
The Case for Beneficial Computer Viruses and Worms

- A Student's Perspective-

Type of Submission: Student Paper

Abstract: This paper reviews published material on the subject of beneficial computer
viruses and worms, that is, self-replicating programs for useful purposes. The topics
include Shoch and Hupp's worms at the Xerox Palo Alto Research Center (PARC),
Cohen's proposals for uses for viruses, and Vesselin Bontchev's anti-virus sentiments.
Finally a simulation of using viruses to destroy other viruses is included.

Author: Mr. Greg Moorer, Undergraduate Computer Science Student

Organizational Affiliation:
Department of Computer Science
Mississippi State University
PO Box 9637
Mississippi State, MS 39762
(662) 325-2756 (Voice)
(662) 325-8997 (Fax)

Email Address: gam3@ra.msstate.edu

Academic Endorsement:
Dr. Rayford B. Vaughn, Jr.
Department of Computer Science
PO Box 9637
Mississippi State, MS 39762
(662) 325-7450 (voice)
(662) 325-8997 (fax)

The Case for Beneficial Computer Viruses and Worms
- A Student's Perspective -

Abstract
This paper reviews published material on the subject of beneficial computer viruses and
worms, that is, self-replicating programs for useful purposes. The topics include Shoch
and Hupp's worms at the Xerox Palo Alto Research Center (PARC), Cohen's proposals
for uses for viruses, and Vesselin Bontchev's anti-virus sentiments. Finally a simulation
of using viruses to destroy other viruses is included.

Introduction
With the current media blitz of warnings concerning malicious viruses, little attention has
been paid to the use of computer viruses for beneficial purposes. The fear of malicious
code is well founded. The Robert Morris Internet Worm that was released in the fall of
1988 caused a great deal of damage to the Internet. Though the author did not intend to
cause damage, a bug in the program resulted in uncontrolled replication that caused the
worm to run rampant [7]. Because infected systems were heavily burdened with multiple
copies of the worm, non-infected systems were removed from the network to prevent
infection, resulting in an excessive loss of processing time and system availability [7].
More recently, widespread publicity concerning viruses such as the Chernobyl virus has
led to a negative perception of self-replicating code. This negative connotation leads
laypersons and professionals alike to ignore the possibility of using self-replicating code
for positive purposes. The only mention of non-damaging viruses in mainstream media
encountered is a single-page article appearing in Newsweek. This article refers to using
virus programs as network searching tools and briefly introduces some research being
performed [8]. Even the supposedly unbiased academic literature largely ignores
beneficial computer viruses. Though the concept of using virus behavior for useful
purposes was proposed in the earliest documentation of computer viruses, very little
published research exists. One complication is defining what a beneficial virus means.
Some viruses written to be malicious can become beneficial in certain applications. For
example, a malicious virus was implanted on Iraqi computers in order to damage their air
defense system before the start of the Gulf War [6]. Though written to be malicious, this
virus was surely seen as beneficial by allied pilots flying over Iraq. Rob Rosenberger
reports conflicting opinions regarding the validity of this story and his own stance is that
the story originated as an April Fool's Day joke [9]. However, the point that a harmful
virus can be used for beneficial purposes remains. For the purposes of this paper, a
beneficial virus will be defined as a self-replicating program that performs some task
without being harmful. Despite the distrust of self-replicating computer programs, some
developments have been made.

The Xerox PARC Worm
An early attempt to use a self-replicating program in order to perform a useful task was
the Xerox PARC worm. John F. Shoch and Jon A. Hupp conducted experiments with
self-replicating programs that they likened to segmented worms [10]. These programs
would be divided into several segments that would execute on separate hosts which the
worm found to be idle [10]. Some stipulations that Shoch and Hupp had to consider were
preventing the worms from writing to the disks of other users' machines and maintaining

a trust with the users whose machines would be occupied by the worms [10]. In order for
their worms to work, Shoch and Hupp developed methods for communication between
segments [10]. They did, however, run into some problems controlling the worms. After
leaving one worm running overnight, they arrived the next morning to find that the worm
had effectively crashed several hosts [10]. Even worse was the fact that some of the
affected systems were physically inaccessible, and when systems were rebooted, they
were quickly located by the worm and crashed again [10]. Luckily, Shoch and Hupp had
placed code within the worm to have it shut down upon receiving a signal through the
network [10]. This incident illustrated the necessity for careful control of such
replicating programs. The worms with which Shoch and Hupp experimented performed
such applications as displaying messages across the network, receiving messages to place
wake-up calls for users through dial-out modems, disseminating animation computations
through a network, and performing diagnostics on Ethernet systems [10]. These worms
were programs that actually transmitted themselves through networks. Another
replication technique was proposed in which a program would replicate by attaching
itself to other programs. These programs were called computer viruses.

