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The problem of how to reconstruct the parameters of a stochastic nonlinear dynamical system when
these are time-varying is considered in the context of online decoding of physiological information
from neuron signaling activity. To model the spiking of neurons, a set of FitzHugh-Nagumo (FHN)
oscillators is used. It is assumed that only a fast dynamical variable can be detected for each neuron,
and that the monitored signals are mixed by an unknown measurement matrix. The Bayesian
framework introduced in Paper I (immediately preceding paper, Phys. Rev. E 00, 00 (2008)) is
applied both for reconstruction of the model parameters and elements of the measurement matrix,
and for inference of the time-varying parameters in the non-stationary system. It is shown that the
proposed approach is able to reconstruct unmeasured (hidden) slow variables of the FHN oscillators,
to learn to model each individual neuron, and to track continuous, random and step-wise variations
of the control parameter for each neuron in real time.

PACS numbers: 02.50.Tt, 05.45.Tp, 05.10.Gg, 05.45.Xt

I. INTRODUCTION

Time variability and nonlinearity are natural ingredi-
ents of physiological systems. In addition, a system’s en-
vironment and its own internal complexity often creates
a strong fluctuational background which is frequently an
essential feature of the dynamics. It is a context where
physiological models are rarely known from the first prin-
ciples, and model identification and parameter inference
become indispensable from the points of view of both
fundamental and applied physiology [1, 2] and in a view
of likely medical applications. In many situations the
real-time tracking of physiological parameters is the key
to successful applications including e.g. brain-controlled
interfaces [3, 4]. However, the interplay of noise, nonlin-
earity, and the time-variability of the model parameters
makes it difficult to extract reliable information from the
data, and very difficult to do so quickly. Accordingly,
the simplifying assumptions of linearity and/or determin-
ism [2, 5] are frequently made in an attempt to facilitate
inference rather than on physiological grounds.

In addition, physiologically important parameters that
describe specific features of the system state or system
dynamics are not usually directly measurable and have to
be inferred from measurements of other types of informa-
tion. At present there are no general methods available
to solve this problem if the model is stochastic, nonlinear
and non-stationary, i.e. its parameters vary in time.

In Paper I [6], we introduced a general Bayesian frame-
work that allows one to identify a nonlinear stochastic
model from time-series data and to infer its time-varying
parameters in real time. In the present paper we verify
the approach by applying it to the analysis of a model
of physiological signalling. The model chosen is a set of
the FitzHugh-Nagumo (FHN) systems [7–9]. It has been
found useful in analyzing dynamics of nerve fibres [10]

and certain muscle cells in heart tissue [11–13]. It has
also been used intensively in studies of passive myeli-
nated axons [14] and various forms of arrythmia and
cardiac activation evolution [15]. The control of such
neural-related dynamics is important in the context of
bio-technological applications ranging from neural mod-
els of voluntary movement[16] to studies of control in
nerve conduction[17].

In our model, the measured signals corresponding to
fast variables of the FHN system (e.g. action potentials),
are mixed by the unknown measurement matrix. Slow
variables are hidden, which is the case in most real ap-
plications. It is assumed that physiological information
is coded in the time-varying control parameters η of each
FHN system. Our goals will be to reconstruct the hid-
den variables and the measurement matrix, to learn the
parameters of each individual system, and to use this
information for extracting the time-variation of the con-
trol parameter η in real time. We will show, in partic-
ular, that the approach is able to decode large stepwise
changes, as well as random and continuous variations of
the control parameter, for each oscillator in real time.
Furthermore, we will show that the parameter-tracking
algorithm can effectively be embedded into the inferen-
tial learning framework, enabling us to reconstruct both
the unmeasured (hidden) variables of the FHN oscilla-
tors and the model parameters. For simplicity, we will
assume that FHN systems are not coupled and that the
dynamical equation for the slow variable does not include
a random force. However, both coupling and noise in the
hidden variables can very easily be incorporated into the
method, as will be shown elsewhere.

