
Appendix J – STWG Part 3 – Uncertainty 7-8-06 
Page 1 of 31 

Uncertainty Associated with Microbiological Analysis 
 

 
1. Introduction 
1.1. There are only two absolute certainties in life: death and taxes!   Whatever task we 

undertake, no matter how menial or how sophisticated, we are faced with a lack of 
certainty in the outcome!   It is therefore essential to have a common understanding 
of what is meant by uncertainty in relation to our specific tasks in defining BPMM. 

1.2. In microbiological laboratory practice, we can identify many causes of variability, 
for instance: 

1.2.1. The ability of an isolate to give typical reactions on a diagnostic medium;  

1.2.2. The use of the incorrect ingredients in a culture medium;  

1.2.3. The consequence of changing brands of commercial media;   

1.2.4. Use of non-standard conditions in the preparation, sterilisation and use of a 
culture medium; 

1.2.5. Equipment and human errors in weighing, dispensing, pipetting and other 
laboratory activities; 

1.2.6. The tolerance applied to the shelf life of test reagents;  

1.2.7. The relative skill levels of different technicians;    

1.2.8. The relative well-being of any technician who is undertaking analyses; 

1.2.9.  and so on, and so on …. ad infinitum! 

1.3. These are but a few trite examples of biological, instrumental and personal bias that 
affect the accuracy, precision and hence the uncertainty of microbiological tests; a 
situation that constantly faces scientists involved in laboratory management.   

1.4. To interpret properly the results obtained using any analytical procedure, whether 
physical, chemical or biological, requires careful consideration of the diverse 
sources of actual or potential error associated with the results obtained.   Any 
analytical result is influenced by a complex of three major error groups:  

1.4.1. Random errors, associated with the original sample matrix, the analytical 
(test) sample, the culture media, etc;  

1.4.2. Inherent systematic errors associated with the analytical procedure; and  

1.4.3. Modification of the systematic errors due to a particular laboratory’s 
environment and equipment together with individual analysts’ personal traits 
in carrying out the test procedure. 
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1.5. Accuracy and Precision 
1.5.1. Accuracy is a qualitative concept (VIM, 1993). In simple terms, accuracy 

can be defined as the correctness of a result, relative to an expected 
outcome; whilst precision is a measure of the variability of test results. 

1.5.2. Accuracy is defined (ISO3534-2:2003) as "the closeness of agreement 
between a test result or a measurement result and the true value."  Accuracy 
is a combination of trueness and precision (a combination of random 
components and systematic error or bias components). This differs from the 
definition given by VIM (1993): "the closeness of agreement between the 
result of a measurement and a true value of a measurand".   

1.5.3. “Accuracy” is essentially “absence of error”; the more accurate a result the 
lower the associated error of the test.   It is important to note that the term 
“accuracy “ applies only to results and can not be applied to methods, 
equipment, laboratories or other general matters. 

1.5.4. “Trueness” is defined (ISO, 2003) as, “the closeness of agreement between 
the average value obtained from a large series of test results and an accepted 
reference value”. 

1.5.5. Trueness is equivalent to an absence of “bias”, which is the difference 
between the expectation of the test results and an accepted reference value 
and is a measure of total systematic, but not random, error. 

1.5.6. Trueness, unlike accuracy, may correctly be contrasted with precision. 

1.6. “Precision” is defined as the closeness of agreement between independent test 
results obtained under stipulated conditions.  

1.6.1. Precision depends only on the distribution of random errors and does not 
relate to a true value or a specified value.  

1.6.2. The measure of precision is expressed usually in terms of imprecision and 
computed as a standard deviation of the test results.  

1.6.3. Lower precision is reflected by a larger standard deviation.  

1.6.4. Independent test results means results obtained in a manner not influenced 
by any previous results on the same or similar test object.  

1.6.5. Quantitative measures of precision depend critically on the stipulated 
conditions. Repeatability and reproducibility conditions are particular sets of 
extreme stipulated conditions (ISO 3534: 3.14). 

1.7. Fig 1 illustrates schematically the relationships between trueness, accuracy, 
precision and uncertainty (AMC, 2003).   
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Fig 1.  Relationships between trueness, accuracy, precision and uncertainty in analytical 
results (AMC, 2003). (Reproduced by permission of the Royal Society of Chemistry, 
London) 
 

1.8. The concepts of accuracy and trueness must take account of error and precision.   
Uncertainty estimates (qv) provide a simple way to quantify such needs.   However, 
since in a real-life situation we never know what the “true” or “correct” answer is, 
trueness can be assessed only in a validation-type trial against an accepted reference 
value.  This is much more complex in microbiology than it is in physics, and 
chemistry. 
 

2. Uncertainty of Measurement  
2.1. The ISO/Eurachem (2000) definition of Uncertainty of a Measurement is  

2.2. “A parameter associated with the result of a measurement that characterises the 
dispersion of the values that could reasonably be attributed to the measurand”. The 
term “measurand” is a bureaucratic way of saying “analyte”. 

2.3. Translated into simple English this definition can be rewritten, as “Uncertainty is a 
measure of the likely range of values that is indicated by an analytical result.”  

2.4. For quantitative data (e.g. colony counts, MPNs or LOD50 values) a measure of 
uncertainty may be any appropriate statistical parameter associated with the test 
result.  Such parameters include the standard deviation, the standard error of the 
mean or a confidence interval around that mean. 

2.5. Measures of repeatability and reproducibility are the corner stones of estimation of 
analytical uncertainty.  They are defined (ISO 2004) as: 
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2.5.1. Repeatability is “a measure of variability derived under specified repeatability 
conditions”, i.e. independent test results are obtained with the same method 
on identical test items in the same laboratory by the same analyst using the 
same equipment, batch of culture media and diluents, and tested within short 
intervals of time. 

2.5.2. Reproducibility is “a measure of precision derived under reproducibility 
conditions” i.e. test results are obtained with the same method on identical 
test items in different laboratories with different operators using different 
equipment.   A valid statement of reproducibility requires specification of the 
conditions used. 

2.5.3. Intermediate Reproducibility (ISO 5725-2:1994  ) is defined as “a measure 
of reproducibility derived under reproducibility conditions within a single 
laboratory”. 

2.5.4. Standard Uncertainty of a measurement (u(y)) is defined (GUM, 2000) as 
“the result obtained from the values of a number of other quantities, equal to 
the positive square root of a sum of terms, the terms being the variances or 
covariances of these other quantities weighted according to how the 
measurement result varies with changes in these quantities” 

2.5.5. Expanded Uncertainty (U) is defined as “the quantity defining an interval 
about a result of a measurement expected to encompass a large fraction of the 
distribution of values that could reasonably be attributed to the measurand”.   

2.5.6. The “Expanded Uncertainty” values are derived by multiplying the SD’s with 
a “coverage factor” to provide confidence intervals for repeatability and 
reproducibility around the mean value.  Routinely, a coverage factor of 2 is 
used to give approximate 95% distribution limits (confidence interval) around 
the “normalised” mean value. 