Cohen's Original Concept
Fred Cohen, who originally developed the concept of computer viruses, is the greatest
proponent of beneficial virus research. In his first paper on viruses, Cohen proposed the
use of viruses for compression of infected files [3]. To facilitate this, he suggests having
the virus compress each executable and attach the decompression algorithm to each [3].
This would cause each program to be decompressed prior to execution of the original
program [3]. Cohen mentions conducting successful tests with such a virus [3]. This
example of a possible application of computer virus behavior is the most widely
mentioned by other authors. However, it often proves to be the only example that other
texts mention. Pfleeger repeats this concept [7] as does Bontchev [1]. However,
Bontchev elaborates by attacking such use of viruses.

Bontchev's Thoughts on Beneficial Viruses
One of the few authors who addresses beneficial viruses, though in a negative light, is
Vesselin Bontchev. Bontchev in his paper "Are 'Good' Computer Viruses Still a Bad
Idea?" details twelve arguments against beneficial viruses altogether and uses these to
attack several examples of beneficial viruses. Bontchev cites the following arguments
against the use of viruses for beneficial purposes:
 1. viruses are difficult to fully control,
 2. viruses waste resources,
 3. viruses are difficult to identify and remove if unwanted,
 4. viruses often contain bugs,
 5. viruses are not compatible with different platforms,
 6. viruses cannot perform a task in a better manner than a normal program,
 7. viruses alter data without user consent,
 8. viruses infecting other programs can nullify technical support for those products,
 9. good viruses may be used as a guise for an attacker to gain entry to a system,
10. malicious virus work may be presented as beneficial virus research to the public,
11. viruses utilize resources on users' systems without the users' knowledge or consent,

12. viruses carry with them a common negative connotation [1].

He strikes down the idea of a virus targeted at destroying malicious viruses stating that
the anti-virus virus causes the same problems as the virus it's meant to attack [1]. This
author disagrees with this assertion and will expound upon it later. Bontchev also makes
a statement against the file-compression virus primarily based on the idea that the
operating systems file system can perform the same function without having to append
the decompression algorithm to each file [1]. He uses the same basis to discredit the idea
of a virus that encrypts the files on a system [1]. Bontchev also takes a stand against one
of Cohen's more recent propositions of a virus that performs various system
administration tasks. Included in Bontchev's arguments against a maintenance virus are
that its tasks could be performed by concurrent processes in memory, that its mechanisms
to avoid unwanted replication (detection of a file indicating an invitation to infect) are
insufficient, and that it lacks efficiency, wasting system resources [1]. In an interview,
Cohen responded to Bontchev's arguments, stating that in his experiments maintenance
viruses consumed few system resources [5]. He also states that the system resources
required to implement the maintenance virus reflected a great decrease in the amount of
human effort required [5]. Vesselin Bontchev generally attacks concepts of beneficial
viruses, but he does provide his own model of a beneficial computer virus. Bontchev's
model of "good viruses" is a complicated set of invitations and verifications that actually
behave more like worms than viruses. This model controls the spread of viruses by
requiring the system to actively invite the virus to infect and suggests establishing virus
repositories to await such invitations [1]. Bontchev also recommends requiring the
exchange of digital signatures between the two hosts in order to insure both that the
invitation was not forged and that the virus (or worm) received is that which was
requested [1]. With so many constraints, it is much easier to simply download the
desired program from the host and run it. Amazingly, after completing this model of
beneficial viruses, Bontchev never mentions them in a very thorough paper on future
virus trends [2]. In an interview with an online magazine, Bontchev reiterates his twelve
conditions that beneficial viruses must meet and states a general distrust of virus writers
[11]. Despite the continuing stand by virus experts like Bontchev against development of
beneficial viruses, research continues in this field.

