

Section 2: Initial Decisions and Considerations

Presented by

Chris O. Yoder, Midwest Biodiversity Institute \& Center for Applied Bioassessment and Biocriteria

Essential Principles of Adequate Monitoring and Assessment Approaches

- Methods Development: cost-effective approaches that meet the needs of a bioassessment program.
- Data Quality Objectives: produce data and information at a sufficient level of resolution so as to assure accuracy and precision.
- Scale of Assessment: essential to encompass the full gradient of response and exposure to multiple stressors and influences; scale of assessment = scale of management.
- Comprehensive Assessments: integrated and careful analysis of multiple indicators adhering to a disciplined approach (Hierarchy of Indicators).
- Learn by Doing: gain new knowledge and insights by interactive assessment and observing responses to management actions (determine what works).

Large River Fish Assemblage Assessment Attributes

- Standardized \& Representative Sampling - pulsed D.C. electrofishing methods, summer - fall seasonal index period.
- Relative Abundance - numbers and weight (biomass) per unit distance (effort).
- Data Quality Objectives - species level I.D. based on regional ichthyology keys and AFS nomenclature.
- Key Component of Biocriteria - IBI, Mlwb, and component metrics; development of tiered uses and numerical biocriteria.
- Longitudinal Sampling Design - longitudinal reach-scale sampling and interpretation of results along entire mainstems.
- Sampling Site Considerations - include complete cycles of riverine habitat types; may vary between constrained and floodplain rivers.
- Experienced Biologists - knowledge of regional fauna, natural history, response signatures, impact types.

Large River Macroinvertebrate Assemblage Assessment Attributes

- Standardized \& Representative Sampling - artificial substrates, summer - fall seasonal index period.
- Relative Abundance - organisms per unit surface area.
- Data Quality Objectives - lowest practicable level I.D. based on representative keys.
- Key Component of Biocriteria - ICI, BIBI, and component metrics, also RIVPACS, discriminant function model; development of tiered uses and numerical biocriteria.
- Longitudinal Sampling Design - longitudinal reach-scale sampling and interpretation of results along entire mainstems.
- Sampling Site Considerations - include complete cycles of riverine habitat types; may vary between constrained and floodplain rivers.
- Experienced Biologists - knowledge of regional fauna, natural history, response signatures, impact types.

Methods Development Issues: Fish Assemblage Example

History of Large River Fish Assemblage Assessment

- Since Late 1960s - improved electrofishing equipment \& technology (pulsed DC, sophisticated electronics).
- Early 1970s: - Gammon's work on the Wabash River, Indiana; resulted in development of single-gear approach (shoreline electrofishing based on distance).
- 1980s/1990s - Ohio EPA initiated statewide use of electrofishing to survey fish assemblages; followed by IBI development and biological criteria adoption.
- Late 1980s - Hughes \& Gammon work on the Willamette River, Oregon; addressed challenges with depauperate fish faunas in bioassessment and IBI development.
- 1990s - Western EMAP (Large Coldwater Rivers), ORSANCO (Ohio R. mainstem), and Wisconsin (Lyons, IBI), Idaho (IBI, Mebane et al.).

Fish Assemblage Assessments of Large and Great Rivers in the Upper Ohio Basin

Methods Development Issues:

Sampling Effort:

- How to measure sampling effort - time or distance or both?
- Pilot studies conducted in the Wabash R. (1973-76), Ohio rivers (1979-81), Wisconsin rivers (mid-1990s), Oregon rivers (late 1990s).
- Early studies derived fixed distance criteria (e.g., 500m); Ohio EPA added minimum time requirement.
- Later studies derived a river width formula (40-80x)
- Choice influenced by program objectives.
- Some protocols developed for source assessment Ohio EPA mixing zone, ORSANCO T-zone.

Cumulative Distance Sampled (Km)

Methods Testing and Evaluation: Ohio

- Methods testing to determine effect of effort, variability, and reproducibility.
- Conduct repeated samplings under controlled circumstances.
- Species richness increases with distance; rate of increase stable >250 m.
- IBI increase diminishes at shorter distances; nonsignificant differences 5001250 meters; >@ 1500 m.