2.6. For qualitative data (e.g. presence or absence tests) uncertainty measures cannot be 
derived in the same way.  However, other procedures e.g. use of the standard error 
associated with derived values for e.g. LOD50 (qv) and by binomial analysis of the 
relative proportions of positive and negative results in a comparative evaluation of 
methods (see 3.4 below).   

3. How is uncertainty estimated? 
3.1. There are two totally different approaches to the estimation of uncertainty:  

3.1.1. The “bottom up” approach in which the errors associated with all the relevant 
steps undertaken during an analysis are used to derive a value for the 
“combined standard uncertainty” associated with a method (Eurachem 2000; 
Niemelä, 2002). Essentially this approach provides a broad indication of the 
possible level of uncertainty associated with method rather than a 
measurement; ISO TC34 SC9 considers the approach always to under-
estimate the extent of variation since it cannot take into account either matrix-
associated errors or the actual day-to-day variation seen in a laboratory.  For 
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these reasons, ISO has recommended that this approach is not appropriate for 
microbiological analyses. 

3.1.2. The “top-down” approach is based on statistical analysis of data generated in 
intra- or inter-laboratory collaborative studies on the use of a method to 
analyze a diversity of matrixes.   It therefore provides an estimate of the 
uncertainty of a measurement associated with the use of a specific method.  

3.1.3. Statistical aspects of the procedures, together with worked examples, for both 
approaches are summarised in Annexes I & II. 

3.1.4. A review of measurement uncertainty in quantitative microbiological analysis 
is currently in press (Corry et al, 2006). 

3.2. Quantitative Tests.  For quantitative data (e.g. colony counts and MPN estimates), 
measures of “repeatability” and “reproducibility” are derived as the standard 
deviations of repeatability (sr) and reproducibility (sR).  However… 

3.2.1. Microbiological data do not normally conform to a “normal” distribution, and 
usually require mathematical transformation prior to statistical analysis.  For 
most purposes, a log10 transformation is used to “normalise” the data but in 
cases of significant over-dispersion the use of a negative-binomial 
transformation may be necessary (Jarvis, 1989; Niemelä, 2002).  If there is 
reason to believe that data conform to a Poisson distribution, then a square 
root transformation is required, since the variance (σ2) is numerically equal to 
the mean (m) value. 

3.2.2. Statistical analyses of collaborative trial data are generally done by Analysis 
of Variance (ANOVA) after removing any outlying values, as described by 
Youden & Steiner (1975) and by Horwitz (1995).  However, it has been 
argued (e.g. AMC 1989, 2001) that it is wrong to eliminate outlier data and 
that application of Robust Methods of analysis is preferable. 

3.2.3. One approach to robust analysis is a “robusticised” ANOVA procedure based 
on Huber’s H15 estimators for the robust mean and standard deviation of the 
data  (AMC, 1989, AMC 2001, ISO 5725-5:1998).   

3.2.4. An alternative approach is that of the Recursive Median (REMEDIAN) 
procedure (ISO 2000; Wilrich, 2005).   

3.2.5. Worked examples of traditional and robust analyses are shown in Annexe III.  

3.2.6. A major drawback to use of these robust techniques for inter-laboratory trials 
is that they do not permit the derivation of Components of Variance.   A novel 
approach to overcome this disadvantage is by the use of stepwise robust 
analysis for “nested” trial data, as described by Hedges & Jarvis (2006). 

3.3. Intermediate Reproducibility of Quantitative Tests.  Similar procedures may be used 
to estimate intermediate (intra-laboratory) reproducibility associated with the use of 
an analytical procedure in a single laboratory.  Even data obtained, for instance, in 
laboratory quality monitoring can be used to provide an estimate of intra-laboratory 
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reproducibility.   ISO/PTDS 19036:2005 (Part 6) describes a statistical procedure for 
analysis of paired data.  A worked example is shown in Annex IV. 

3.4. Qualitative Tests. Estimation of uncertainty associated with qualitative (e.g. presence 
or absence) methods has not been well documented and is currently the subject of 
discussion within ISO. 

3.4.1. Many of the potential errors that affect quantitative methods also affect 
qualitative methods; but there are also some additional potential errors that are 
inherent in the analytical procedure.  For example: 

3.4.1.1. In taking a sample for analysis, it is of critical importance to have 
knowledge of the probable distribution of organisms in the test matrix, 
especially when testing for organisms at the limit of detection of a 
method.   Whilst it may be possible to ensure reasonable conformity with 
a Poisson (random) distribution of index organisms in artificial test 
matrixes, such distribution should not be assumed to occur in natural 
matrixes and requires confirmation (e.g. using an Index of Dispersion 
Test such as that described by Fisher et al, 1922) before using such 
matrixes in collaborative studies.  In real life testing, erroneous decisions 
can result from an assumption that all microorganisms are distributed 
randomly at low level – there are some well-documented examples where 
“over dispersion” of organisms (e.g. due for instance to clumping) has 
resulted in a significant level of genuine false negative surveillance data.   

3.4.1.2. There is an intrinsic need to ensure effective growth of the index 
organism to critical levels during all pre-enrichment, enrichment and 
differential/diagnostic culture stages  – so culture medium composition, 
incubation times & temperatures, etc are critical to the success of the test. 

3.4.1.3. It is critical to ensure that the confirmatory stages of a test protocol do 
actually identify the index organism. 

3.4.1.4. Knowledge of the potential effect of competitive organisms is of major 
importance for all cultural and confirmatory stages of a test protocol. 

3.4.1.5. The decision on use of either true pairs or non-paired samples is of great 
importance in the interpretation of potential false negative or false 
positive results for method validation studies. 

3.4.2. The output of qualitative tests is a series of positive and negative responses.   
One approach to seeking to quantify such data was the derivation of the 
Accordance and Concordance concept (Langton et al, 2002) that sought to 
provide measures “equivalent to the conceptual aspects of repeatability and 
reproducibility”.  However, it is now considered that this approach is not 
sufficiently robust to be used in the manner proposed and adds no value to the 
original data. 

3.4.3. Provided that a sufficient number of parallel tests has been undertaken at each 
of several levels of potential contamination, then it is possible to quantify the 
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test responses in terms of an estimated Level of Detection for (e.g.) 50% 
positives [LOD50](for details see Hitchins, 2005). 

3.4.3.1. This statistical approach essentially estimates the Most Probable Number 
of organisms at each test level and then analyses the relative MPN values 
using the Spearman-Karber approach. 

3.4.3.2. Alternative approaches including Probit and Logit analyses may also be 
appropriate in specific circumstances. 

3.4.3.3. What these methods have in common is an ability to transform purely 
qualitative data into a quantitative format for which error values can be 
derived so permitting an estimate of the uncertainty of the test result. 

