

Representation of Industrial Energy Efficiency Improvement in Integrated Assessment Models

Jayant A. Sathaye and Christie Galitsky

Lawrence Berkeley National Laboratory, Berkeley, CA

Fabian Wagner

International Institute for Applied Systems Analysis, Vienna

Presented at the Workshop on Energy and Economic Policy Models: A Reexamination of Some Fundamental Issues Washington DC, November 16-17, 2006

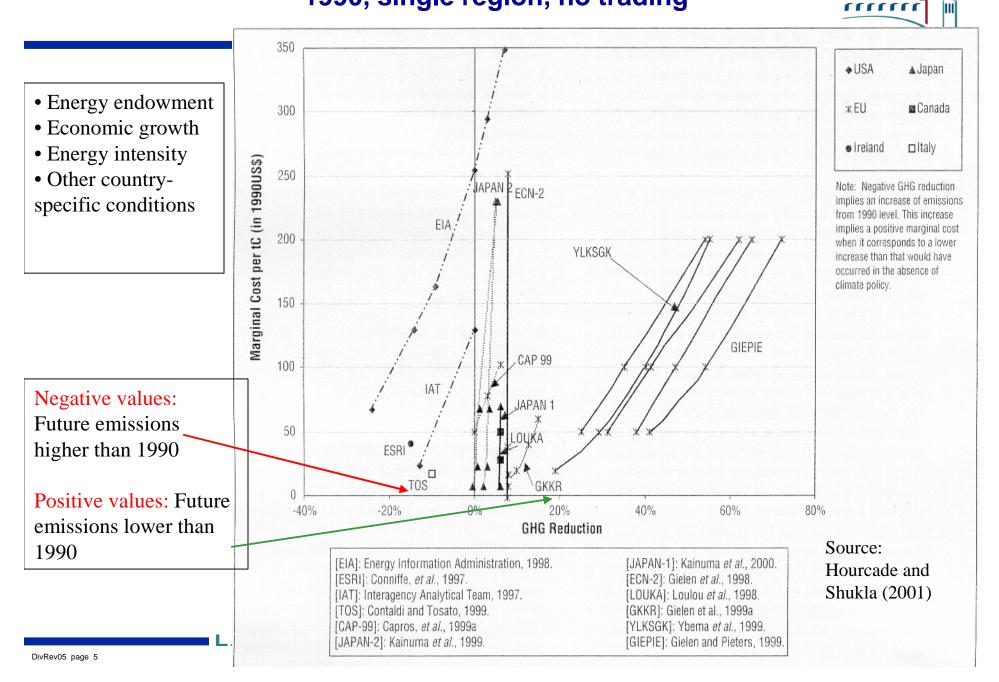
With inputs from Ernst Worrell and Amol Phadke

Work supported by US Department of Energy, Office of Science, Biological and Environmental Research Program.

Presentation Contents

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

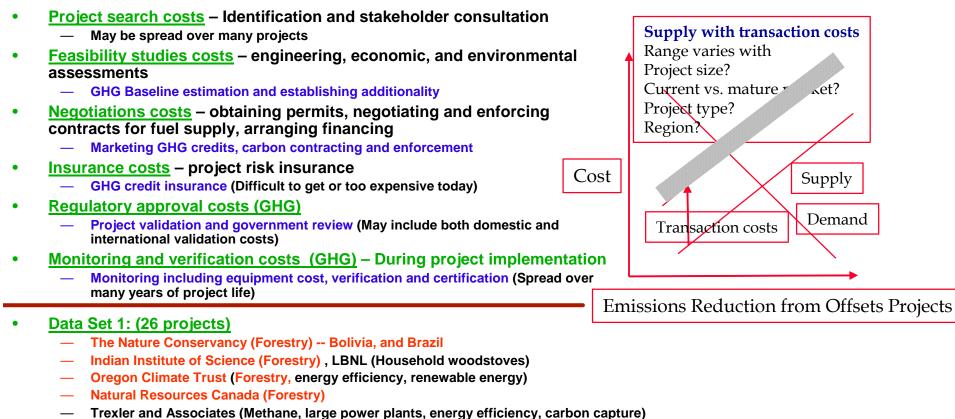
Climate change mitigation models


- Long term perspective
 - Cost-effective implementation strategies
 - Least-cost emissions reduction pathway
- Emissions baseline is critically important to determining costs
 - Defines the size of the reduction required to meet a target

Climate change mitigation bottom-up models: Cost estimates differ widely

- Differences can be traced to assumptions about
 - economic growth
 - resource endowments
 - choice of policy instruments
 - extent of no-regrets options
 - cost and availability of new supply- and <u>demand</u>-side technologies
 - technological change
- This presentation will focus on the last two items and reflects work in progress and preliminary results

B-U Results: Marginal costs of reducing emissions relative to 1990, single region, no trading


Bottom-up Models: How to explain the cost results?

• Factors that could increase costs:

- Transaction costs
- Hidden costs, such as the risks of using a new technology
- Rebound effect
- Real preferences of consumers
- Factors that could reduce costs:
 - Technological change over time
 - Complete accounting of benefits
 - Policies that remove costlier barriers