Cohen's More Recent Work
Cohen published a book entitled It's Alive: The New Breed of Living Computer Programs
in 1994 which provides more ideas for beneficial viruses. In order to disassociate the
programs with the negative connotation of the term "virus," he refers to these programs,
which behave like both viruses and worms, as "living programs." Among the new ideas
he provides are living programs that perform such tasks as software distribution across
networks, implementing distributed databases, and performing routine maintenance
operations such as cleaning up garbage files [4]. He also provides examples of these as
UNIX scripts [4]. Cohen's research is driving beneficial virus research in its current
direction.

Another Look at the Anti-Virus Virus

As stated earlier, this author disagrees with Bontchev's statement against anti-virus
viruses. In a rudimentary simulation, an anti-virus virus is shown to be able to
disseminate through a discourse community and effectively remove viruses. This
behavior has been exhibited in simulations run by this author. It would be useful for
virus researchers to have an anti-virus virus prepared in the event that one of their
programs escapes the confines of the original research space. Releasing such an anti-
virus quickly after the virus escapes could prevent the spread of the actual virus and the
hysteria that will accompany it. An anti-virus virus must be released in the same
discourse community as its target. It must be released from a "clean" machine to insure
that the released anti-virus does not contain the target virus. It must also be equipped
with a function to remove itself after a period deemed sufficient to remove all instances
of its target. The source code (which should be compatible with any ANSI C compiler)
of the simulation is included as Appendix A. Sample output from this simulation is
provided as Appendix B. The source and output are also available at
http://www2.msstate.edu/~gam3/virussim.cpp and
http://www2.msstate.edu/~gam3/output.txt, respectively.
The simulation operates by maintaining a list of users and their state of infection, whether
or not they are infected by the malicious virus or the anti-virus virus. In this situation
there are ten users labeled User A through User J that make up a hypothetical discourse
community. The virus is introduced into the group (either maliciously or accidentally) by
User A. As User A provides executable content to others within the group and further
sharing occurs between the other users, the virus spreads throughout the community.
After the virus has been discovered, another virus is written that will spread and destroy
the target virus. The anti-virus virus remains resident on the infected machine to detect
and prevent any further infection attempts by the malicious virus. The anti-virus virus is
introduced into the discourse community from a machine, labeled User K, that has not
been infected by the target virus. As User K begins interaction in the discourse
community, the anti-virus virus spreads and eventually eliminates the malicious virus.
Within the anti-virus virus is code that will cause it to destroy itself after the amount of
time deemed necessary for success has passed. The time necessary for the successful
destruction of a malicious virus is dependent upon the amount of time the malicious virus
has been active, the size of the discourse community, and the rate at which the discourse
community shares executable content.

Summary
The use of beneficial viruses is a highly controversial concept. The negative connotation
associated with viruses greatly contributes to the sentiment against such research. As
demonstrated by Shoch, Hupp, and Cohen, self-replicating programs can be useful.
Shoch and Hupp developed programs that could distribute computations by the worm's
process of replication. Cohen's research uses replicating programs to perform various
functions such as distributing software, implementing distributed databases, and
performing redundant network administration tasks. Though there are some valid
arguments against self-replicating programs, including the need to prevent such programs
from reproducing uncontrollably, research into beneficial uses should not be ignored.
Hopefully, both sides of the argument can be satisfied and a useful virus can be
developed that does not threaten to cause damaging side effects.

References
1. Bontchev, Vesselin. "Are 'Good' Computer Viruses Still a Bad Idea?"
<http://www.commandcom.com/html/virus/res/goodvir.html> (18 June 1999).
2. Bontchev, Vesselin. "Future Trends in Virus Writing." International Review of Law,
Computers and Technology 11.1 (1997): 129-146.
3. Cohen, Frederick B. "Computer Viruses." Computer Security: A Global Challenge,
Elsevier Press 1984, pp. 143-158.
4. Cohen, F. It's Alive: The New Breed of Living Computer Programs (New York, NY:
John Wiley and Sons, 1994).
5. Cohen, F. Personal interview. 28 June 1999.
6. "Gulf War." <http://www.cryan.com/war> (2 July 1999).
7. Pfleeger, Charles P. Security in Computing, 2nd ed. (Upper Saddle River, NJ:
Prentice Hall, 1997) 176-195.
8. Rogers, Adam. "Is There a Case for Viruses?" Newsweek 27 Feb. 1995: 65.
9. Rosenberger, Rob. "Myth: The 'Gulf War' Virus." Computer Virus Myths.
<http://www.kumite.com/myths/myths/myth016.htm> (23 June 2000).
10. Shoch, John F. and Hupp, Jon A. "The 'Worm' Programs: Early Experience with a
Distributed Computation," Communications of the ACM 25.3 (1982): 172-180.
11. Stojakovic-Celustka, Suzana. "Alive Vol. 1 No. 1: April - July 1994."
<http://www.bocklabs.wisc.edu/~janda/alive11.html> (18 June 1999).