3.4.3.4. An extrapolation of the approach would be to determine also the LOD0 
and LOD90 values such that a dose-response curve can be derived.  This 
may be of importance in differentiating between methods capable of 
detecting specific organisms at a similar LOD50 level but for which the 
absolute limit of non-detection (LOD0) and a selected higher limit of 
detection (e.g. LOD90) differ. 

3.4.3.5. An alternative approach is to estimate the uncertainty associated with the 
proportions of test samples giving a positive response, based on the 
binomial distribution. 

3.4.4. Examples of the way in which such approaches to analysis of qualitative data 
can be used are illustrated in Annex V. 
 

4. Reporting of Uncertainty 
4.1. The expression of uncertainty is of some importance in interpretation of data.   

Assuming a mean aerobic colony count (ACC) = 5.00 (log10) cfu/g and a 
reproducibility standard deviation of ± 0.25 (log10) cfu/g, then the expanded 
uncertainty is given, for instance, by:  

4.1.1. Aerobic colony count on product X is 5.00 ± 0.50 (log10) cfu/g; or 

4.1.2. Aerobic colony count on product X is 5.00 (log10) cfu/g ± 10% 

4.2. It is important not to refer to analytical methods as having a precision of e.g. ± 10% 
based on uncertainty estimates.  Uncertainty is a measure of variability i.e. a measure 
of the lack of precision.  

5. The use of uncertainty measures in assessing compliance of a test result with a 
defined criterion is of some importance and has been considered by the European 
Commission (Anon, 2003).  Jarvis et al (2004) and Jarvis & van der Voet (2005) 
have discussed the interpretation of data in relation to microbiological criteria for 
foods. 

For more information, please contact Basil Jarvis at basil.jarvis@btconnect.com. 
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Annex I 
Top-Down Procedure For Estimation Of Uncertainty 

 
1. The basis of the “top down” approach described by GUM (Eurachem 2000) is to identify 

and take account of all procedural stages of an analytical method. The variance 
associated with each individual stage is combined with the variances all the other stages 
and interactions that make up an analytical procedure in order to estimate a generic level 
of uncertainty for a method.  This is illustrated diagrammatically in the schematic below. 

 

 

 

 

 

 

2. Consider first the sample matrix: what are the likely errors that will affect the analytical 
result?   

2.1. The largest potential error sources will be: the spatial distribution of the 
microorganisms (random, under- or over dispersion as exemplified by evidence of 
clumping); the condition of the microorganisms (viable and vital, sublethally 
damaged, non-cultivatable); the effects of competitive organisms on the 
recoverability of specific types; whether the organisms are located primarily on the 
surface of, or more generally distributed throughout, the matrix; etc. 

2.2. However, the intrinsic nature of the matrix will also affect the results of an analysis.   

3. How representative is an analytical sample taken from a matrix? 

3.3. Should the analytical sample be totally representative of the whole matrix, or 
should it relate only to a specific part, e.g. the surface of a meat carcass?  If the 
former should the matrix be homogenized prior to taking a sample; if the latter 
should the surface layer be excised, swabbed, rinsed or tested using a replica 
plating technique?   What ever the method of sampling to what extent is the 
microflora in the analytical sample representative of both the number and types of 
microorganisms present in the original matrix. 

3.4. If the matrix is a composite food, should the sample represent the whole or 
individual parts of the food matrix (e.g. in the case of a meat pie should the pastry 
and the meat be analysed separately)? 

3.5. What size of sample should be tested?   Increasing the size of an analytical sample 
results in a decrease in the standard error associated with the mean weight of 
sample taken.   Similarly, increasing the weight of sample taken tends to increase 
the apparent colony count whilst reducing the overall variance of the mean count 
(Jarvis, 1989). 

    
Analytical Method 

Sample 
Matrix 

Sampling Analytical 
Result Procedure 
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4. At its simplest, the analytical process consists of taking an analytical sample, suspending 
that sample in a defined volume of a suitable primary diluent, macerating the sample, 
preparing serial dilutions, plating measured volumes onto or into a culture medium, 
incubating the plates, counting and recording the numbers of colonies and deriving a 
final estimate of colony forming units (cfu) in the original matrix.   At all stages 
throughout this process, errors will occur.   

4.1. Some errors, e.g. those associated with the accuracy of weighing, the accuracy of 
pipette volumes, the accuracy of colony counting, etc, etc can be quantified and 
measures of the variance can be derived.  

4.2. Some errors can be assessed, but not necessarily quantified; for instance, 
laboratory quality control procedures can be used to assess the extent to which a 
culture medium will support the growth of specific organisms.  Such data may 
potentially provide a correction factor for the yield of organisms on a particular 
culture medium; whether or not the use of a correction factor should be employed 
in microbiological practice is a matter of debate! 

4.3. However, other errors, such as those associated with individual technical 
performance on a day, cannot be quantified. 

5. Some analytical errors associated with microbiological practices are possibly not 
significant when compared to other errors, but how do you know this if the errors cannot 
be quantified?  To assess the uncertainty of an analytical microbiological procedure from 
the “top down” requires a full evaluation of all potential sources of error for each and 
every stage of an analytical procedure. 

6. Estimation of the standard uncertainty of an analytical procedure, once a reliable 
schedule of quantifiable errors has been produced, is done simply by combining the 
errors: 
                                 

where = reproducibility variance of the method and =  variance of any stage 
(a….z) within the overall method. 
 
By definition, the reproducibility standard deviation ( ) is derived from the square root 
of the variance: 
 
                              

2 2 2 2 2.....R a b x ys s s s s s= + + + + + 2
z

2
Rs 2

....a zs

Rs

2 2 2 2.....R a b x ys s s s s s= + + + + + 2
z  

 

7. The expanded uncertainty is derived by multiplying the standard uncertainty by a 
coverage factor k, which has a value from 2 to 3.  A value of 2 is normally used to give 
approximate 95% confidence limits; hence 
 
                                    U = k.  = 2.  Rs Rs

8. Niemelä (2002, 2003) gives a more detailed explanation of the “top down” approach to 
assessment of measurement uncertainty in microbiological analysis.
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Annex II 
“Bottom-up” Approach to Estimation of Uncertainty 

1. Traditionally, the parameters used to derive uncertainty measures are estimated from 
the pooled results of a “valid” inter-laboratory collaborative study, or in the case of 
intermediate reproducibility, from an intra-laboratory study.   Appropriate procedures 
to ensure that the study design is valid have been described inter alia by Youden & 
Steiner (1975) and by ISO (1994, 1998). 

2. The data from all participating laboratories are subjected to analysis of variance 
(ANOVA) after first checking for: 

2.1. Conformance with a “normal distribution” either by plotting the data or by 
application of appropriate tests for “normality”. 