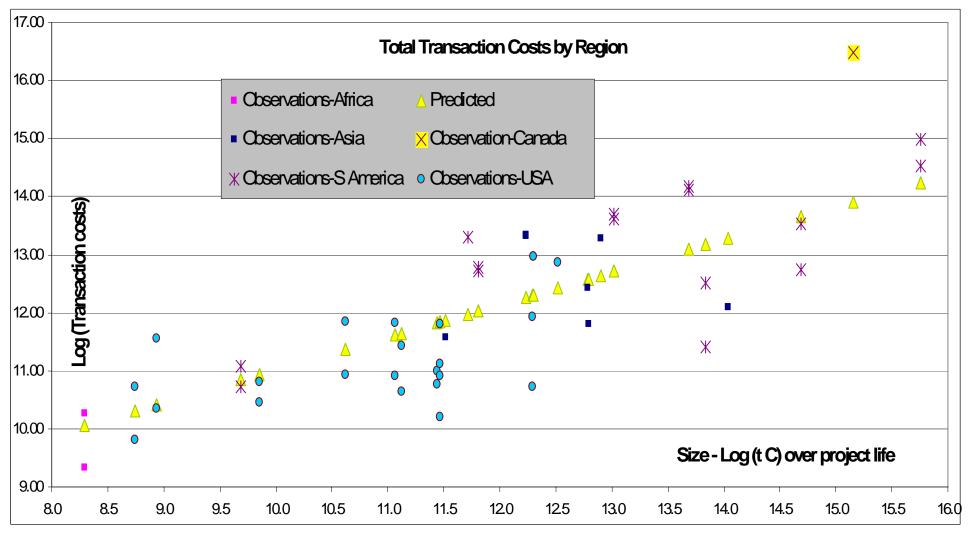
Transaction Costs Influence Supply of Traded Carbon

Data Set 2: (13 projects)

- Ecofys (renewable energy)
- Ecoenergy (bagasse cogeneration)
- <u>Data Set 3: (</u>50 projects)
 - Swedish AIJ Programme (Energy efficiency and renewable energy)
- Data Set 4: (10 projects)
 - Global Environmental Facility
 - Transportation, energy efficiency, renewable energy

Key Findings of Regression Analysis of Transaction Costs of Multiple Types of Projects

	Dependent variable:
	Log (Total Transaction Costs (USD))
Independent variables:	
t C (log)	.56** (.08)
Forestry	-1.04** (.40)
Energy Efficiency	-59 (.36)
Multiple objectives	34 (.30)
S. America	.75* (.45)
Asia	24 (.41)
Mature	49* .27
Constant	6.08** (1.00)
R2	.69
Ν	48



Statistical analysis to determine significant influence on costs of

- Project Size
- Multiple benefits
- Technology demonstration, social development, other environmental benefits
- Forestry, energy efficiency, and renewable energy dummies
- Regional dummies Asia
 and Latin America
- Mature vs. nascent markets

*Statistical significance at the 10% level **Statistical significance at the 5% level or better

Parameter CCE Total Penetration Total Adopting Lifetime GWh Explanation Policies & Xenergy CCE Variable Barrier Affected Effect Reduction Red'n Stock in Savings from Programs 2005 **2005 Purchases** Effect N/A N/A \$0.031 N/A N/A 132.770.3 60.543 These are the initial values before N/A N/A 1. Initial Stock 14 barriers are applied. 2. Baseline ES N/A \$0.031 5% 5% 126,131,7 57,516 The estimated California market N/A Not Share 98 share of CFLs in 2005. Complete Factor ES \$0.031 1% N/A 3. Split N/A 6% 124,870,4 56,941 Assumes a small number of HH Applicabili ty Factor Incentive pay a flat fee for electricity. 81 4. Lock-In ES N/A \$0.031 20% 25% 99,896,38 45,553 The number of fixtures that do N/A Feasibility (lights do not 4 not accommodate CFLs. Factor fit fixture) ES N/A \$0.031 20% 40% 79,917,10 36,442 N/A 5. Product Assumes some rural population Utility-run and some lower income urban Availability 8 purchase by population do not have nearby mail stores selling CFLs. programs LT \$0.007 \$0.038 49% 67,316,13 N/A 6. Lifetime 16% 23,022 Lifetime reduced by two Consumer thousand hours to reflect education on Uncertainty 5 uncertainty over product lifetime. CFL testing and reliability 7. Product Κ \$0.048 \$0.086 72% 86% 18,970,88 6,488 Assumes one-half hour needed (at Consumer Awareness Information 9 \$20 time value per hour) for awareness Function Cost consumers to educate themselves campaign on about CFLs. benefits of CFLs Κ \$0.024 \$0.110 44% 92% 8. Vendor 10,696,43 3.658 Assumes one quarter hour needed Product and Awareness Information to find nearby vendors with vendor lists Function 4 Cost CFLs. for consumers 9. Consumer Κ \$0.024 \$0.134 40% 95% 6.459.449 2.209 Assigns a \$5 penalty to CFLs to Consumer N/A Preference, reflect consumer preference for awareness Light Quality familiar incandescent light and about CFL & Bulb shape. improvement Shape s

. Effect of Barriers on CFL Sales in California in 2005 (18W CFL vs. 75W Incandescent Bulb Used 2.5 Hours per Day)

Notes: HH = households; ES = eligible stock; LT = lifetime; S = (cost) savings; K = capital cost

Presentation Contents

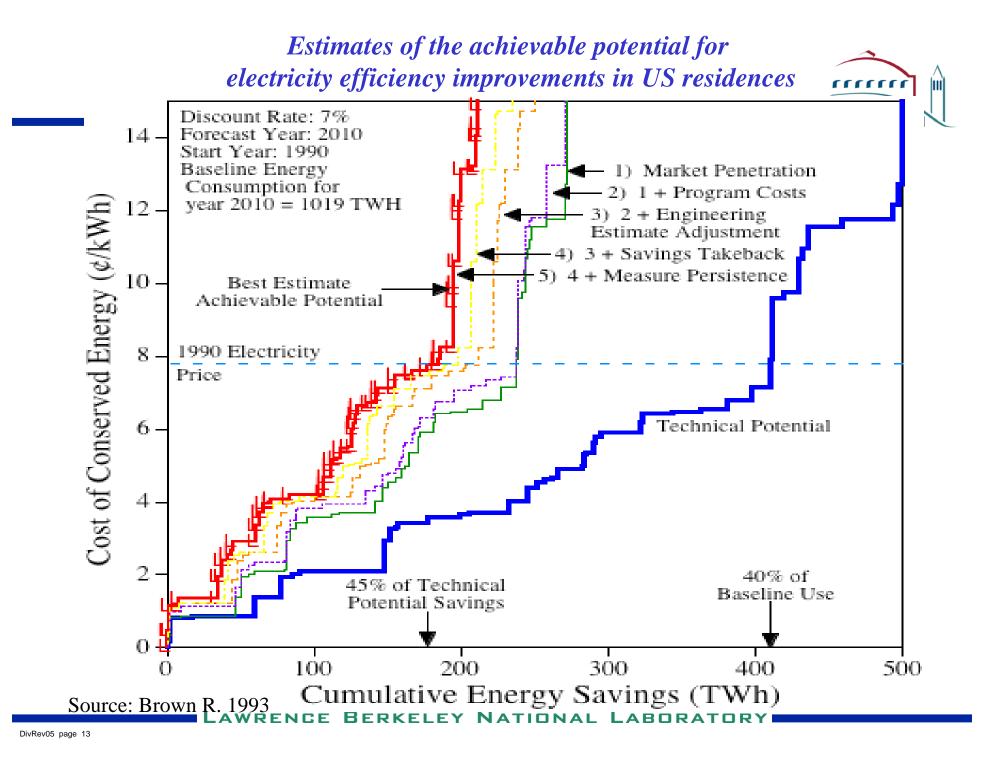
- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