The paper is organized as follows. In Sec. II a model of
FHN systems coupled by unknown measurement matrix
is presented and then reduced to standard form suitable
for analysis within the Bayesian framework. Convergence
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of the model parameters for the case of stationary signals
is discussed in Sec. III. Their convergence and online
tracking when the system is non-stationary are presented
in Sec. IV. Finally, the results obtained are summarized
and conclusions are drawn in Sec. V.

II. SYSTEM OF FITZHUGH-NAGUMO

OSCILLATORS

In a typical physiological situation neurons fire at the
rate of ∼5-10 s−1. The correlation time of the control pa-
rameter is ∼500-1000 ms. The correlation times of other
model parameters in the non-stationary case are ∼5 s.
A typical sampling rate for measurements is ∼35 kHz.
In order to follow the time-variations, it is necessary for
the computation time to be less than the shortest char-
acteristic time in the system, i.e. that for variation of the
control parameters. So we must aim for a computational
inference delay time of less than 500 ms.

To model this spiking activity we use the well-known
FitzHugh-Nagumo system in the form

v̇j = −vj (vj − αj) (vj − 1) − qj + ηj +
√

Dij ξj ,

q̇j = −β qj + γj vj ,

〈ξj(t) ξi(t
′)〉 = δi j δ(t − t′), j = 1 : L.

(1)

This system (1) represents the simplified dynamics of L
non-interacting neurons [8], where vj model the mem-
brane potentials and qj are slow recovery variables. Fig 1
illustrates the dynamics for one oscillator in absence of
noise; values of the other parameters are α=0.4,; η=0.3;
β=0.0151; γ=0.0153.

We assume that the important physiological informa-
tion is encoded in the parameter η, which controls the
frequency of firing. In practice, this information is diffi-
cult to extract because signals collected from biological
systems are noisy and often mixed with an unknown mea-
surement matrix. To analyze the situation in a realistic
way we introduce dynamical noise into the model sys-
tem (1) and a measurement matrix X into the following
measurement model

yi = Xij vj . (2)

Here yi are measured variables, related to vj by linear
transformation with the unknown matrix X. An example
of noisy signals before and after the mixing are shown in
the Fig. 2. We suppose that the only accessible informa-
tion is contained in yi. The problem is therefore to learn
the model parameters M = {ηi, αi, qi(0), γi,Dij ,Xij}
from the time series data {yi}, and to use this information
for fast on-line tracking of the time-varying parameters
{ηi} for each neuron. It was shown in I that this problem
can be treated within a general inferential framework by
integrating the middle set of equations in (1) to obtain

qj(t) = γ

∫ t

0

dτe−β (t−τ)vj(τ) + e−β tqj(0). (3)
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Figure 1: Numerical simulation of the FitzHugh-Nagumo os-
cillator (1). (a) Examples of the time-traces of vj (solid line)
and qj (dashed line). (b) Nullclines are shown by the dashed
(1st equation) and dotted (2nd equation) lines, and the cor-
responding phase trajectory is shown by the thin solid line.
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Figure 2: (Color online) Time-series data generated by the
model (1), (2) before and after mixing, for the parameters
given in Table I. Parameters η1 and η2 fluctuate between
0.35 and 0.45. The blue solid lines show v1(t) and y1(t), and
the red dotted lines show v2(t) and y2(t).



3

On substituting (3) into the top equation in (1) we have

v̇j = −αjvj + (1 + αj)v
2
j − v3

j + ηj

− γj

∫ t

0

dτe−β (t−τ)vj(τ) − e−β tqj(0) +
√

Dijξj .
(4)

Here j = 1, ..., L, and qj(0) is a set of initial coordinates

for the unobservable variable qj(t). Thus the reconstruc-
tion of unobservable variables qj(t) is reduced to the in-
ference of the L initial conditions qj(0).