2.2. Identification and removal of “outliers” using the methods described by Youden and 
Steiner (1975) or Horwitz (1995), followed if necessary by repeating the tests for 
conformance with “normality”. 

3. Quantitative microbiological data (e.g. colony counts and MPNs) do not conform to a 
normal distribution and require transformation to “normalise” the data before 
analysis.   

4. Transformations are done by converting each of the raw data values (xi) into the log10 
value (yi) where yi = log10 xi.   Strictly, it is more correct to use the natural 
logarithmic transformation (i.e. yi = ln xi) (van der Voet, 2004). 

5. For low level counts (typically < 100 cfu/g) that conform to the Poisson distribution 
(mean value (m) = variance (s2)), the data are transformed by taking the square root 
of each data value (i.e. yi = √xi). 

6. However, because of problems of over-dispersion frequently associated with 
microbial contamination, it may be preferable to test for (or to assume) conformance 
with a negative binomial distribution.  Some statistical packages (e.g. Genstat) 
include a facility to make this transformation (using the Maximum Likelihood 
Method programme RNEGBINOMIAL), but such procedures are not universally 
available and it can be very time-consuming to calculate manually (Jarvis, 1989; 
NMKL, 2002, Niemelä, 2003; van der Voet, 2004). 

7. Assuming a fully “nested” experimental design (e.g. duplicate testing of duplicate 
samples by “A” analysts in each of “L” laboratories), the residual mean variance (i.e. 
the variance of the replicated analyses on each sample) of the ANOVA provides an 
estimate of repeatability variance ( ).   The estimate of reproducibility variance ( ) 
first requires computation of the contributions to variance of the samples, analysts 
and laboratories.   This is illustrated below. 

2
rs 2

Rs

8. The repeatability standard deviation (sr) and the reproducibility standard deviation 
(sR), being the square root values of the respective variances, are the measures of 
standard uncertainty from which the expanded uncertainty estimates are derived. 
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9. Statistical Procedure to Derive Component Variances from an ANOVA Analysis 
Assume: trial consists of (p) laboratories (p=20) in each of which 2 analysts test 2 replicate 
samples and make duplicate analyses of each sample.  Hence, each laboratory carries out 8 
replicate analyses and the total number of analyses = 8p = 160.    
 
Each data value (ypijk) is allocated to a cell in the data table in the sequence laboratory (p), 
analyst (i), sample (j) and replicate (k), as shown below, and are then analysed by multivariate 
analysis of variance. 
 

Analyst (i =1) Analyst (i = 2) 
Sample (j = 1) Sample (j = 2) Sample (j = 1) Sample (j = 2) 

Laboratory 
(p = 

1…20) Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

1 y1111 y1112 y1121 y1122 y1211 y1212 y1221 y1222
2 y2111 y2112 y2121 y2122 y2211 y2212 y2221 y2222
3 y3111 y3112 y3121 y3122 y3211 y3212 y3221 y3222
4 y4111 y4112 y4121 … … … … … 
… … … … … … … … … 
… … … … … … … … … 
20 y20111 y20112 y20121 y20122 y20211 y20212 y20221 y20222

 
 

ANOVA table for a four-factor fully-nested experiment 
Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Square Expected Mean Square 
Components* 

Laboratories SSlab p-1 = 19 SSlab/19 = MSlab  
 

2 2 22 4 8 2σ σ σ σ+ + +sam ana labr  

Analysts SSana p = 20 SSana/20 = MSana
2 2 22 4sam anarσ σ σ+ +  

Samples SSsam 2p = 40 SSsam/40 = MSsam
2 22σ σ+ samr  

 
Residual 

 
SSres 4p = 80 SSres/80 = MSres

2σr  

Total Total SS 8p –1=159   

* The components are shown as population variances since this is an expectation table. 
 
 
The residual mean square (MSres = 2sr

) provides the repeatability variance between duplicate 

analyses done on the same replicate sample. 
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The variance due to l samples ( 2
sams )is given by [MSsam - ]/2 2sr

The variance due to analysts ( ) is given by  2
anas 2 2[ 2− −ana sam rMS s s ] / 4

] / 8
2

The variance due to is laboratories ( ) given by  2
labs 2 2 2[ 2 4− − −lab sam ana rMS s s s

The Reproducibility Variance (  ) is given by 2
Rs 2 2 1[ ]+ + +sam ana lab rs s s s  

 
The Reproducibility Standard Deviation is given by 2 2 1

sam ana lab rs s s s+ + + 2   

The Repeatability Standard Deviation is given by 2
rs . 

 

WORKED EXAMPLE   (10 Labs x 2 Analysts x 2 Samples x 2 Replicate analyses) 

Log transformed colony counts (Log10 cfu/g) 
 

Analyst (i = 1) Analyst (i = 2) 
Sample (j=1) Sample (j=2) Sample (j=1) Sample (j=2) Laboratory 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

Replicate 
(k = 1) 

Replicate 
(k = 2) 

1 5.56 5.73 5.76 5.59 6.08 5.96 6.07 5.99

2 6.02 5.88 5.87 5.80 5.54 5.63 5.92 5.79

3 6.26 6.30 6.46 6.54 6.42 6.49 6.11 6.42

4 5.07 5.11 4.90 4.61 4.63 4.81 4.42 4.56

5 5.39 5.25 5.28 5.52 5.34 5.46 5.47 5.49

6 5.98 5.88 6.02 5.64 5.96 6.06 5.70 5.57

7 5.43 5.18 5.16 5.08 6.15 5.76 5.44 5.43

8 5.94 5.73 5.28 5.47 5.99 6.01 5.92 6.13

9 5.45 5.35 5.49 5.42 5.68 5.57 5.74 5.69

10 5.51 5.74 6.18 6.13 5.83 5.91 5.76 5.60

 
Tests for normality (e.g. Shapiro-Wilk, W = 0.9830, p= 0.0885) did not disprove the 
hypothesis that the log10 transformed data conform reasonably (although not perfectly) to a 
normal distribution. However, application of the Cochran Test (Horwitz, 1995) identified 
Laboratory 7 as an outlier; subsequently evaluation using the Grubbs test did not eliminate 
other laboratories although laboratories 3 & 4 appeared to be possible outliers.  
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ANOVA table for the four-factor fully nested experiment (All data included) 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Square 
(rounded to 4 places) 

Mean Square Components 

Laboratories 12.636 9 1.4040 
 

2 2 22 4 8+ + + 2
sam ana labs s s sr  

Analysts 1.4906 10 0.1491 2 2 22 4+ +sam anas s sr  

Samples 1.346 20 0.0673 2 22+ sams sr  

Residual 
 0.5554 40 0.0139 2sr  

Total 16.0272 79   

The residual mean square (MSres =  = 0.0139) provides the repeatability variance between 

duplicate analyses done on the same replicate sample. 