Appendix A - Source for Anti-Virus Virus Simulation

// virussim.cpp
// virus simulator for anti-virus virus

// VIRUS NOTES
// The virus "V" is already on the system and infecting user A's
// machine. V infects users by infecting each user who shares
// programs with an infected user.

// ANTI-VIRUS NOTES
// The anti-virus "Z" is introduced after virus V has already
// begun to infect a discourse community. Z will theoretically
// be distributed through the discourse community in a similar
// manner and at a similar rate to V. Z will infect systems in
// the same manner as V and will destroy V upon encountering it
// and will prevent V from infecting again. Z will destroy
// itself after a set date which is estimated by the author
// before release

// ASSUMPTION:
// 1. The infection platform allows Z to remain resident and
// prevent V from infecting a system infected by Z

#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>
#include <stdio.h>
#include <time.h>

void main (void)
{

int users[11]; // an array that represents users 0 - 9
// are users A - J and 10 is user K which is the user that
// initially introduces the anti-virus virus into the
// discourse community from a "clean" machine

int randnum1, randnum2; // just hold a random numbers

char rootletter = 0x41;// base for ascii characters
// representing letters used for
// output of user letters

// *NOTE*
// members of the array and the variable memory will have 3
// possible values:
// 0 = not infected
// 1 = infected by V
// 2 = infected by Z

// setup a file to mirror screen output for easier reading
ofstream outFile;
outFile.open("output.txt");

// seed random number generator
srand ((unsigned) time (NULL));

// initialize array
for (int index = 0; index < 11; index++)

users[index] = 0; // all users clean

users[0] = 1; // user A is infected by V
users[10] = 2; // user K is infected by Z

// begin simulation
// have 100 sharing of programs in random order with proper

// virus activity modeled
// * NOTE users[10] - is assumed to not be introduced yet
for (index = 0; index < 25; index++)
{

randnum1 = rand() % 10; // random number between 0 and 9
randnum2 = rand() % 10; // " "

// report which users share programs ignoring identical
// users
if (randnum1 != randnum2)
{

cout << "User "
 << (char)(rootletter + (char)randnum1)
 << " shares with User "
 << (char)(rootletter + (char)randnum2)
 << endl;

outFile << "User "
 << (char)(rootletter + (char)randnum1)
 << " shares with User "
 << (char)(rootletter + (char)randnum2)
 << endl;

}

// infect user if other user is infected
if ((users[randnum1] == 1) && (users[randnum2] == 0))
{

users[randnum2] = 1;
cout << "User ";
cout << (char)(rootletter + (char)randnum2);
cout << " is now infected by V" << endl;

outFile << "User ";
outFile << (char)(rootletter + (char)randnum2);
outFile << " is now infected by V" << endl;

}

}

// report infected programs
cout << "Users infected by V:";
outFile << "Users infected by V:";
for (index = 0; index < 10; index++)

if (users[index] == 1)
{

cout << " "
 << (char)(rootletter + (char)index);

outFile << " "
 << (char)(rootletter + (char)index);

}
cout << endl;
outFile << endl;

cout << "Introducing anti-virus..." << endl;
outFile << "Introducing anti-virus..." << endl;

// now introduce user with Z into mix
// simulate 40 sharing instances between users in random order
// with Z in the mix

for (index = 0; index < 75; index++)
{

randnum1 = rand() % 11; // random number between 0 and 10
randnum2 = rand() % 11; // " "

// report which users share programs ignoring identical
// users
if (randnum1 != randnum2)
{

cout << "User "

 << (char)(rootletter + (char)randnum1)
 << " shares with User "
 << (char)(rootletter + (char)randnum2)
 << endl;

outFile << "User "
 << (char)(rootletter + (char)randnum1)
 << " shares with User "
 << (char)(rootletter + (char)randnum2)
 << endl;