Alternatively, the variables vj(t) can also be excluded
from further consideration by using Eq. (2). On substi-
tuting v = X−1y into (4) we obtain in vector notation:

ẏ = Xα
(

X−1 y
)

+ X(1 + α)
(

X−1 y
)2

+ X
(

X−1 y
)3

+ e−β tXq0 −
∫ t

0

eβ(t−τ)Xγ
(

X−1 y
)

dτ + Xη + X
√

Dξ(t), (5)

where q0 = q(t = 0) and

(

X−1 y
)n

=











(

∑L

i=1 x̃1iyi

)n
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. . .

...

0 . . .
(
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i=1 x̃Liyi

)n
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The advantage of the presentation (5) is that it allows
for the fastest on-line tracking of the control parameters
of the system (1) in the case of small measurement noise.
In what follows we demonstrate this point using as an
example a system of two FHN oscillators. However, the
results reported below can be readily extended to a set of
L linearly-coupled FHN systems. We will refer to system
(5) as “transformed dynamics” to distinguish it from the
“reduced dynamics” of (4).

III. STATIONARY DYNAMICS AND

CONVERGENCE

To infer the parameters of the system of L FHN oscil-
lators (5) within the stationary regime we introduce the

α1 = 0.35 η1 = 0.4

α2 = 0.20 η2 = 0.3

γ1 = 0.0153 β = 0.0151

γ2 = 0.0153

d11= 0.0002 d12= 0.00007

d22= 0.0002 d21= 0.00007

x11= 1.7 x12= 0.8

x22= 0.2 x21= 0.9

Table I: Parameter values of the model (1), (2) used to gen-
erate stationary time-series data.

following base functions

φ(x) = {1, y1, ..., yL, y2
1 , y1y2, ..., y1yL, y2

2 ,

y2y3, ..., y2yL, ..., y3
1 , y2

1y2, ..., y
2
1yL, y3

2 , y2
2y1, ...,

y2
2yL, ..., y2

LyL−1 , y3
L ,Φ1, ...,ΦL , e−βt}

(6)

where Φi is defined as follows

Φi ≡
∫ t

0

yi(τ)eβ(τ−t).

The number of base functions,

Nφ = 2 + 2L +
L(L + 1)

2
+ L2

increases as L2 with the number of systems. The num-
ber of unknown coefficients of the system (5) is Nc =

Nφ ×L+L2 + L(L+1)
2 ; it increases as L3 with the dimen-

sion of the system. The first term in Nc is the full set of
unknown coefficients, because all possible combinations
of the powers of y are included in this set, i.e. it covers the
whole model space of the system with polynomial base
functions up to power 3. The second term in Nc is the
number of unknown elements of the measurement matrix
X, while the third is the number of the elements of the

unknown noise matrix. Only Ninf = Nφ × L + L(L+1)
2

coefficients can be inferred directly from the time se-
ries data {yi}, and therefore only Ninf equations can be
formed to find the coefficients of the original system (4)
and the elements of the matrix X. In practice, however,
the number of coefficients of the original system is al-
ways significantly smaller then the full set Ninf , because
of the symmetry that is always present in real systems.
In particular, the number of unknown coefficients in the

original system (2), (4) is NM = 6L + L2 + L(L+1)
2 (note

that here we have counted coefficients for y2
i and y3

i ).
I.e. for a system of 2 FHN oscillators we have Ninf = 29
equations to reconstruct NM = 19 coefficients.