Cost of Conserved Energy: Accounting for Changes in Capital Costs and Reduction in Energy due to an Energy Efficiency Measure

BERKELEY LAB

$$CCE = \frac{I \cdot q}{S}$$
$$q = \frac{d}{(1 - (1 + d)^{-n})}$$

where:


CCE = Cost of Conserved Energy for the energy

efficiency measure, in \$/GJ

I = Capital cost(\$)

q =Capital recovery factor

- S = Annual energy savings (GJ)
- d = discount rate
- n = lifetime of the conservation measure (years)

Cost of Conserved Energy: Accounting for Changes in Capital, Labor and Material Costs

$$CCE = \frac{I \cdot q + M}{S}$$
$$q = \frac{d}{(1 - (1 + d)^{-n})}$$

where:

CCE = Cost of Conserved Energy for the energy efficiency measure, in GJ

I = Capital cost (\$)

q =Capital recovery factor

M = Annual change in labor and material costs (\$)

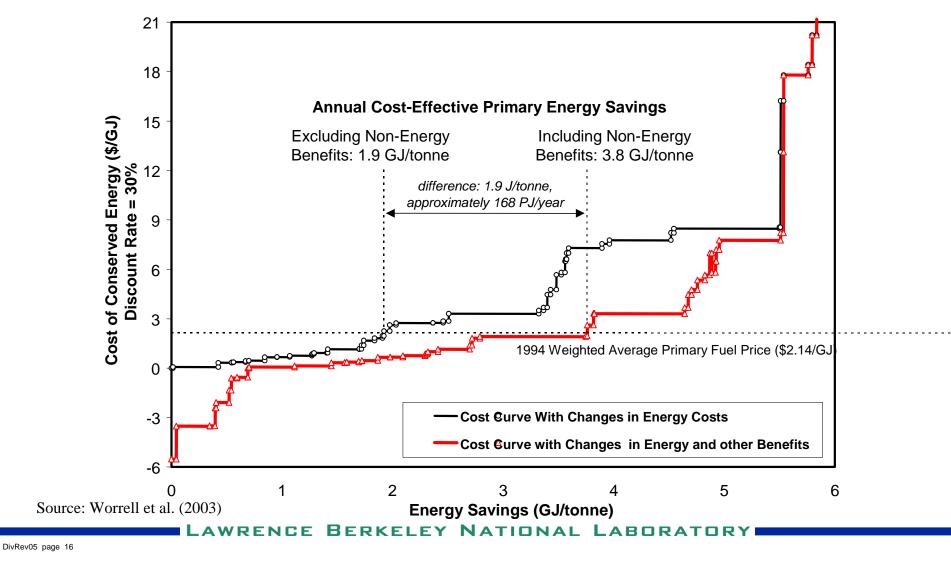
S = Annual energy savings (GJ)

d = discount rate

n = lifetime of the conservation measure (years)

US Steel Industry Cost of Conserved Energy: Other Benefits

BERKELEY LAB


luì

Waste	Emissions	Operation & Maintenance
Use of waste fuels, heat, gas	Reduced dust emissions	Reduced need for engineering controls
Reduced product waste	Reduced CO, CO2, NOx, SOx emissions	Lowered cooling requirements
Reduced waste water		Increased facility reliability
Reduced hazardous waste		Reduced wear and tear on equipment/machinery
Materials reduction		Reductions in labor requirements
Production	Working Environment	Other
Increased product output/yields	Reduced need for personal protective equipment	Decreased liability
Improved equipment performance	Improved lighting	Improved public image
Shorter process cycle times	Reduced noise levels	Delaying or Reducing capital expenditures
Improved product quality/purity	Improved temperature control	Additional space
Increased Reliability in Production	Improved air quality	Improved worker morale

DivRev05 page 15

Benefits double cost effective energy efficiency potential to 19%

Presentation Contents

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

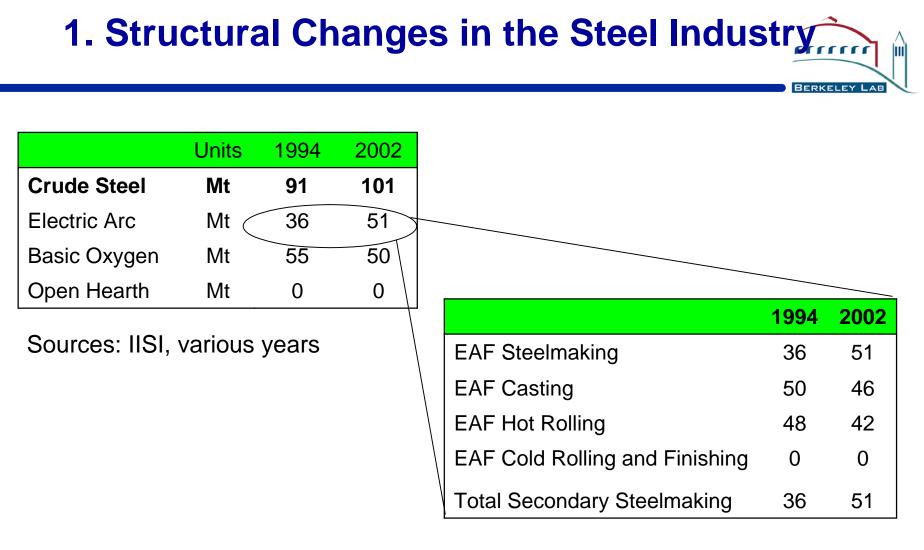
Baseline Changes 1. Structural Changes in the US Cement Industry

