Research on Thick Blunt Trailing Edge Wind Turbine Airfoils

C.P. (Case) van Dam Mechanical & Aeronautical Engineering University of California, Davis

2008 Wind Turbine Blade Workshop Sandia National Laboratories 12-14 May, 2008

Acknowledgments

- DOE Blade System Design Study (BSDS) Program
- Wind Technology Department, Sandia National Laboratories, Albuquerque
- TPI Composites
- Mike Zuteck, MDZ Inc.
- Kevin Jackson, Dynamic Design Engineering, Inc.
- Past & present graduate students at University of California, Davis:
 - Jonathan Baker
 - Benson Gilbert
 - Raymond Chow (National Defense Science and Engineering Graduate Fellowship)
 - Kevin Standish
 - Tobias Winnemöller
 - Et al

Blunt Trailing Edge Airfoils

- Background
- Experimental Results
 - BSDS airfoils
 - Wind tunnel results
- CFD
 - 2D airfoil design
 - 3D modified NREL Phase VI Rotor
- Future Work

Background

- The inboard region of large wind turbine blades requires large (t/c)_{max} airfoils to meet structural requirements
- Use of blunt trailing edge airfoils proposed by the DOE supported Blade System Design Study (BSDS) conducted by TPI Composites, et al.
 - Benefits
 - Structural improvements by increasing sectional area and moment of inertia for a given (t/c)_{max}
 - Improves sectional maximum C₁ and lift curve slope
 - Reduces sensitivity to leading edge surface soiling
 - Drawbacks
 - Increased base drag
 - Trailing edge vortex shedding (noise)
- Limited experimental research prompted study to validate concept

Blunt Trailing Edge Airfoil Concept

- Time-averaged pressure distributions of the TR-35 and TR-35-10 airfoils at α = 8 deg, Re = 4.5 million, free transition
- Blunt trailing edge reduces the adverse pressure gradient on the upper surface by utilizing the wake for off-surface pressure recovery
- The reduced pressure gradient mitigates flow separation thereby providing enhanced aerodynamic performance
- Note that airfoil is not truncated (this affects airfoil camber distributions) but thickness distribution is modified to provide blunt trailing edge

Wind Tunnel Testing of Thick Blunt Trailing Edge Airfoils

Airfoils

- FB Airfoil Series (FB-XXXX-YYYY)
 - Presented in BSDS Phase I final report
 - − XXXX = % maximum thickness to chord ratio × 100, e.g. $3500 \rightarrow 35\%$ t/c
 - − YYYY = % trailing edge thickness to chord ratio × 100, e.g. 0875 \rightarrow 8.75% t_{te}/c
- Flatback generated by symmetrically adding thickness about the camber line
- Present study investigates FB-3500 airfoil series
 - FB-3500-0050 (nominally sharp trailing edge)
 - FB-3500-0875
 - FB-3500-1750

Methods: Wind Tunnel Test Parameters

- Model chord length: 0.2032 m (8 in.)
- Re = 333,000 and 666,000
 - Reynolds number restricted by wake blockage and wind tunnel balance limits
 - CFD results for Re = 3×10^5 to 7×10^6 conditions show leading edge soiling sensitivity for sharp trailing edge airfoils and the improvements for flatback airfoils persist at high Reynolds numbers.
- Free and fixed transition
- Transition fixed using 0.25 mm (0.01 in.) zigzag trip tape
 - Suction surface at 2% chord
 - Pressure surface at 5% chord

Methods: Wind Tunnel

- Open circuit, low subsonic
- Test section dimensions
 - Cross section: 0.86 m x 1.22 m (2.8 ft x 4 ft)
 - Length: 3.66 m (12 ft)
- Low turbulence < 0.1% FS for 80% of test section

Methods: Wind Tunnel Measurements

- Force measurement
 - Lift determined using 6component pyramidal balance
 - Drag determined using wake measurements
 - Pitot-static probe measurements at fixed intervals in the wake (0.04 in.)
 - Based on Jones' Method
- Experimental measurements will be presented without corrections for wind tunnel wall effects