So it should be possible at least in principle to recon-
struct all unknown coefficients of the original system for
any number of FHN oscillators, provided that we can
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establish the connection between the set

M̃ = {η̃i, α̃ij , b̃ijk, c̃ijkl, γ̃ij , q̃ij(0), D̃ij}

of measured variables of the transformed system (5) and
the set

M = {ηi, αi, bi, ci, γi, qi(0),Dij ,Xij}

of unknown parameters of the original reduced dynam-
ics (4), where bi = (αi + 1) and ci = −1. Note that

coefficients α̃ij , b̃ijk, c̃ijkl, γ̃ij in the expression for M̃
above correspond to coefficients Aij , Bijk, Cijkl, Γij in

Eqs. (36), (37) of I. In the 2D case the set M̃ of vari-
ables of the transformed dynamics (5) corresponds to the
following set of the base functions

φ(x) = {1 , y1 , y2 , y2
1 , y2

2 , y1y2 , y3
1 ,

y2
1y2 , y1y

2
2 , y3

2 , Φ1 , Φ2 , e−βt}.
(7)

In general form, the connection between the two sets of
coefficients is given by the equations (37)–(39) of I. Here
we introduce explicit relations for the case L = 2.

X−1

[

η1

η2

]

=

[

η̃1

η̃2

]

, (8)

[

q0,1

q0,2

]

= X−1

[

q̃1

q̃2

]

, (9)

[

γ1 0

0 γ2

]

X−1 = X−1

[

γ̃11 γ̃12

γ̃21 γ̃22

]

, (10)

[

α1 0

0 α2

]

X−1 = X−1

[

α̃11 α̃12

α̃21 α̃22

]

, (11)

D̃X−1 = X−1D. (12)

The unknown elements xij of the inverse measurement
matrix X−1, and the parameters with tildes, are the
model parameters of the transformed system (5) that can
be inferred directly using time series data {yi}. Relations
(8)-(12) allows one to reconstruct 15 unknown param-
eters of the original system, including elements of the
noise and measurement matrixes. Note, however, that
the coefficients (1 + αi) can also be assumed unknown in
general and that the following relations can be used to
reconstruct them

[

1 + α1 0

0 1 + α2

] [

x2
11 2x11x12 x2

12

x2
21 2x21x22 x2

22

]

= X−1

[

b̃111 b̃112 b̃122

b̃211 b̃212 b̃222

]

,

(13)

Similarly, the relationships between the coefficients for
polynomials of power 3 are given by

[

−1 0

0 −1

][

x3
11 2x2

11x12 2x11x
2
12 x3

12

x3
21 2x2

21x22 2x21x
2
22 x3

22

]

= X−1

[

c̃111 c̃112 c̃121 c̃122

c̃211 c̃212 c̃221 c̃222

]

,

(14)

Note that in general one could introduce unknown pa-
rameters for the coupling between the FHN systems and
use relations similar to (11), (13), (14) to reconstruct
these parameters. Note also that it is a simple mat-
ter to extend equations (8)-(14) to encompass the L-
dimensional case.

In the new notation, the 2-dimensional equations for
the reduced dynamics take the form

ẏi = η̃i + α̃ijyj + b̃ik1k2
yk1

yk2
+ c̃ik1k2

yk1
y2

k2

+ e−β tq̃i −
∫ t

0

eβ(t−τ)γij yjdτ +

√

D̃ijξj(t),
(15)

In the rest of this section we restrict ourselves to the
2D case and analyze the convergence of the method un-
der stationary conditions. Our goals will be to show the
correlation between the convergence of the model param-
eters and the decay of the eigenvalues {λi} of matrix Ξ̂

−1

(see I), and to demonstrate how one can speed up the con-
vergence by orders of magnitude by reducing the number
of base functions in an appropriate way.

A. Convergence of the parameters of the

transformed dynamics

In this section we analyze the convergence of the model
parameters of the reduced dynamics (4) as a function of
T = hN , where h is the sampling time step and N is
the number of points in a block of data. The model (1),
(2) was integrated using the Heun scheme [18] with the
set of parameters shown in Table I. The fast variables
of the FHN oscillators v1(t) and v2(t) were mixed by
the measurement matrix X to generate synthetic time-
series data y1(t) and y2(t) of measured signal. The latter
signals were used as the input for testing the algorithm.
An example of the signals v1(t), v2(t) and y1(t), y2(t) is
shown in the Fig. 2.