2sr

 
Component Variances 

Sample variance ( 2
sams ) = [MSsam- ]/2 = [0.0673 – 0.01389]/2 = 0.0267 2sr

Analyst variance ( ) =  = [0.1491 – 0.0673]/4 = 0.02045 2
anas 2 2[ 2− −ana sam rMS s s ]/ 4

/ 8
2

Laboratory variance ( )=  = [1.4040 – 0.1491]/8 = 0.1548 2
labs 2 2 2[ 2 4 ]− − −lab sam ana rMS s s s

Hence, Reproducibility Variance (  ) = 2
Rs 2 2 1[ ]+ + +sam ana lab rs s s s  =  

                                        [0.0139 +0.0267 +0.02045 +0.15686]  = 0.2179 
 
Reproducibility Standard Deviation = 2 2 1= + + +R sam ana lab rs s s s s2  = √0.2179 = ±0.4668 

Repeatability Standard Deviation =  =rs 2
rs  = √0.01389   = ±0.1178 

The mean colony count =  5.6682  ≈ 5.67 (log10) cfu/g 

Hence, Relative Standard Deviation of Reproducibility (RSDR)  

                                                 = 100 x 0.4668/5.6682  = 8.24% 

and, Relative Standard Deviation of Repeatability (RSDr)  

                                                 = 100 x 0.1178/5.6682  = 2.08%  

From these values the 95% expanded uncertainty of reproducibility is given by: 

U = 2  = 2 x 0.4668 = ±0.9336. ≈  ±0.93 (logRs 10) cfu/g 
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The upper and lower limits of the 95% Confidence Interval on the mean colony count are: 

UL = 5.67 + 0.93 = 6.60 (log10) cfu/g 

LL = 5.67 – 0.93 = 4.74 (log10) cfu/g 

 

Repeat analyses for 9 laboratories( after elimination of data for laboratory 7) 

Source of 
Variation 

Sum of 
Squares 

Degrees of 
freedom 

Mean Square 
(rounded to 4 places) 

Mean Square Components 

Laboratories 12.227 8 1.5284 
 

2 2 22 4 8+ + + 2
sam ana labs s s sr  

Analysts 1.0249 9 0.1139 2 2 22 4+ +sam anas s sr  

Samples 1.0405 18 0.0578 2 22+ sams sr  

Residual 
 0.4449 36 0.0124 2sr  

Total 16.0272 71   

The component variances were derived as: 

      Repeatability variance ( ) = 0.0124      Sample variance (2sr
2
sams )        = 0.0227 

     Analyst variance ( )       = 0.0140        Laboratory variance ( )  = 0.1168 2
anas 2

labs

Hence, Reproducibility Variance ( ) = 0.2279 2
Rs

Reproducibility Standard Deviation =  = √0.2279 = ±0.4753 Rs

Repeatability Standard Deviation    =  = √0.0124   = ±0.1112 rs

The mean colony count = 5.6921 ≈ 5.69 (log10) cfu/g 

Hence, Relative Standard Deviation of Reproducibility (RSDR) = 8.35%                                         

and, Relative Standard Deviation of Repeatability (RSDr) = 1.95%                                             

From these values the 95% expanded uncertainty of reproducibility is given by: 

U = 2  = 2 x 0.4753 = ±0.9506. ≈  ±0.95 (logRs 10) cfu/g 

The upper and lower limits of the 95% Confidence Interval on the mean colony count are: 

UL = 5.69 + 0.95 = 6.64(log10) cfu/g 

LL = 5.67 – 0.95 = 4.72 (log10) cfu/g 
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Comparison of ANOVAs with and without removal of outlier laboratory  
The table below shows that removal of one set of data (from the outlier laboratory) marginally 
increased the mean colony count and reduced the component variances for repeatability, 
samples, analysts and laboratories.   However the overall effect, in this specific example, was 
marginal in relation to the derived values for repeatability and reproducibility; and hence there 
was little effect on the level of expanded uncertainty. 
 
 

Parameter 10 Laboratories 9 Laboratories 
Mean Colony Count (log10 cfu/g) 5.6682 5.6921 

Repeatability Variance 0.0139 0.0124 

Sample Variance 0.0267 0.0227 

Analyst Variance 0.0205 0.0140 

Laboratory Variance 0.1548 0.1168 

SD repeatability (SDr) ±0.1178 ±0.1112 

Relative SDr 2.08% 1.95% 

SD reproducibility (SDR) ±0.4668 ±0.4753 

Relative SDR 8.24% 8.35% 

Expanded Uncertainty (U) ±0.93 ±0.95 

Upper Limit of  95% CI (log10 cfu/g) 6.60 6.64 

Lower Limit of 95% CI (log10 cfu/g) 4.74 4.72 
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Annex III 

Estimation of Intermediate Reproducibility based on Routine Monitoring Data 
 

1. Intra-laboratory uncertainty estimates can be made either by carrying out a full internal 
collaborative trial, with different analysts testing the same samples over a number of days 
or, for instance, using different batches or even different brands of commercial culture 
media.   In such a case the statistical procedure of choice is that described in Annex II.    

2. However, if a laboratory undertakes routine quality monitoring tests, it is possible to 
estimate reproducibility from these test data.   One approach is to use a 1-way ANOVA 
and to take the mean residual square as the estimate of reproducibility.  A preferred, and 
simpler procedure, is described fully in ISO19036: 2005; this determines the variance for 
each set of transformed replicate data values.    

3. The reproducibility standard deviation is derived from the square root of the sum of the 
duplicate variances divided by the number of data sets.   The equation is: 
 

                                 
2

1 2

1

( )
=

−
= ∑

n
i i

R
i

y yS
n

/ 2

2iy

   

where  are the log transformed values of the original duplicate counts (x1  and iy 1 and 
x2) and n is the number of pairs of counts. 

4. A worked example (based on log10 transformation) is presented below.  
5. Confusion sometimes arises between repeatability and intermediate reproducibility.   It 

must always be remembered that repeatability requires all stages of the replicated tests to 
be done only by a single analyst, carrying out repeat determinations on a single sample in 
a single laboratory, using identical culture media, diluents, etc within a short time period 
e.g. a few hours.  If more than one analyst undertakes the analyses and/or tests are done 
on different samples and/or on different days then the calculation derives a measure of 
intermediate reproducibility.  The procedure can be used to determined average 
repeatability estimates for individual analysts provided all the repeatability criteria are 
met.. 

6. Internal laboratory quality management is aided by the use of statistical process control 
(SPC).  The estimates of intermediate reproducibility provide a source of data that is 
amenable to SPC.   
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Worked Example (modified from ISO 19036:2005) 
The data below were derived from enumeration of aerobic mesophilic flora in mixed poultry meat 
samples.  The duplicate data values (xiA and xiB) are log transformed to give yiA and yiB, 
respectively.   The mean log10 counts ( y ) are derived from (yiA + yiB)/2; the variances (SRi

2) are 
derived from (yiA - yiB)/2; and the RSD values from 100*√ SRi

2/ y . 
 