Species richness vs productivity

Species richness vs river size

Effect of Time of Day on Electrofishing Efficiency: Impounded Rivers

Ohio River
Muskingum River

Resource Classification and Stratification Issues: Tiered Uses and Biocriteria

Warmwater Lotic Systems

Tiered Aquatic Life Use Conceptual Model: Draft Biological Tiers

(10/22 draft)
Natural structural, functional, and taxonomic integrity is preserved.

Structure and function similar to natural community with some additional taxa \& biomass; no or incidental anomalies; sensitive non-native taxa may be present; ecosystem level functions are fully maintained

Evident changes in structure due to loss of some rare native taxa; shifts in relative abundance; ecosystem level functions fully maintained through redundant attributes of the system.

4

Moderate changes in structure due to replacement of sensitive ubiquitous taxa by more tolerant taxa; overall balanced distribution of all expected taxa; ecosystem functions largely maintained.

Sensitive taxa markedly diminished; 5 conspicuously unbalanced distribution of major groups from that expected; organism
condition shows signs of physiological stress; ecosystem function shows reduced complexity and redundancy; increased build up or export of unused materials.

Extreme changes in structure; wholesale changes in taxonomic composition; extreme alterations from normal densities; organism condition is often poor;
anomalies may be frequent; ecosystem functions are extremely altered.

LOW — Human Disturbance Gradient \longrightarrow HIGH

Conceptual Response of a Large Cold Water Fish Assemblage to the Increased Effect of Stress

Number of nonindigenous species

Ofio Biocriteria Reference Sites
Boat Sites

OHIO EPA HEA MODIFIED IBI METRICs SI $(<20$	HEADWATER SITE TYPE (<20 SQ. MI.)	WADEABLE SITE TYPE (20-300 MR)	$\begin{aligned} & \text { BOATABLE } \\ & \text { SITE TYPE } \\ & (200-6000 \text { Ml: }) \end{aligned}$
1. Total Native Species	X	X	X
2. \#Darter Species		X	
\#Darters + Sculpins	X^{*}		
\%Round-bodied Sucker			X^{*}
3. \#Sunfish Species		X	X
\#Headwater Species	X^{*}		
\%Pioneering Species	X^{*}		
4. \#Sucker Species		X	X
\#Minnow Species	X*		
5. \#\#ntolerant Species		X	X
\#Sensitive Species	X*		
6. \%Tolerant Species	X	X	X
7. \%Omnivores	X	X	X
8. \%Insectivores	X	X	X
9. \%Top Carnivores		X	X
10. \%Simple Lithophils	X^{*}	χ^{*}	χ^{*}
11. \%DELT Anomalies	X	X	X
12. Number of Individuals	X	X	X

DRAINAGE AREA (SQ MI)

Calibration of Metrics Using Regional Reference Sites

- Scatter plot of metric value by appropriate calibration vector (e.g., watershed area).
- Determine 95% maximum line of best fit across surface of scatterplot; driven by best reference sites.
- Area beneath 95% line is subdivided
(e.g., trisection) to determine metric scores - most data points should occur in upper ranges.
- This method reduces the influence of slightly degraded sites that may
not biologically reflect the intent of of slightly degraded sites that may
not biologically reflect the intent of reference condition.
- Slope of 95% line conservatively
assumed to be zero for boat sites.
- Slope of 95% line conservatively
assumed to be zero for boat sites.

NUMERIC BIOLOGICAL CRITERIA:

DESIGNATED USE OPTIONS ALONG THE BIOAXIS AND BIOLOGICAL CONDITION GRADIENT

Reference condition and how biological

 condition are measured form the basis for determining what is acceptable vs. unacceptable, both of which require some management action.- Designated Use - sets management goals and criteria for protection and restoration (Water Quality Standards).
- Management Action - protection or restoration activity or reconciling standards to attainable conditions (NPDES Permits, TMDLs, BMPs).

Coping With Biological Data Variability

- Compress Variability: use multi-metric measures (e.g. IBI, ICI, etc.).
- Stratify Variability: use ecoregions (or subsets) and tiered aquatic life use classification system.
- Control Variability: select efficient sampling methods that yield informative and consistent results.