We now analyze the convergence of the method in
the case when all parameters of the reduced model (5),
including elements of the measurement matrix are un-
known. An example of the convergence of parameters for
the reduced model is shown in Fig. 3. The sampling rate
was 35 kHz. We used 9 blocks of data with 5000 points
in each block, and these blocks of data were generated at
random 1000 times to analyze the statistics of the con-
vergence. The results of the inference are summarized in
the Table II. It can be seen that convergence of better
then 3.5% is achieved in less than 1 s, even though the
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Figure 3: Typical example of the convergence of parameters
as a function of signal length. η̃1 and b̃222 are plotted as
functions of time, i.e. of the number of data. The first point
corresponds to a block of 5000 data points; each successive
point after that corresponds to an additional 5000 data, as
discussed in the text. Vertical bars show standard deviations
of the inferred values, calculated over 1000 realizations. The
horizontal dashed lines indicate the true values of the model
parameters as given in Tables I and II.

coefficients of the highest order polynomials are assumed
unknown.

B. Reconstruction of the mixing matrix

To reconstruct both the mixing matrix X and the pa-
rameters of the original system M from the inferred pa-
rameters M̃ of the transformed system (5), we have to

parameter real inferred std. dev.

η̃1 0.9200 0.924384 0.022624

η̃2 0.3500 0.351001 0.009063

b̃222 1.7550 1.758011 0.037047

b̃112 -2.1086 -2.114731 0.068268

Table II: Values of some of the original coefficients inferred
using 30000 points. The actual values (second column) are
compared with the inferred values (third column), standard
deviations are given in the last column.
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Figure 4: (a) and (b): Typical examples of convergence for
two components of the measurement matrix X as a function
of the measurement time t. The other model parameters for
this numerical test are given in Table I. We have used 9
data blocks with 5000 points in each block. The standard
deviations of the inferred parameters shown by the vertical
bars are calculated over 1000 realizations. The horizontal
lines shows the true values of the model parameters. The
sampling rate was 35 kHz.

solve equations (8–12) with respect to elements of M̃.
We note that, in the general case of the measurement
model, these equations are nonlinear and can be writ-
ten implicitly as Fk(M) = 0, k = 1, ...,K, where K is
the number of equations. In the particular case of trans-
formation given by the simple form of Eqs. (8–12) the
solution of this problem can be found by using the stan-
dard nonlinear least squares method [19], although an
additional optimization over the set of initial values may
be required. We stress that the present technique is not
restricted to the 2D case and can equally be applied to
the general case of N FHN oscillators.

We can now use the inferred parameters of the trans-
formed dynamics (previous subsection, Fig. 3. and Table
II) to reconstruct both the elements of the measurement
matrix and the model parameters of the original system
(4). Examples of convergence of the model parameters
are given in the Fig. 4 and Fig. 5, and are summarized
in Table III. It can be seen from the table that a relative
error of inference of better then 2% is achieved within
less then 1 s of measurement time.

In what follows we will focus on the convergence of the
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Figure 5: (a) and (b): Convergence of the control parameters
η1 and η2 as functions of the measurement time t. Values of
the other model parameters for this numerical test are given
in Table I. We have used 9 data blocks with 5000 points
in each block. The standard deviations of the inferred pa-
rameters shown by the vertical bars are calculated over 1000
realizations. The horizontal lines show the true values of the
control parameters. The sampling rate was 35 kHz.

control parameters η and analyze the accuracy and speed
of the convergence under various assumptions about time
dependence of these parameters and information avail-
able about other parameters of the system.