 Cement: amount of raw materials input; clinker produced (clinker to cement ratio); wet and dry cement produced; types and ages of kilns)

	1994		20	04
	(Mt)	(%)	(Mt)	(%)
Raw materials input	123		165	
Total Clinker Production	68.5		88.2	
Wet Clinker production	19.5	29%	16.9	19%
Dry Clinker production	49.0	71%	71.3	81%
Total Cement	74.3		99.0	
Wet cement production	21.2	29%	20.2	20%
Dry cement production	53.1	71%	78.8	80%
# Kilns Wet	71		52	
Dry (preheater, precalciner, long)	132		134	
Average age (years)	27		36	

Sources: USGS and PCA, various years for throughputs; PCA and Major Industrial Plant Database (MIPD) for kiln technologies

2. Energy intensity changes at each stage of cement production


	19	94	2004		
	Primary	Primary	Primary	Primary	
Process Stage	Energy	Intensity	Energy	Intensity	
	PJ	GJ/t	PJ	GJ/t	
Wet Cement Production					
Raw Materials Preparation	11	0.3	7	0.2	
Clinker Production	124	6.3	100	5.9	
Finish Grinding	13	0.6	12	0.6	
Total Wet	148	7.0	119	5.9	
Dry Cement Production					
Raw Materials Preparation	33	0.4	53	0.4	
Clinker Production	230	4.7	349	4.9	
Finish Grinding	34	0.6	48	0.6	
Total Dry	296	5.6	450	5.7	
Total All Cement	444	6.0	569	5.7	

Sources: USGS, MECS, PCA, COWIconsult, CANMET (Canada), Lowes (UK), Folsberg, Ellerbrock, Holnan, ISTUM

	1994			2004			
	PJ	Share	Price	PJ	Share		Price
Electricity	37	10%	\$ 4.01	48	13%	\$	4.46
Fuel Oil (Dist.+resid)	2	1%	\$ 3.56	4	1%	\$	4.58
Gas	25	7%	\$ 2.35	15	4%	\$	4.09
LPG	0	0%	\$10.19	0	0%	\$	14.82
Coal	211	59%	\$ 1.71	173	47%	\$	1.83
Coke	58	16%	\$ 2.25	80	22%	\$	0.96
coal coke	9	2%		0	0%		
petroleum coke	49	14%		80	22%		
Other	26	7%	\$ 1.07	49	13%	\$	1.07
Tires -waste	3	1%		11	3%		
solid-waste	1	0%		3	1%		
Liquid-waste	21	6%		36	10%		

Sources: MECS, various years

Sources: AISI, various years

2. Energy intensity changes at each stage of steel production

	Throughput (Mtonne)			Intensity product)
	1994	2002	1994	"2002"
Integrated Steelmaking				
Sintermaking	12.1	8.9	2.6	2.6
Cokemaking	16.6	11.4	4.9	0.9
Ironmaking	49.4	40.2	13.9	11.6
BOF Steelmaking	55.4	50.1	0.7	0.6
BOF Casting	59.1	50.0	0.8	0.6
BOF Hot Rolling	48.3	41.6	5.4	6.5
BOF Cold Rolling and Finishing	31.7	33.4	2.8	2.7
Secondary Steelmaking				
EAF Steelmaking	35.9	50.8	5.5	4.7
EAF Casting	49.5	45.7	0.2	0.3
EAF Hot Rolling	48.3	41.6	3.5	5.2
EAF Cold Rolling and Finishing	0	0	0	0
Total Primary and Secondary Steelmaking	91.22	100.9	20.5	16.2

Sources: AISI, various years for throughput; Margolis (for DOE) 1994 and 2000 for intensities

	Energy	Energy Prices (\$/GJ)				
	1994	2002	1	1994 20		
Residual Fuel Oil	42	*	\$	2.47	\$4.06	
Distillate Fuel Oil	*	12	\$	4.89	\$ 2.37	
Natural Gas	483	418	\$	2.41	\$ 3.69	
Coal	901	509	\$	1.69	\$ 1.83	
Coke	538	538	\$	2.25	\$ 2.25	
Electricity	148	184	\$	10.40	\$ 9.86	