Experimental Results: FB-3500-0050

- Leading edge transition sensitivity clearly shown
- Free transition stall occurs near 19° with maximum C₁ near 1.5
- Fixed transition stall near 2°, lift continues to increase post stall but airfoil still stalled as shown by dramatic drag increase
- Minimal Reynolds number effects

Experimental Results : FB-3500-0875

- Reduced in leading edge transition sensitivity
- Maximum C₁ approx. 1.65 and 0.9 for free and fixed, respectively
- Lift curve slopes similar for fixed and free transition
- For free transition, increased minimum drag compared to sharp trailing edge airfoil

Experimental Results : FB-3500-1750

- Further reduction of leading edge sensitivity
- Maximum C₁ near 2.2 (free) and 1.7 (fixed)
- Lift curve slope in excellent agreement
- Sharp stall behavior for fixed transition
- Nearly four-fold increase in minimum drag compared to free transition FB-3500-0050

Experimental Results: Lift Comparison

Experimental Results: L/D Comparison

- Re = 666,000
- Free transition
 - FB-3500-0050 does well at low angles of attack, (L/D)_{max} = 35.5
 - FB-3500-0875 produces (L/D)_{max} = 44
- Fixed transition
 - Flatback airfoils outperform sharp trailing edge airfoil
 - FB-3500-0875 produces (L/D)_{max} = 17.5
- Bluff-body drag reduction techniques could be used to further improve performance

Trailing-Edge Treatment

Design Question:

 The drag of blunt trailing edge airfoils is admittedly high but are there ways to reduce the drag?

Trailing-Edge Treatments

(a) Non-serrated(b) 60-deg serrated(c) 90-deg serrated

FB3500-1750 with 90-deg serrated splitter plate

Experimental Results : FB-3500-1750

Re = 0.67 million,**Transition** fixed at leading edge

Design Answer:

 Yes, techniques are available to reduce the base drag and hence the overall drag by 50% or more through simple trailing edge treatments. These techniques also tend to mitigate bluff body vortex shedding.

Thick Airfoil Design

UCDAVIS COLLEGE OF ENGINEERING

Design Question:

 If we design a thick airfoil (maximum thickness to chord ratio > 35%) from scratch, will it end up with a blunt trailing edge?

Numerical Methods

- Surface Generation
 - Based on Sobieczky's PARSEC surface definition
 - Design parameters:
 - Upper/ lower leading edge radius (r_{le,u}, r_{le,l})
 - Point of upper/ lower crest (x_{u,max}, x_{l,max})
 - Ordinate at upper/ lower crest (*z_{u,max}*, *z_{l,max}*)
 - Thickness of trailing edge (t_{te})
 - Trailing edge direction (*teg*)
 - Trailing edge wedge angle (*tew*)
- Numerical Optimizer
 - Combination of zero-order and first-order method
 - First-order method to optimize airfoils with fixed thickness for maximum lift-to-drag ratio
 - Results from the first-order method are used as a basis for the multiobjective optimization with the zero-order method
- Aerodynamic Analysis Method
 - Reynolds-averaged Navier-Stokes solver ARC2D

Optimization Process

- Optimization objectives are lift-to-drag ratio and moment of inertia of the thin shell airfoil
- The following constraints and design conditions were used
 - Re = 1.0 million, Ma = 0.3, fully turbulent flow, $C_1 = 1.0$
 - The main constraints of the design space are:
 - Projected thickness to chord ratio: $0.35 \le t/c \le 0.42$
 - Thickness of trailing edge: $0.005 \le t_{te}/c \le 0.20$
 - A lift-to-drag ratio lower boundary of C_{l}/C_{d} = 10 was set for Pareto front airfoil selection

Resulting Pareto Front

Lift Curve Comparison

Re = 1.0 million, Transition fixed near leading edge

Drag Polar Comparison

Re = 1.0 million, Transition fixed near leading edge

27

L/D Comparison

Re = 1.0 million, Transition fixed near leading edge

Design Answer:

 Yes, a blunt trailing edge does appear if we aerodynamically design and optimize thick airfoils (maximum thickness to chord ratio > 35%)

Rotor with Blunt Trailing Edge Section Shapes

Design Question:

• If we incorporate thick, high-drag, blunt trailing-edge airfoils in the root region of the rotor, will there be a penalty in rotor torque?