}

// infect user if other user is infected
if ((users[randnum1] == 1) && (users[randnum2] == 0))
{

users[randnum2] = 1;
cout << "User ";
cout << (char)(rootletter + (char)randnum2);
cout << " is now infected by V" << endl;

outFile << "User ";
outFile << (char)(rootletter + (char)randnum2);
outFile << " is now infected by V" << endl;

}

// infect with Z (if not previously infected), remove V
if ((users[randnum1] == 2) && (users[randnum2] != 2))
{

if (users[randnum2] == 1)
{

cout << "Virus removed from user "
 << (char)(rootletter + (char)randnum2)
 << endl;

outFile << "Virus removed from user "
 << (char)(rootletter + (char)randnum2)
 << endl;

}

users[randnum2] = 2;
cout << "User ";
cout << (char)(rootletter + (char)randnum2);
cout << " is now infected by Z" << endl;

outFile << "User ";
outFile << (char)(rootletter + (char)randnum2);
outFile << " is now infected by Z" << endl;

}

}

// report infected users
cout << "Z destroys itself at a given time." << endl;
outFile << "Z destroys itself at a given time." << endl;
cout << "Users infected by V:";
outFile << "Users infected by V:";
for (index = 0; index < 11; index++)

if (users[index] == 1)
{

cout << " "
 << (char)(rootletter + (char)index);

outFile << " "
 << (char)(rootletter + (char)index);

}
cout << endl;
outFile << endl;

// close output file
outFile.close();

}// end program

Appendix B - Sample Output for Anti-Virus Virus Simulation

User C shares with User G
User F shares with User A
User A shares with User D
User D is now infected by V
User H shares with User C
User E shares with User D
User F shares with User H
User H shares with User F
User I shares with User F
User B shares with User A
User D shares with User H
User H is now infected by V
User I shares with User G
User E shares with User D
User F shares with User H
User D shares with User B
User B is now infected by V
User F shares with User G
User A shares with User B
User A shares with User F
User F is now infected by V
User G shares with User H
User C shares with User I
User H shares with User I
User I is now infected by V
User H shares with User A
User A shares with User J
User J is now infected by V
User D shares with User C
User C is now infected by V
Users infected by V: A B C D F H I J
Introducing anti-virus...
User I shares with User D
User A shares with User K
User K shares with User J
Virus removed from user J
User J is now infected by Z
User C shares with User F
User D shares with User G
User G is now infected by V
User F shares with User E
User E is now infected by V
User B shares with User E
User E shares with User I
User A shares with User F
User K shares with User A
Virus removed from user A
User A is now infected by Z
User J shares with User K
User J shares with User G
Virus removed from user G
User G is now infected by Z
User H shares with User D
User J shares with User A
User B shares with User C
User E shares with User A
User E shares with User C
User H shares with User J
User C shares with User D
User F shares with User B
User E shares with User G
User A shares with User B
Virus removed from user B
User B is now infected by Z
User H shares with User I
User G shares with User K
User F shares with User K

User A shares with User F
Virus removed from user F
User F is now infected by Z
User D shares with User E
User I shares with User C
User G shares with User F
User J shares with User G
User B shares with User H
Virus removed from user H
User H is now infected by Z
User C shares with User E
User A shares with User K
User H shares with User G
User B shares with User E
Virus removed from user E
User E is now infected by Z
User D shares with User I
User I shares with User E
User I shares with User J
User J shares with User C
Virus removed from user C
User C is now infected by Z
User C shares with User D
Virus removed from user D
User D is now infected by Z
User F shares with User B
User E shares with User F
User A shares with User F
User C shares with User F
User J shares with User I
Virus removed from user I
User I is now infected by Z
User K shares with User E
User A shares with User C
User E shares with User I
User G shares with User C
User K shares with User G
User J shares with User C
User D shares with User I
User G shares with User A
User J shares with User I
User C shares with User E
User F shares with User A
User H shares with User D
User F shares with User I
User B shares with User G
User H shares with User I
User I shares with User E
User H shares with User F
User C shares with User J
User B shares with User I
User G shares with User C
User K shares with User B
User G shares with User C
User A shares with User G
User J shares with User A
Z destroys itself at a given time.
Users infected by V:

	Table of Contents
	Presentation