* data withheld

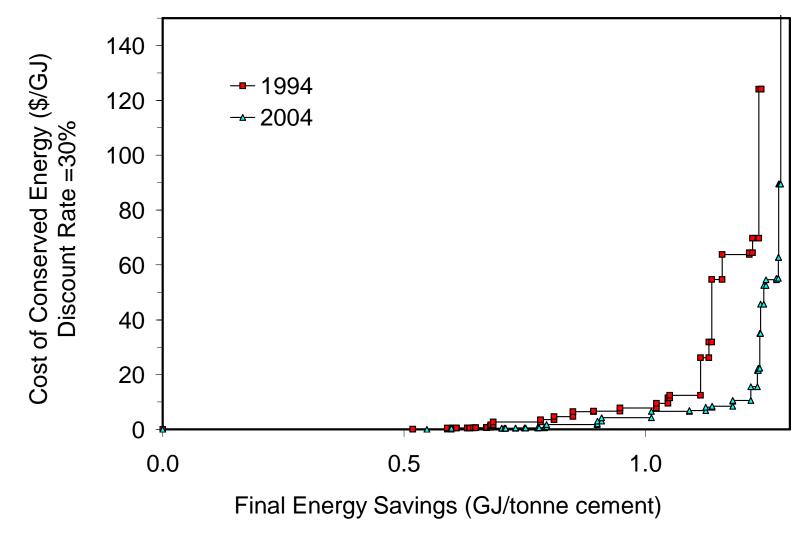
Sources: MECS, various years

AWRENCE BERKELEY NATIONAL LABORATORY

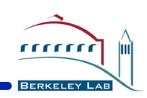

DivRev05 page 24

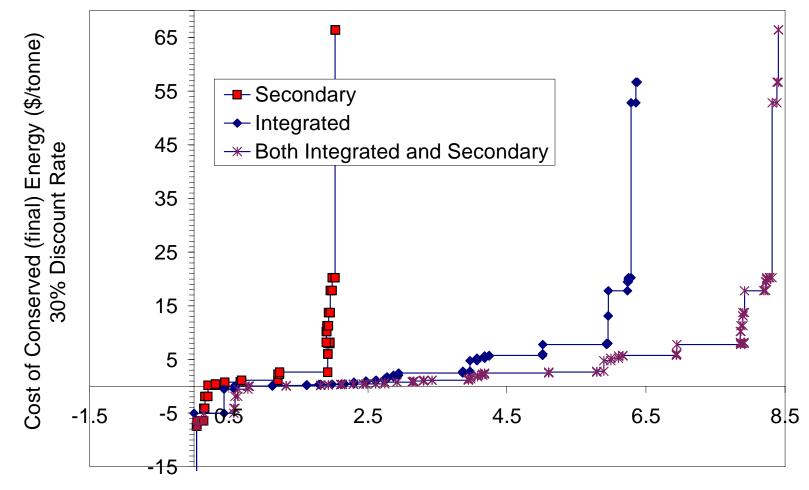
Updating the Cost Curves – critical changes implemented from 1994 to 2004 (cement) or 2002 (steel) in efficiency

- Technology changes for each individual existing technology
 - Updating costs of technology
 - Updating energy savings relative to current industry practices
 - Applicable share of production for the technology in new year
- Technology changes –new technology additions which came onto the market (cement only)
 - Requires cost, energy and applicable share of production data for each new technology
- Comparison of inclusion of energy-only and total benefits


Comparison of Cement Cost Curves for 2004 including total versus only energy benefits

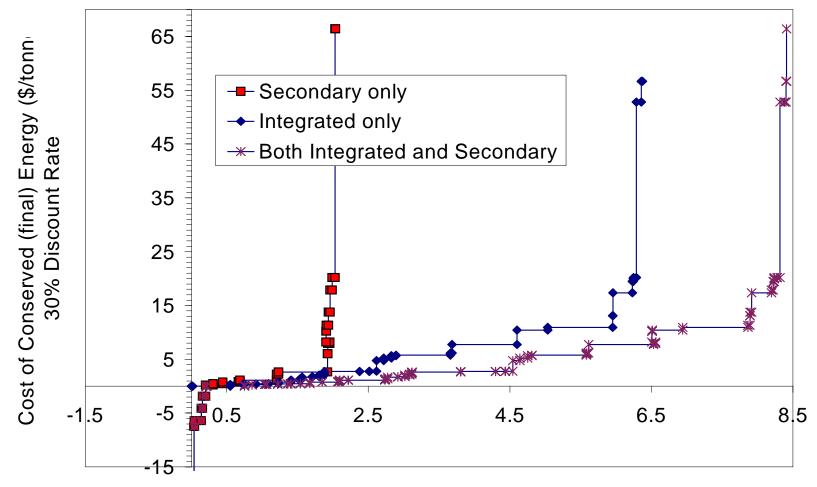
.....




Cement Cost Curves – comparison of curves for 2004 and 1994 (30% discount rate)

rrrr

Iron and Steel Cost Curves –2002 total benefits integrated, secondary and combined (30% discount rate)



(Final) Energy Savings (GJ/tonne steel)

Iron and Steel Cost Curves –2002 energy only benefits - integrated, secondary and combined (30% discount rate)

(Final) Energy Savings (GJ/tonne steel)

Presentation Contents

- Integrated assessment (IA) models
- Demand-side cost curves
- Updated cost curves for US steel and cement sectors (preliminary results)
- Representing US cost curves in a IA model (preliminary results)
- Conclusions

- COBRA was developed using
 - LBNL data and expertise on bottom-up countryspecific models of energy sector mitigation costs and potential,
 - combined with global IEA, WEA, and SRES data