C. Convergence speed

We note that to calculate the rate of convergence of
model parameters of stochastic nonlinear dynamical sys-
tems is, in general, still an open problem. Here we pro-
vide a brief discussion, however, based on the results of
Sec. C of Paper I [6]. These indicate that the eigenvalues

of the matrix Ξ̂ (see Eq. (22) of I) play an important
role in the convergence of the model parameters. The
meaning of the matrix Ξ̂ is twofold: first, Ξ̂ is the covari-
ance of the posterior density, so it measures directly how
sharply peaked this distribution is about its mean value;
secondly, Ξ̂ is proportional to D̂ ⊗ Φ̂

−1
k (see Eq. (22) of

Paper I), so it is directly influenced by the choice of the
base functions and by the correlations between them. It
is clear, in particular, that in the case of polynomial base
functions the lower the order of polynomials, the smaller

parameter real inferred rel. error

X11 1.7 1.686459 0.796526

X12 0.8 0.794263 0.717092

X21 0.2 0.196746 1.626811

X22 0.9 0.898222 0.197610

η1 0.4 0.406227 1.556788

η2 0.3 0.302462 0.820660

α1 -0.35 -0.351992 0.569082

α2 -0.2 -0.200376 0.188228

b1 1.35 1.357427 0.550145

b2 1.2 1.203863 0.321885

c1 -1.0 -0.999520 0.047957

c2 -1.0 -0.999114 0.088582

Table III: Values of some of the original coefficients inferred
using 30000 points obtained from measurement matrix and
real parameters reconstruction. The actual values (second col-
umn) are compared with the inferred values (third column),
relative errors are given in the last column.

will be eigenvalues of Ξ̂
−1, and the faster will be their

convergence. Indeed, the deviation of the model param-
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Figure 6: (Color online) The largest eigenvalues λi of the

matrix Ξ̂−1 under different assumptions: (i) when none of the
coefficients of the dynamics in eq.(4) are known (full red lines);
(ii) when the coefficients of the third and second powers are
known (dashed blue lines); (iii) when all parameters except
ηi are known (dotted black lines). The dynamical coefficients
are the same as in Fig. 4. The number of runs to obtain the
averaged convergence was 1000 for each data block size. The
actual distribution for each eigenvalue is highly asymmetric
over the number of the runs, and typical values of λi are lower
than their respective means.

eters from their limiting mean values is proportional to a
linear combination of the eigenvalues λi of Ξ̂

−1. So the
convergence of the model parameters is determined by
the the values and decay rates of the largest eigenvalues
of Ξ̂

−1. The latter in turn depends on the a priori infor-
mation available about the model parameters. For the
polynomial base functions, which is the case of trans-
formed dynamics (5), the most important information
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from the point of view of convergence speed is knowledge
of the coefficients for the polynomials of higher order.

To illustrate this point we calculate the eigenvalues
of Ξ̂

−1 under various assumption about the number of
known parameters in the model. The results of this
analysis are shown in the Fig. 6. It can be seen from
the figure that when no information is available about
model parameters (i.e. all the parameters are unknown)

the largest eigenvalue of Ξ̂
−1 has an initial value of the

order 102 and decays to 10−2 over a measurement time
t = 1.3 sec. The correlation between the decay of the
largest eigenvalue and the convergence of the η param-
eters in this case is evident from the Fig. 5. When the
coefficients of the cubic and quadratic terms in system (4)

are known, the value of the largest λi of Ξ̂
−1 (shown by

the blue dashed line in Fig. 6) is reduced by three orders
of magnitude. When all parameters of the system (4) are
known except the control parameters η, the largest value
of λi of Ξ̂

−1 (shown by the black dotted lines in Fig. 6)
is further reduced by two orders of magnitude.

In the latter case convergence of the inferred parame-
ters ηi to their true values is much faster. To verify this
point the following test was performed: (i) first a signal
of length 1 s was generated with stationary dynamics and
used to infer all the model parameters; (ii) next, the pa-
rameters ηi were changed in a step-like manner; and (iii)
the convergence of the inferred parameters ηi was ana-
lyzed as a function of the length of the step. The results
are shown in Fig. 7 It is evident that the time scale for
the convergence of η is ∼ 20 ms as compared to the con-
vergence over ∼ 1 s in Fig. 6. It is therefore clear that the
computational delay time of < 500 ms desired for phys-
iological applications can be easily achieved within our
Bayesian framework.