 

Test(i) 
Colony 
Count A 
(cfu/g) 

 

Colony 
Count B 
(cfu/g) 

 

Log count A 
 

Log count B 
 

Mean  
log 

Count 

Absolute 
Difference 

in log 
count 

 

Variance 

Relative 
Standard 
Deviation

(%) 

 xiA xiB yiA=log10(xiA) yiB=log10(xiB) y  yiA - yiB SRi
2 RSDRi

i=1 6.70E+04 8.70E+04 4.83 4.94 4.88 0.11 0.00643 1.64% 
i=2 7.10E+06 6.20E+06 6.85 6.79 6.82 0.06 0.00173 0.61% 
i=3 3.50E+05 4.40E+05 5.54 5.64 5.59 0.10 0.00494 1.26% 
i=4 1.00E+07 4.30E+06 7.00 6.63 6.82 0.37 0.06717 3.80% 
i=5 1.90E+07 1.70E+07 7.28 7.23 7.25 0.05 0.00117 0.47% 
i=6 2.30E+05 1.50E+05 5.36 5.18 5.27 0.19 0.01723 2.49% 
i=7 5.30E+08 4.10E+08 8.72 8.61 8.67 0.11 0.00622 0.91% 
i=8 1.00E+04 1.20E+04 4.00 4.08 4.04 0.08 0.00313 1.39% 
i=9 3.00E+04 1.30E+04 4.48 4.11 4.30 0.36 0.06595 5.98% 

i=10 1.10E+08 2.20E+08 8.04 8.34 8.19 0.30 0.04531 2.60% 
         
Σ       0.2193  

Average     6.18   0.0219 
 
 

Using the log10-transformed data (yij), the reproducibility standard deviation is derived from: 
 

n
2

i1 2
i=1

10

(y ) / 2
0.00643 0.00173 ... 0.04531

0,02193 0,15 log cfu/g
10

i

R

y
S

n

−
+ + +

= = = ≈ ±
∑

 

 
 Average % Relative Standard Deviation (RSDav)= 
 Individual tests (i = 1….10) gave RSD values ranging from 0.47%  to 5.98%, with an overall 
value of 2.39%.       

Note: it is incorrect to take the average of the individual RSD values. 
Once sufficient data are available, a moving RSDav can be determined and used in a statistical 
process control system.
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Annex IV 
 Application of Robust Methods of Statistical Analysis  

1. Because of the problems with the occurrence of outlier data, several alternative 
approaches to the Analysis of Variance have been developed, based on Robust 
Methods of Statistical Analysis. 

2. Rather than relying on identification and removal of outlying data (which values 
could actually be valid results, albeit considerably different from most of the data) 
and then estimating the variance around the mean, alternative robust procedures rely 
on estimation of the variation around the median value. 

3. A mean value will be affected significantly by one or more high (outlier) values 
within a data set, whereas the median value is not affected.   Consider the following 
examples: 
 
A.  1, 4, 3, 6, 3, 5, 6, 3, 4, 5           n = 10,   ∑= 40,   Mean = 4.0  Median = 4.0 
 
B.  1, 4, 3, 6, 3, 5, 26, 3, 4, 5         n = 10,   ∑= 60,   Mean = 6.0,  Median = 4.0 
 
C.  1, 4, 3, 6, 3, 5, 26, 3, 4, 15       n = 10,   ∑= 70,   Mean = 7.0,  Median = 4.0 
 
D.  1, 4, 3, 6, 3, 5, 126, 3, 4, 15    n = 10,   ∑= 170,  Mean = 17.0,Median = 4.0 
 
E.   1, 4, 3, 6, 3, 5,       3, 4,           n = 8,     ∑=29,     Mean = 3.6,  Median = 3.5 
 

4. The presence of one or more high values (Examples B, C, D) has a significant effect 
on the mean value but no effect on the median value.   Removal of the high outliers 
(E) reduces both the mean and the median values.   

5. A similar effect would be seen with low value outliers.  Of course, occurrence of both 
high and low outliers could balance out the effect on the mean. 

6. There are two primary alternative techniques of robust analysis currently in use: 
6.6.1. The Analytical Methods Committee of the Royal Society Chemistry (AMC 1989, 

2001) describes one approach.  The procedure calculates the median absolute 
difference (MAD) between the results and their median value and then applies 
Hüber’s H15 method of winsorisation. Winsorisation is a technique for reducing 
the effect of outlying observations on data sets (for detail see Smith & Kokic, 
1996).  The procedure can be used with data that conform approximately to a 
normal distribution but with heavy tails and/or outliers.  An example is shown 
below. The procedure is not suitable for multimodal or heavily skewed data sets.  
The AMC website1 provides downloadable software for use either in Minitab or 
Excel (97 or later version). 

6.1.1. An alternative approach, known as the Recursive Median is based on extrapolation 
of the work of Rousseeuw & Croux (1993).   One version of this approach 

 
1 www.rsc.org/lap/rsccom/amc/amc_software.htm#robustmean
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(described fully in ISO 16140:2003) uses Rouseeuw’s recursive median Sn.    
However, Wilrich (2005a) recommends a modified approach to this procedure also 
based on Rousseeuw’s Sn computation. 

 
Worked Example - Analysis of data set containing outliers 

 
Duplicate Series of Colony Counts (as Log10 cfu/g) done by 1 Analyst in each of 10 

Laboratories 
Laboratory A B 

1 4.83 4.94 
2 4.05 3.99 
3 6.84 6.92 
4 4.90 4.93 
5 5.28 5.23 
6 4.86 4.72 
7 5.62 5.51 
8 4.50 4.68 
9 5.48 5.11 

10 5.04 5.34 
 
 

 
Laboratory 2 data look to be slightly low and laboratory 3 data to be high when compared with 
the other data. 
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Graphical and Descriptive Analysis of the Data 
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Mean Frequency Plot 5.140 
95% CI 4.602 to 5.678 

  
Variance 0.5662 

SD 0.7524 
SE 0.2379 
CV 15%

0

1

-2

-1

0

1

2

3

4 4.5 5 5.5 6 6.5 7

“Normality 
Plot” 

Log Colony Count/g - A

N
or

m
al

 Q
ua

nt
ile

 

 
  
  
  

Median 4.970 
97.9% CI 4.500 to 5.620 

  
Range Box Plot 

showing 
outliers 

2.79 
IQR 0.49 

   
Percentile    

2.5th - 
25th 4.838 
50th 4.970 
75th 5.330 

97.5th - 
  
  
   

 Coefficient p 
Shapiro-Wilk 0.9204 0.3605

Skewness 1.1222 0.1009
Kurtosis 2.4815 -

   

Although there is evidence of kurtosis and positive skewness, the log-transformed data 
conform fairly well to a “normal” distribution. The Box plot shows the presence of a potential 
low-level outlier (+) and a significant high-level outlier (○). 
 