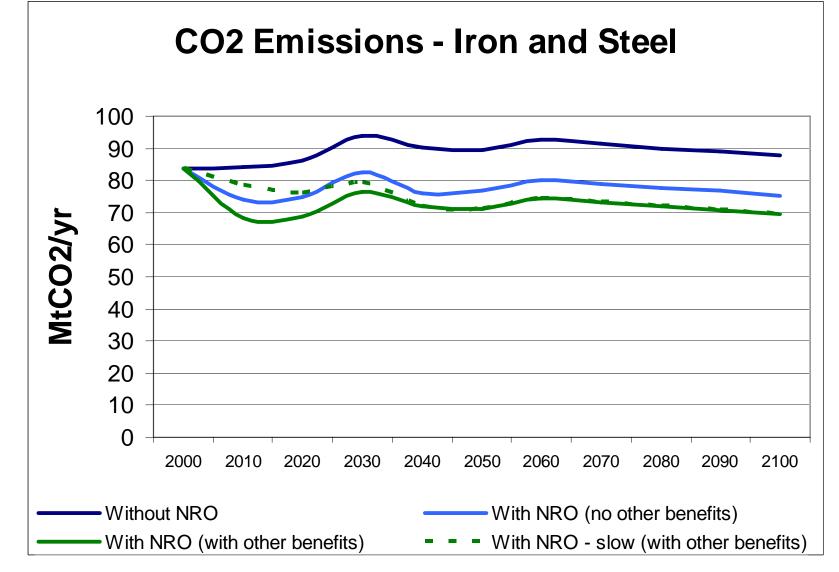
— assumes perfect foresight

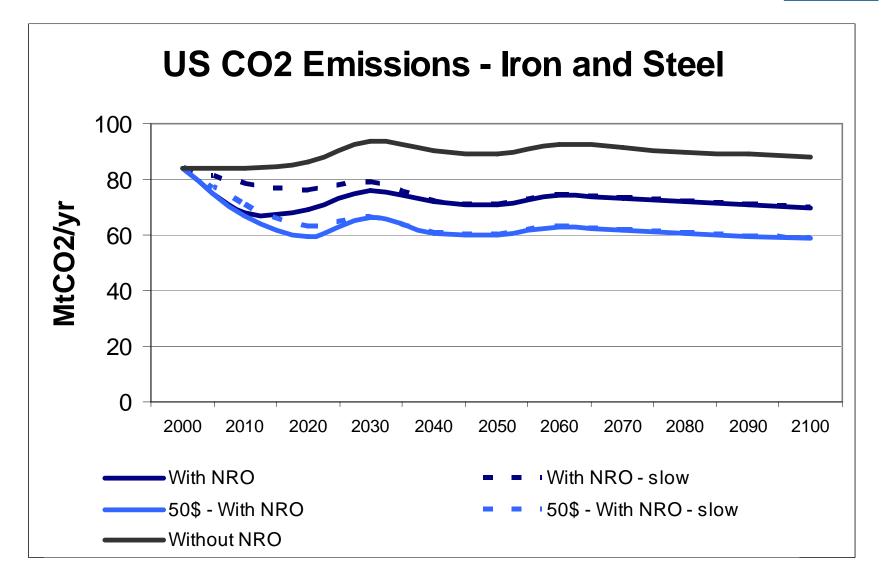
 Includes 10 global regions, tracks carbon emissions decadally for 16 energy sources and demand sectors, including five industrial sectors, under a stabilization constraint and/or carbon price

Source: Wagner and Sathaye, 2006

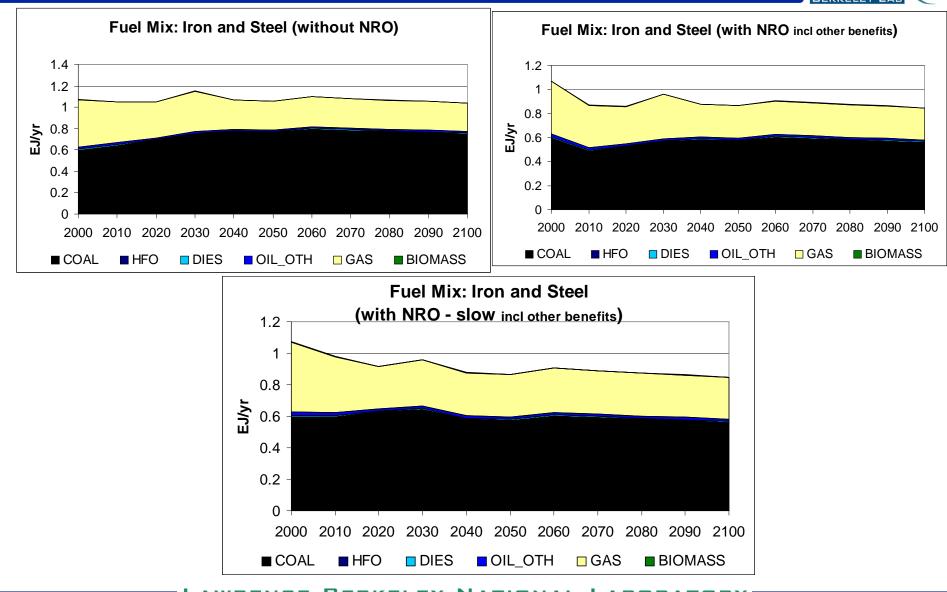
Global Atmospheric Stabilization Analysis Using COBRA: A Linear Programming Model

- Small and fast, appropriate for sensitivity analysis
 - treatment of no regrets options
 - energy and total costs of industrial options
 - technological change
 - discount rates
 - alternative stabilization levels and/or carbon prices
- Model discount rate is 4%
 - Steel and cement cost curves were derived at 15% discount rate


Key Cases Analyzed Using COBRA

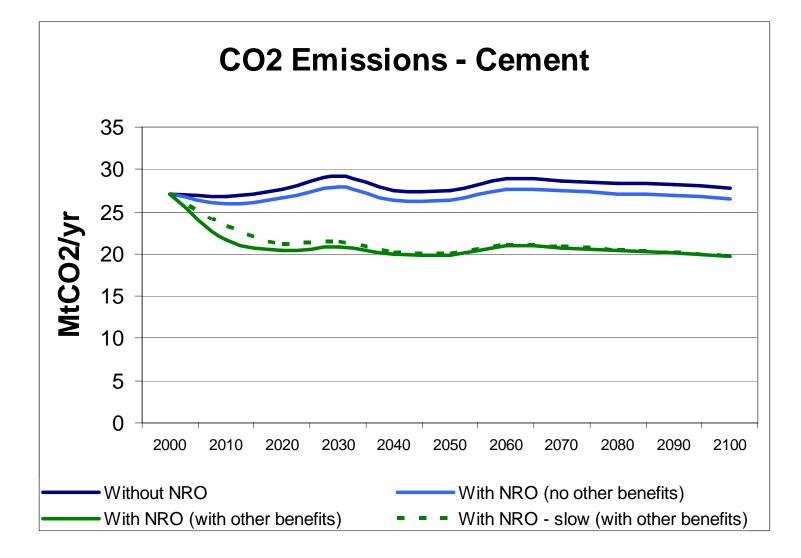

- Model is calibrated to SRES A1B scenario
- Baseline with and without no-regrets options (NROs)
 - instantaneous penetration of NROs
 - slowed penetration of NROs
- Baselines vs. mitigation at alternative carbon prices
- Energy cost vs. all benefits cost curve
- Technological change vs. no technological change