Next, we consider the efficiency of the method under
non-stationary conditions.

IV. NON-STATIONARY DYNAMICS

We consider the situation when all parameters except
ηi (4) are fixed at the values given in Table I, but the con-
trol parameters ηi are allowed to change, either stepwise
or continuously.

A. Stepwise changes of control parameters

1. Unknown parameters

In this section it is assumed that none of the param-
eters of the model are known and that they have to be
inferred at each step of the measurements. The parame-
ters η1 and η2 are allowed to change at random in time in
a step-like manner, and remain constant between steps.
The time interval between steps is approximately 5 pe-
riods of firing of the action potential and contains one
block of data with 20000 points. Other parameters of
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Figure 7: Typical example of the fast convergence of the con-
trol parameters (a) η1 and (b) η2, as functions of time (length
of signal). The first point corresponds to 200 data points in
one block. For each next point the number of data points
was increased by 200. The vertical lines show the standard
deviations of the inferred values of the control parameters
calculated over 1000 runs. The horizontal dashed lines in-
dicate the true values of the parameters. Mixing matrix is
1.7 .8
.2 .9 . The inferred parameters ηi starts from an initial value

of η1 = η2 = 0.2 and converge quickly to the true values of
η1 = 0.4, η2 = 0.3. The coefficient αi,βi ,γi and dij are given
in Table I. The noise amplitude is

√

d1 =
√

d2 = .01225.

the model are fixed at the constant values given in Ta-
ble I. At each step we infer all parameters of the model
assuming their initial values to be zero and their initial
dispersion to be infinity as already discussed above. The
results of this test are shown in Fig. 8. The inferred val-
ues of parameter η1 are compared with their true values
in Fig. 8(a). The time-trace of the unknown coordinate
q1(t) is compared with the corresponding reconstructed
time-trace q̃1(t) in Fig. 8(c). The latter time-traces were
reconstructed using Eqs. (3) and (8) as follows

qi = X−1
ij q̃j ,

q̃i(tk) = h Γij

k
∑

l=0

yj(l)e
(β(tl−tk)) + e−β tk q̃i(0).

(16)

It can be seen from the figure that the time resolution
of the method is of the order of 500 ms even in the case
when none of the model parameters are known. As men-
tioned above, however, the time resolution of the method
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Figure 8: (Color online) Inference of the parameters of two
uncoupled FHN systems mixed by the measurement matrix
during step-wise changes of η1 and η2 and all parameters of
the model unknown. (a) The inferred values of η1 (dashed red
lines) are compared with their true values (full blue lines). (b)
Measured mixed values of the coordinate x1(t). (c) Inferred
values of the coordinate q1(t) (red dotted line) are compared
with its true values of (blue solid line). The other parameters
are fixed at the values given in Table I. The noise amplitude
is

√

d1 =
√

d2 = .01225.

can be substantially improved by considering the other
parameter of the model to be known on the time scale of
a few seconds (corresponding to their correlation time,
see Sec. II) and tracking in time only the time-varying
control parameters ηi.

2. Tracking control parameters with known dynamics

We now investigate how fast physiological parame-
ters can be tracked in time. It was shown above (see
Sec. III C) that the convergence speed depends on in-
formation about the model parameters that is available

 0.2
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 0  0.5  1  1.5  2

η 1

(a)
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 1.5

 3
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x 1

(b)
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q 1
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Figure 9: (Color online) Inference of the model parameters
of two uncoupled FHN systems mixed by the measurement
matrix with step-wise changes of η1 and η2 when all other
parameters of the system are known. (a) Inferred values η1

(short elements of red dashed line) are compared with their
true values (short elements of full blue line) as a function of
time. (b) The time-trace of the measured coordinate x1(t).
(c) The time-trace of the inferred coordinate q̃1(t) (red dotted
line) is compared with its true value q1(t) (blue solid line).
The values of the other parameters are fixed, as given in Table
I. The noise amplitude is