One-way Analysis of Variance (ANOVA) without removal of outliers 
 

Source of Variation SS df MS F P-value F crit 
Between Laboratories 10.086 9 1.1207 70.816 7E-08 3.0204 
Within Laboratories 0.15825 10 0.0158    
Total 10.2443 19     
 
Repeatability SD = √0.0158 = 0.1258 
Reproducibility SD   = √ (1.1207 + 0.0158)  = √1.1365 = 1.0661 
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One-way Analysis of Variance (ANOVA) after removal of high outlier (lab 3) 
       

Source of Variation SS df MS F P-value F crit 
Between Laboratories 3.3464 8 0.4183 24.281 3E-05 3.2296 
Within Laboratories 0.15505 9 0.0172    
Total 3.50145 17     
 
Repeatability SD = √0.0172  = 0.1311 
Reproducibility SD  = √ (0.4183+0.0172) = √0.4355 = 0.6599 
 
One-way Analysis of Variance (ANOVA) after removal of both low and high outliers 
(labs 2 & 3) 
 

Source of Variation SS df MS F P-value F crit 
Between Laboratories 1.42124 7 0.203 10.599 0.0017 3.5005 
Within Laboratories 0.15325 8 0.0192   
Total 1.57449 15         
 
Repeatability SD = √0.0192  = 0.1311 
Reproducibility SD  = √ (0.203+0.0192) = √0.2222 = 0.4714 
 
 
 
Analysis of Variance using the AMC Method  
 
Software for this analysis, compatible with Microsoft Excel, can be downloaded from 
Royal Society of Chemistry statistical software.  A version for use in Minitab is also available. 
 
ROBUST ESTIMATES 

Parameter Value 
5.060622 Grand Mean 
0.116772 Within-laboratory/repeatability SD 
0.476556 Between-laboratory SD 
0.490654 Reproducibility SD 

c=1.5: Convcrit=0.0001 
Repeatability SD = 0.1168 
Reproducibility SD  = 0.4907 
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Comparison of data analyses by ANOVA, without and with removal of the high (*) 
outlier and both the high and low outliers (**), by Robust ANOVA (AMC 1989, 2001) 
and by Recursive Median (ISO 16140:2003) 
 

Parameter* ANOVA ANOVA* ANOVA** ROBUST RECMED 
Mean 5.14 4.95 5.06 5.06  
Median     5.05 
SDr 0.126 0.131 0.138 0.117 0.115 
RSDr 2.45% 2.65% 2.73% 2.31% 2.28% 
SDR 1.066 0.660 0.471 0.491 0.5590 
RSDR 20.45% 13.33% 9.42% 9.70% 11.07% 

* SDr = Standard Deviation of repeatability; SDR = Standard Deviation of reproducibility 
   RSDr = % relative standard deviation of repeatability  
   RSDR =  % relative standard deviation of reproducibility 
 
The effect of the outlier values on the Standard Deviation of reproducibility is clear from the 
above data.  Removal of the high outlier (*) reduces both the mean and the SDR; removal of 
both the high and low outliers (**) reduces both the mean value and the SDR to a level similar 
to than that seen in the Robust ANOVA.  The Recursive Median technique (working data not 
shown) produces a similar value for SDr but a somewhat higher SDR value than does the 
Robust Method.   
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ANNEX V 
 

Uncertainty Associated with Qualitative Methods 
 
1. By definition, a non-quantitative method merely provides an empirical answer to a 

question regarding the presence or absence of a specific index organism or a group of 
related organisms in a given quantity of a representative sample. 

2. Provided that multiple samples are analysed, and on the assumption that the test method 
is “perfect”, then the number of tests giving a positive response provides an indication of 
the incidence of defective samples within a “lot”.   

2.1. For instance, if a test on 10 parallel samples found 4 positive and 6 negative samples 
then the perceived incidence of defectives would be 40% (sic of the samples 
analysed).   

2.2. However, if no positive samples were found the apparent incidence of defectives in 
the “lot” would be zero.  However, it is not possible to say that the “lot” is not 
contaminated because the true incidence of defective samples will be greater than 
zero. 

3. Sampling theory for occurrence of defectives is based on the binomial distribution, in 
which the probability of an event occurring (p) or of not occurring (q) can be derived and 
an error estimate can be made based on a realistic number of samples analysed.  
Unfortunately, in laboratory practice it is not usually possible to analyse a realistic 
number of samples for the presence of specific microorganisms.   

3.1. Table 1 below shows the statistical probability of occurrence of 0, 1, or 2 defective 
units in 10 sample units from “lots” containing from 0.1 to 30% true defectives.  For a 
lot having only 0.1% defective units, the probability of detecting one or more 
defective (sic positive) samples is only 1 in 100 whilst for a lot having 5% true 
defectives there is still only a 40% probability of obtaining a positive result; even with 
20% true defectives there is still a 20% chance of not finding defective units when 
testing 10 sample units.  

3.2. Table 2 shows the probability of detecting 0, 1 or 2 defective units with increasing 
numbers of sample units tested when the true incidence of defectives is 10%.  The 
probability of finding no defective samples is 59% if only 5 samples are tested, 35% 
with 10 samples and 12% with 20 samples. 

3.3. These examples illustrate a basic characteristic of undertaking qualitative tests for 
specific organisms: unless the likelihood of contamination of the matrix is high, and 
the number of sample units tested is considerable and the analytical test itself is 
perfect, then the probability of detecting positive samples in food matrix is very low. 
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Table 1. Binomial Probability of detecting 0, 1 or 2 defective units in 10 sample units 
tested with increasing incidence of true defectives (mod from Jarvis, 2000) 

Probability (p) of detecting defective units True Incidence 
(%)of Defective 

Units in a lot 0 1 2 

0.1% 0.99 0.01 <0.001 

1% 0.90 0.09 <0.01 

5% 0.60 0.32 0.08 

10% 0.35 0.39 0.19 

20% 0.20 0.35 0.28 

30% 0.03 0.12 0.23 

 

 
 
Table 2. Binomial probability of detecting defective units with increasing sample units 
from a lot having 10% true defectives (mod from Jarvis, 2000) 

Probability of detecting the following number of defective units Number of Sample 
units (n) tested 0 1 2 

5 0.59 0.33 0.07 

10 0.35 0.39 0.19 

20 0.12 0.27 0.29 

50 <0.01 0.03 0.08 

 

 

3.4. Maximum Incidence and Level of Contamination.  Even when all test results are 
negative, use of the binomial distribution concept permits the derivation of a probable 
maximum contamination limit for a test lot. 