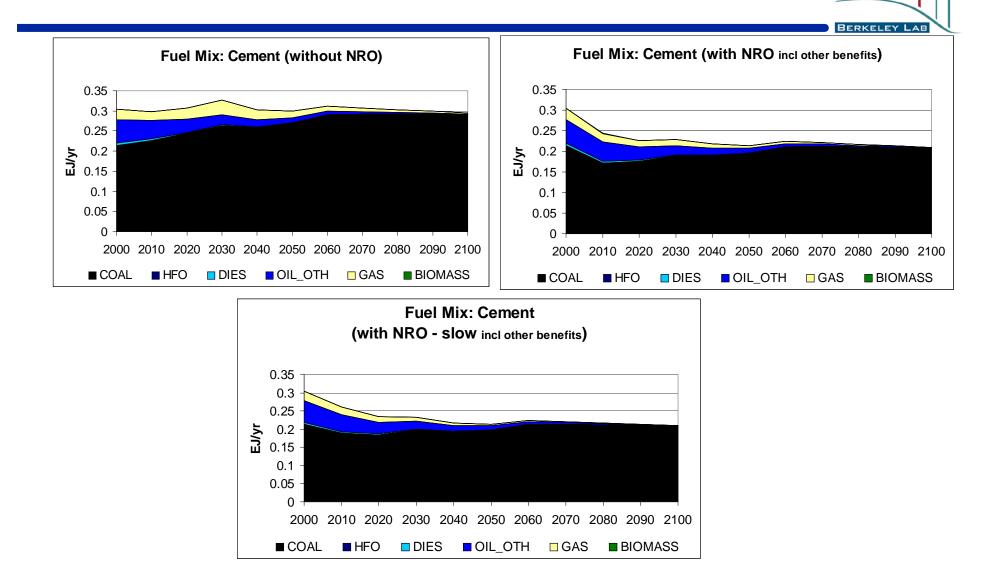
US Iron and Steel



The effect of carbon prices: Options include energy and non-energy benefits

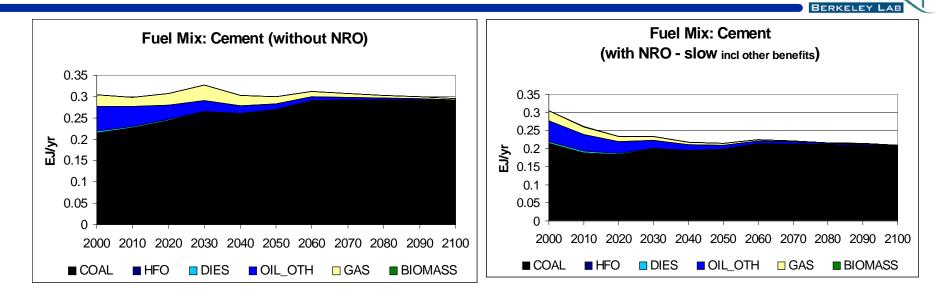
rrrr


Fuel Mixes: US Iron & Steel

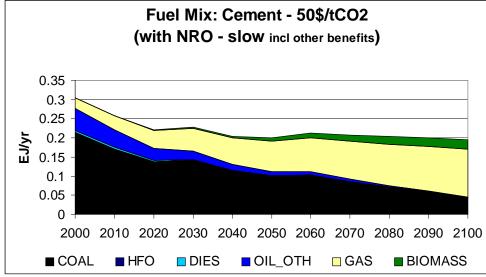

~~~~~

# **US Cement**



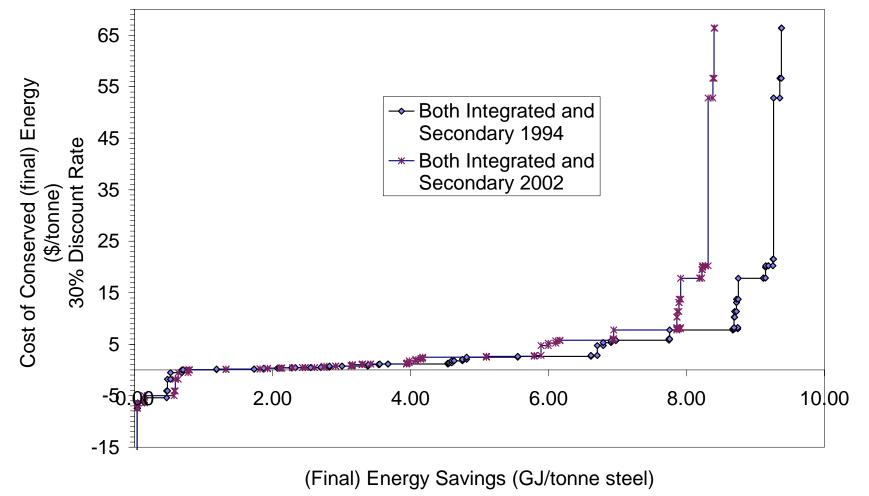



# **US Cement**




**rrrr** 

# The effect of carbon prices: US fuel mix for cement sector

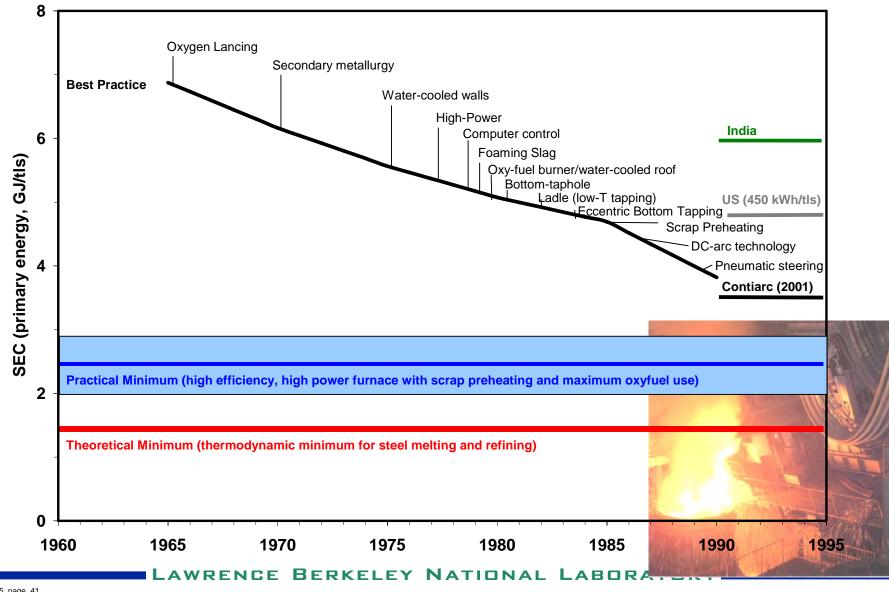



**rrrrr** 



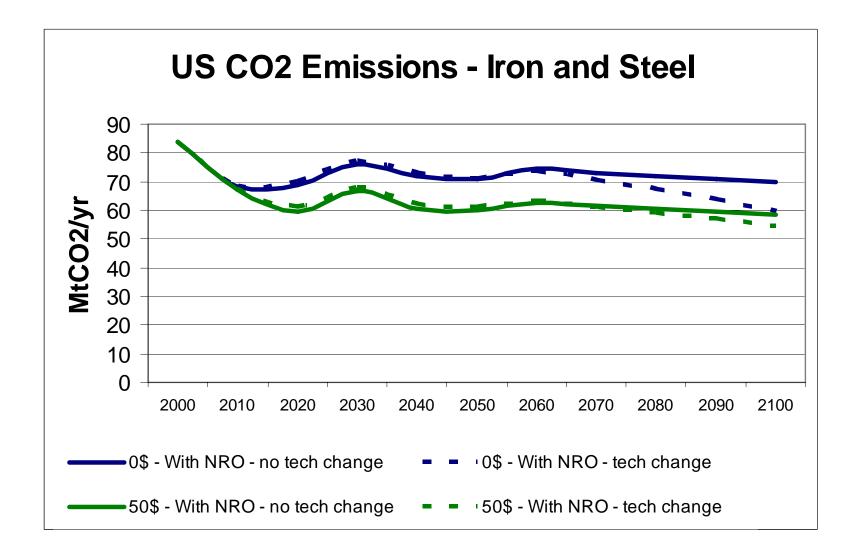
### US Steel: Comparison of 1994 and 2002 Supply Curves (Include both energy and other benefits)

**rrrrn** 




AWRENCE BERKELEY NATIONAL LABORATORY

DivRev05 page 40


### Energy Efficiency in the Steel Industry – Electric Arc Furnace





DivRev05 page 41

.....





- Detailed technology representation provides insight and understanding of technology anf fuel mix choices
- Inclusion of non-energy benefits increases emissions reductions
- Bottom-up cost curves provide another approach for modeling technological change
  - Technological change increases emissions reduction
  - With a carbon price, potential is lower compared to only priceinduced emissions

### Effect of Accounting for Changes in Other Benefits on Cost-Effectiveness and Ranking of Measures



|                                                                                               | <i>With Energy (E)</i> Benefit Only |         |            | With O  | S       |            |  |
|-----------------------------------------------------------------------------------------------|-------------------------------------|---------|------------|---------|---------|------------|--|
| Measure                                                                                       | CCE                                 | Rank    | Cost-      | CCE     | Rank    | Cost-      |  |
|                                                                                               | (\$/GJ)                             | (of 47) | Effective? | (\$/GJ) | (of 47) | Effective? |  |
| Inj. of NG – 140                                                                              | 3.1                                 | 19      | NO         | -0.5    | 8       | YES        |  |
| Coal inj. – 225                                                                               | 3.9                                 | 22      | NO         | 1       | 23      | YES        |  |
| Coal inj. – 130                                                                               | 4.4                                 | 23      | NO         | 0.1     | 11      | YES        |  |
