70 2.27 0 0 0 0 100 
SaRs, NA goal 7.08 1.70 0.8 3.8 9.8 16.5 69.3 
SaRw, no NA goal 8.11 2.27 15.8 8.8 14.3 9.3 52.0 
SaRw, NA goal 9.15 2.34 19.3 15.5 17.0 16.0 32.3 
2001 7.22 2.61 22.3 8.8 11.8 4.8 52.5 
 
Table 5.  Model-specific probabilities of breeding population size (in millions), observed 
population size, and resulting likelihoods and model weights for each model of mid-continent 
mallard population dynamics.  Model weights were assumed to be equal in 1995.  Note that the 
BPOPs (both predicted and observed) are for the traditional survey area only. 
Year Parameter ScRs ScRw SaRs SaRw BPOP 

(observed)
1996 BPOP (predicted) 7.67 8.02 7.70 8.03 7.94
 Likelihood 2.50 2.56 2.51 2.55  
 Weight 0.247 0.253 0.248 0.252  
       
1997 BPOP (predicted) 8.06 8.18 8.08 8.19 9.94
 Likelihood 1.03 1.17 1.05 1.18  
 Weight 0.230 0.266 0.235 0.269  
       
1998 BPOP (predicted) 9.10 9.93 8.98 9.75 9.64
 Likelihood 2.39 2.52 2.31 2.55  
 Weight 0.224 0.273 0.222 0.280  
       
1999 BPOP (predicted) 7.43 8.47 7.63 8.62 10.81
 Likelihood 0.14 0.75 0.21 0.90  
 Weight 0.060 0.383 0.087 0.470  
       
2000 BPOP (predicted) 8.59 9.99 8.94 10.32 9.47
 Likelihood 2.11 2.41 2.39 2.20  
 Weight 0.055 0.403 0.091 0.45  
       
2001 BPOP (predicted) 7.33 8.30 7.34 8.25 7.90
 Likelihood 2.27 2.44 2.29 2.46  
 Weight 0.052 0.405 0.086 0.457  
       
2001 Weights (under the 

old protocol) 0.000 0.000 0.975 0.025 
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Fig. 1.  Predicted versus observed breeding population size for the 
traditional mid-continent mallard region, 1962-1996.  The predictions 
are generated using the balance equation, uncorrected for bias.  
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Fig. 2. Schematic of August-to-August balance equation.  
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Fig. 4.  Predicted versus observed breeding population size for the 
traditional mid-continent mallard region, 1962-1996, using the hybrid 
bias-correction in the balance equation to generate the predictions. 
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Fig. 5. Annual survival rates versus kill rates for mid-continent male 
mallards banded in reference area 2 during 1961-1986.  The solid 
circles depict juvenile males, the open circles adult males.  (A) 
Additive and compensatory models fit to data using a common value 
for survival in the absence of harvest.  (B) Additive and 
compensatory models fit independently to data. 
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Fig. 6.  Predicted fall age-ratio versus breeding population size for the two
alternative recruitment models.  For both curves, the mean value for
Canadian ponds (3.36) was used. 
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Fig. 7.  Equilibrium curves for the strong density-dependent recruitment
models:  comparison of survival and recruitment bias corrections.   The
solid lines show the equilibrium population size (BPOP, in millions) as a
function of a fixed harvest rate (adult male).  The open circles and dashed
lines locate the optimal equilibrium points (where annual harvest is
maximized). 
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Fig. 8.  Equilibrium curves for the four alternative models, all using the
hybrid bias correction.   See Fig. 7 for legend. 



AHM for Mid-continent Mallards, 2002 Revisions Page 27 

 
 1 2 3 4 5 6 70

5

10

15

Ponds 
BP

O
P 

 

L

C

1 2 3 4 5 6 70

5

10

15

Ponds 
BP

O
P 

 

L

C

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

VR
R
M

}

1 2 3 4 5 6 70

5

10

15

Ponds 

BP
O

P 
 

L

C

VR
R
M

}

F:  SaRw, without NA goal E:  SaRs, without NA goal 
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Fig. 9.  State-dependent optimal policies for the individual models.  The two state variables,
BPOP (including Lake States, in millions) and Canadian Ponds (in millions) compose the
axes.  Contours indicate the transitions between regulation packages.  The solid circle shows
the simulated mean value of the state variables.  The ellipse indicates the region where 95% of
the simulated observations occur.  (A-D) The policies for the four alternative models.  (E-F)
The policies for the additive models, with the North American goal removed from the
objective function. 
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Fig. 10.  State-dependent optimal policy for the 2001 model.  See
Fig. 9 for legend.  This model averages the four alternative models
according to their 2001 weights.  
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