3.4.1. Assuming that results on all (n) sample units are negative, then for a given 
probability (p) the maximum incidence (d) of defective units is given by: 
 
                    100(1 (1 )nd p= − −  
 
Hence, if n = 10 and p = 0.95, then 
 

10100(1 (1 0.95) 100(1 0.05) 100(1 0.741) 25.88%nd = − − = − = − = . 
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=

3.4.2. Knowing the maximum incidence of defective sample units and the size of the 
sample units we can derive a Maximum Contamination level (C) from: 
 
                organisms per g,  
where W is the weight of the sample unit tested.   For the example given above and 
assuming that each of the 10 samples weighed 25g, then the maximum 
contamination level would be given by 
 
          organisms/g ≡ 10.4 organisms/Kg 
 

( /100)(1/ )C d W=

(25.88 /100)(1/ 25) 0.0104C =

3.4.3. In other words, the failure to detect a positive in 10 parallel tests merely indicates, 
at a 95% probability, that the index organism would be present in not more than 
26% of similar samples throughout the lot; and that the maximum contamination 
level would be 11 organisms/Kg of product. 

3.4.4. It might be thought that such a level of product security is insufficient, in which 
case it would be necessary to analyse a greater number of sample units and ideally 
to test larger quantities of sample.  It is essential also to recognise that this 
presupposes that the test method is “perfect”.  
 

3.5. Multiple Test Most Probable Number Estimates.   If some test results are positive, 
then we can derive an estimate of population density (the basis for derivation of a 
Most Probable Number) for multiple tests even at a single dilution level. 
 

3.5.1. The following equation provides the derivation of the MPN: 

    1        sM .ln
V n

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

 , where   M = Most probable number, V = quantity of sample, s = 

number of sterile tests out of n tests inoculated. 

3.5.2. Assume 10 tests are set up on replicate 25g samples of product, 3 tests are positive 
and 7 are negative.  Then the MPN of contaminating organisms is:  
 
           1000        7 40 0 3567 14 27

25 10
M .ln . . .⎛ ⎞= − = − − =⎜ ⎟

⎝ ⎠
organisms/Kg ≈ 14 organisms/Kg 

 

3.5.3. Unfortunately, it is not possible to derive an estimate of the error of the MPN when 
tests are done at a single dilution level. 

3.6. Level of Detection Estimates.   The equation used in 3.5 is also the basis for deriving 
MPN values for use in the Spearman-Karber procedure to estimate the LOD50 for a 
test.  This is the level of organisms that will give 50% positive results when tested by 
an appropriate protocol.   Details of the procedure together with worked examples are 
given in the report by Hitchins (2005).   This method of quantification has the benefit 
that it is possible to derive a value for the standard error of the mean (sic LOD) 
estimate.  The procedure can be used to compare performance of two or more 
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methods where both have been evaluated under identical conditions in two or more 
laboratories. 

3.7. Estimation of repeatability and reproducibility for qualitative tests.  In a paper 
produced for ISO SC9 TC34, Wilrich (2005b) proposed the estimation of 
repeatability and reproducibility estimates for qualitative test procedures based on the 
binomial probability of detection of positive and negative results in different 
laboratories operating either at equal or at dissimilar sensitivity levels.  A set of 
simulation studies is presented, together with analyses of a set of practical 
interlaboratory assessments, which support the proposal but the method has yet to be 
evaluated in detail.    

4. Estimation of Error based on test performance.   One of the traditional problems 
associated with presence or absence tests relates to the likelihood that a method may give 
either a false negative (Type I error) or a false positive (Type II error) result.  A false 
negative result fails to detect the occurrence of a known index organism in a sample.  A 
false positive result indicates the presence of a specific index organism even though it is 
not present in the test matrix.  Such errors create specific problems for interpretation of 
test results.   

4.1. In a real life situation, where tests are done on natural matrixes, it is impossible to 
estimate the likelihood of detecting such false results.   It is essential therefore to 
ensure during development, evaluation and use of any method that the likelihood of 
such errors occurring is at an absolute minimum.  An efficient laboratory proficiency 
scheme provides a way to monitor the efficiency of a test procedure in any individual 
laboratory. 

4.2. But to be sure that false results do not occur requires the use of reference materials 
that can be relied upon to contain the index organism at a given level.  For high-level 
contamination that is not a major problem; the issue arises primarily where the level 
of detection is intended to be close to the minimum level of detection.   For instance, 
to detect 1 cfu of a specific organism in (say) 25g of sample implies that the organism 
is evenly distributed throughout a lot of test material such that each 25g sample unit is 
likely to contain the organism.  Only if it were possible to add a single test organism 
to each individual 25g sample could the probability that each sample would contain 
that organism be achieved and even then there is the real possibility that the organism 
would not survive the preparation and storage process.    

4.3. If larger quantities of test organism are added to a large batch of test matrix, which is 
then thoroughly mixed, the distribution of organisms throughout the lot would at best 
be random but could possibly be over dispersed due to the presence of clumps of 
organisms.   

4.4. Table 3 shows the probability of occurrence of 0 or ≥1 organisms in a 25g sample for 
different levels of inoculation.  If the target inoculum level is only 1 organism per 
25g, there is a 37% chance that less than 1 organism will not be present in the sample; 
to have a 99% probability that 1 or more organisms occur in a perfectly distributed 
sample matrix requires inoculation at a level of at least 5 organisms/25g.   Even then 
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one has to assume that the original inoculum contains the test organism at the relevant 
level – it must not be forgotten that the organisms in a well-mixed inoculum will 
themselves be distributed in accordance with Poisson.   It is therefore perhaps not 
surprising that at low inoculum levels, negative results may be found frequently.  It is 
for such reasons that we recommend the LOD50 approach of Hitchins (2005) for 
comparison of two or more methods of analysis. 

5. The effect of competitor organisms and other factors on the recovery of organisms 
to critical levels. 

5.1. A further potential cause of a false negative result is that during the multistage test 
protocol, the index organisms must be able to grow to a critical level to ensure 
effective transfer between different stages of the test.  The ability of an organism to 
grow is dependent not only on the physiological condition of the index organism in 
the sample matrix, but also on the micro-environmental conditions within the test 
system, the presence or otherwise of competitive organisms that may affect the 
growth of the index organism and the time/temperature factors used in the protocol. 

5.2. In their (BPMM) paper on Inter-laboratory Variability, LaBarre, Zelenka and Flowers 
(2005) have reviewed in detail the effects of competitive growth, problems associated 
with test media and other practical considerations in relation to the critical level of 
organisms for use in confirmatory tests following enrichment procedures.  The paper 
describes also the statistical aspects of optimisation of test protocols. 
 
Table 3.  Probability of occurrence of 0 or at least 1 organism in a 25g sample 
assuming perfect random distribution of test organisms in a matrix. 
 

Probability (px) of Occurrence in 25g sample units Target inoculation level 

(cfu/25g) <1 organism  1 or more organisms 

1 0.3679 0.6321 
2 0.1353 0.8647 

3 0.0498 0.9502 

4 0.0183 0.9817 

5 0.0067 0.9933 

10 <0.0001 >0.9999 
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