| DC-Arc furnace                                                                                | 5                                   | 26      | NO         | -1.3    | 6       | YES        |  |
| Process control                                                                               | 5.6                                 | 27      | NO         | -2.1    | 5       | YES        |  |
| Scrap preheating                                                                              | 6.7                                 | 31      | NO         | -0.6    | 7       | YES        |  |
| Thin slab casting                                                                             | 8.5                                 | 35      | NO         | 1.9     | 27      | YES        |  |
| Hot charging                                                                                  | 8.9                                 | 36      | NO         | 5.3     | 35      | NO         |  |
| FUCHS furnace                                                                                 | 12.7                                | 37      | NO         | -3.5    | 3       | YES        |  |
| Adopt cont. cast                                                                              | 14.3                                | 39      | NO         | -3.5    | 2       | YES        |  |
| Twin shell                                                                                    | 16.6                                | 40      | NO         | 3.3     | 30      | NO         |  |
| Oxy-fuel burners                                                                              | 17.4                                | 41      | NO         | -5.5    | 1       | YES        |  |
| Bottom stirring                                                                               | 20.5                                | 45      | NO         | -2.4    | 4       | YES        |  |
| Foam y slag                                                                                   | 30.1                                | 46      | NO         | 7.2     | 40      | NO         |  |
| NOTE: These cost of conserved energy (CCE) and cost-effectiveness calculations are based on a |                                     |         |            |         |         |            |  |
| discount rate of 30% and an average primary energy price of \$2.14/GJ.                        |                                     |         |            |         |         |            |  |