Computational Study

- Study the effects of modifying the inboard region of the NREL Phase VI rotor using a thickened, blunt trailing edge section shapes on the performance and load characteristics of the rotor
- Study the effect of different numerical solution techniques of the compressible, three-dimensional, Reynolds-averaged Navier-Stokes equations on the accuracy of the numerical predictions

Blade Section Shapes

- Baseline rotor
 - S809 airfoil
- Modified rotor
 - r/R ≥ 0.45 S809 airfoil
 - 0.25 ≤ r/R < 0.45 thickened blunt trailing edge airfoil (S809 camber distribution retained)
 - Max. chord (r/R = 0.25) $t/c = 0.40, t_{te}/c = 0.10$

Blade Configurations (Tunnel View)

Constant:

- Section shape $r/R \ge 0.45$
- Span (5.03 m)
- Pitch angle (3.0 deg)
- Twist distribution
- Chord distribution
- Blade sweep

Baseline

Flow Solver

- OVERFLOW 2
- 3-D compressible Reynolds-averaged Navier-Stokes (RaNS) flow solver
- Developed by Buning et al. at NASA
- Steady and time-accurate solutions on structured block or Chimera overset grids
- Wide range of turbulence models available: Spalart-Allmaras model used in present study
- Capability to model moving geometries

NREL Phase VI rotor

Torque Comparisons

	Baseline		Modified
		Source term formulation with	low Mach preconditioning
Wind Speed	Experiment	CFD	CFD
(m/s)	(N-m)	(N-m)	(N-m)
5	220-370	160	158
7	700-870	815	815
10	1210-1380	1750	1385

Conclusions

- Numerical study on effect of modifying inboard region of NREL Phase VI rotor with a thickened, blunt trailing edge version of the S809 design airfoil
- Flow solver validated by comparing predictions for baseline rotor with benchmark wind tunnel results
- At attached flow conditions (5, 7 m/s) inboard blade modification does not affect rotor performance
- At stall onset (10 m/s) modified rotor generates less torque. Drop in torque caused by outboard flow separation triggered by changes in inboard loading
- Results of study demonstrate:
 - CFD is viable tool to evaluate effects of blade geometry changes on loading and performance
 - Thick, flatback blade profile can serve as a viable bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors

Design Answer:

- For the NREL Phase VI rotor no significant losses in rotor torque where observed as a result of thickening the section shape and incorporating a blunt trailing edge in the root region.
- More analysis is required

UCDAVIS COLLEGE OF ENGINEERING

Power Loss: Inboard Flow Separation

Unnecessary power loss on modern multi-megawatt turbines

Industry Ad Hoc Solutions

Stall Fences

Spoilers

Source: REpower Systems AG

Current Work

- Thick section shapes and limited blade twist are resulting in flow problems in inboard region of rotating blades
- BEM does not properly model inboard flow development of rotors
- Study inboard flow behavior using unsteady, 3-D, viscous RANS
- Evaluate aerodynamic design techniques to mitigate flow separation
- Improve current turbine design methodologies

More Info

- DESIGN AND NUMERICAL OPTIMIZATION OF THICK AIRFOILS,
 T. Winnemöller and C.P. van Dam, Journal of Aircraft, Vol. 44, No.
 - T. Winnemöller and C.P. van Dam, Journal of Aircraft, Vol. 44, No. 1, Jan-Feb. 2007, pp. 232-240.
- TRAILING EDGE MODIFICATIONS FOR FLATBACK AIRFOILS, C.P. van Dam, D.L. Kahn, and D.E. Berg, SAND2008-1781, March 2008.
- COMPUTATIONAL DESIGN AND ANALYSIS OF FLATBACK AIRFOIL WIND TUNNEL EXPERIMENT,

C.P. van Dam, E.A. Mayda, D.D. Chao and D.E. Berg, SAND2008-1782, March 2008.

 CFD ANALYSIS OF ROTATING TWO-BLADED FLATBACK WIND TURBINE ROTOR,

D.D. Chao and C.P.van Dam, SAND2008-1688, April 2008.

• FLATBACK AIRFOIL WIND TUNNEL EXPERIMENT,

J.P. Baker, C.P. van Dam and B.L. Gilbert, SAND2008-2008, April 2008.