√

d1 =
√

d2 = .01225.

a priori, and that the fastest time resolution can be
achieved when all the parameters of the model, except
the control parameters ηi, are known. To demonstrate
this effect we now assume that η1 and η2 change step-
wise at random and remain constant between steps as
above, but that all other parameters of the model re-
main fixed at known values. The time interval between
steps is now approximately 0.03 s and contains one block
of data with 1000 points. The results of Fig. 9 show
that the method can track random, step-wise, variations
of the control parameters with a time resolution of less
then 0.03 s (i.e. smaller by more than two orders of mag-
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nitude than in the previous case where all parameters
had to be inferred).

B. Continuously varying control parameters with

noise

To complete our analysis of the reconstruction of non-
stationary dynamics of the physiological model, we now
infer smoothly varying parameters η1 and η2 with added
noise, without knowing any other parameters of the
model. The test is performed as follows: (i) all parame-
ters of the model are inferred from the first block (with
30000 points) of stationary dynamics; (ii) for all other
blocks of data we use acquired information to fix the
model parameters constant at the inferred values, and
track in time only variations of the control parameters
ηi. Each block of data (except the first one) contains
12000 points and has a time length t ≈ 0.34 sec. The
time-traces of the unknown variables qi(t) reconstructed
at every step using Eqs. (16) as explained above. The in-
ferred time evolution of the control parameters ηi is com-
pared with its true variation in Fig. 10. It is evident from
the figure that the method allows to infer the unknown
constant parameters of the model, and then also to use
this information to track in time the non-stationary con-
trol parameters of the system with a time resolution of
the order of 0.3 sec.

V. CONCLUSION

In summary, we have explored the performance of the
novel Bayesian inferential framework for non-stationary
dynamics that we introduced in Paper I [6] in relation
to physiological applications. We did so by modelling a
physiological signal as a set of fast variables yi, mixed
by unknown measurement matrix, corresponding to the
action potentials of stochastic FHN oscillators. Our goal
was to see whether we could track on-line the control pa-
rameters ηi of the model, given that these can vary with
correlation time τcor .500 ms. It was assumed that the
slow recovery variables of the FHN oscillators were un-
available for measurement and that the correlation time
of all other unknown parameters of the model was of the
order of 5 s. We have established that the method dies
indeed facilitate allows on-line tracking of ηi with a time
resolution < 0.3 sec. This was achieved by embedded the
model within a Bayesian learning framework for the more
slowly varying parameters with a time resolution < 1 s.

We showed that the time resolution of the method
is determined by the eigenvalues of the matrix Ξ̂

−1 =
D̂⊗Φ̂

−1
k , and therefore depends essentially on the choice

and scale of the base functions. Note that, while the
eigenvalues of D̂ are intrinsic to the system, the choice
and scale of the base functions can be controlled by
the researcher. Specifically, we demonstrated that by

accumulating a priori information about slowly-varying
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Figure 10: (Color online) Inference of η1 and η2, while
smoothly varying in the presence of noise. No prior knowl-
edge of the model parameters is assumed. (a) The inferred
values of η1 (dashed red lines) are compared with their true
values (full blue lines). (b) The measured time-trace of the
mixed coordinate x1(t). (c) The inferred time-trace of the
mixed coordinate q̃1(t) (dashed red line) is compared with
its true value q1(t) (full blue line). The values of the other
parameters are given in Table I. The noise amplitude is
√

d1 =
√

d2 = .01225.

model parameters, one can enhance the time resolution
of the control parameters by an order of magnitude.

We note again [6] that the results obtained are of broad
interdisciplinary interest. They were recently shown to
be particularly useful in medical applications [20] and for
development of prognostics and diagnostics techniques in
aerospace applications [21, 22]. The method can readily
be extended to encompass systems with multiplicative
and colored noise, and efforts towards these ends are al-
ready in progress.
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