
Automatic Script Identification from Images
Using Cluster-based Templates

Judith Hochberg, Lila Kerns, Patrick Kelly, and Timothy Thomas

Computer Research, MS B265, Los Alamos National Laboratory, Los Alamos NM 87545
judithh@c3.lanl.gov, gelt@c3.lanl.gov, kelly@c3.lanl.gov, trt@c3.lanl.gov

Abstract
We describe a system that automatically identifies the

script used in documents stored electronically in image
form. The system can learn to distinguish any number of
scripts. It develops a set of representative symbols
(templates) for each script by clustering textual symbols
from a set of training documents and representing each
cluster by its centroid. "Textual symbols" include discrete
characters in scripts such as Cyrillic, as well as adjoined
characters, character fragments, and whole words in con-
nected scripts such as Arabic. To identify a new docu-
ment's script, the system compares a subset of symbols
from the document to each script's templates, screening
out rare or unreliable templates, and choosing the script
whose templates provide the best match. Our current sys-
tem, trained on thirteen scripts, correctly identifies all test
documents except those printed in fonts that differ
markedly from fonts in the training set.

1 . Introduction

Script identification is a key part of the automatic pro-
cessing of document images in an international environ-
ment. A document's script determines the correct OCR al-
gorithm to use. Further processing, such as indexing or
translation, depends on the language used in a document.
Script identification is either tantamount to language iden-
tification (e.g., for Korean), or is a necessary first step.
For example, once a document's script has been identified
as Roman, one can OCR the image and use an n-gram al-
gorithm that looks for frequently occurring character se-
quences from English, French, etc. [1], or scan the image
for word shapes that correspond to such sequences [2].

The Fuji Xerox group has done extensive research on
the topic of automatic script identification [2, 3]. Their
approach combines automated and hands-on analysis of a
training corpus to characterize each script. For example,
Asian scripts (Chinese, Korean, Japanese) are distin-
guished from Roman by a uniform vertical distribution of
upward concavities, and are distinguished from each other
on the basis of character density. This approach requires a
new hands-on analysis for each script.

In contrast, our script identifier automatically learns
distinctions among an arbitrary number of scripts. It dis-
covers frequent character or word shapes in each script by
means of cluster analysis, then looks for instances of

these in new documents. The cluster analysis identifies
textual symbols in a representative set of training docu-
ments, clusters them, and calculates each cluster's cen-
troid, or pixel-by-pixel average. This serves as a represen-
tative symbol, or template, for the cluster. To identify
the script used in a new document, we compare a subset of
its symbols to the templates for each script, and choose
the script whose templates provide the best match.

The system also differs from previous work in its
treatment of character fragments (e.g., a separated g de-
scender) and conjoined characters (e.g., a blurred th combi-
nation). Traditionally, one attempts to correct such phe-
nomena in preprocessing (e.g., [4]). In contrast, we in-
clude them in the clustering process along with complete
letters and numerals, large diacritics and punctuation
marks, and whole words in connected scripts such as
Arabic. We believe that this approach makes for a more
flexible system, as one should be able to process highly
degraded documents by including equally degraded docu-
ments in the training set. In addition, it should reduce the
preprocessing time required for each document.

Our system currently distinguishes among Arabic,
Armenian, Burmese, Chinese, Cyrillic, Devanagari,
Ethiopic, Greek, Hebrew, Japanese, Korean, Roman, and
Thai. The only documents it misclassifies are those
printed in fonts that differ markedly from those in the
training set. In any application based on our research, one
should be able to prevent such errors by augmenting the
training set.

2 . Method

The essence of our approach is to discover frequent
character and word shapes in each script, then look for in-
stances of these in new documents. This process has four
steps:
1. Assemble training and test sets of document images.
2. Find and rescale textual symbols in the training set.
3. Cluster similar symbols within each script. Make

templates by calculating each cluster's centroid
(average symbol). Downcast to bit. Eliminate minor
clusters, and identify unreliable clusters.

4. Match a subset of symbols from a new image to the
templates.

Most of this work was done within the framework of
the Khoros image processing system [5].

Arabic word,
original

Arabic word,
rescaled

Devanagari word,
original

Devanagari word,
rescaled

2.1 Datasets

Our data consisted of 276 document images from 33
languages written in 13 scripts, including two scripts with
connected characters (Arabic, Devanagari) and two non-al-
phabetic scripts (Chinese, Japanese). The images were
scanned in from books, newspapers, magazines, and com-
puter printouts. We divided them into three sets. The
training set had ten images from each script, with at least
two images from each source used. We included a variety
of type styles for each script, such as original Chinese
characters and simplified ones (PRC), and oblique and
straight Armenian fonts. The test�set had five images
from each script, drawn from the same sources as the
training set (e.g., an additional page from the same book).
The challenge set had up to 16 images from each script,
drawn from sources not used in the training and test sets,
including novel fonts and languages. Table 1 summarizes
the makeup of the data sets.

We describe below our treatment of several data issues:
Skew. We included images with line skew up to 10˚.

Images scanned in from books were often skewed toward
the center binding. We often cut-and-pasted several docu-
ment portions to make a larger image, resulting in several
different skews on a single page.

Color. All images were black-on-white, though we re-
tained white-on-black portions in some challenge images.

Illustrations. We whited out illustrations in training
and test images, but not challenge images.

Special characters. Most documents included numerals;
none were handwritten. We whited out foreign characters
in training and test images, but not challenge images.

2.2 Textual symbols

We used an 8-connected region growing algorithm to
locate all textual symbols in the training set. We re-
moved many non-textual symbols by filtering out regions
containing fewer than 10 pixels, or whose bounding boxes
were more than 80 pixels high. We retained large and
long regions in order to avoid filtering out long Arabic
and Devanagari words.

We rescaled each textual symbol to 30 X 30 pixels in
order to equalize font (point) sizes between documents.
For connected scripts, rescaling blurred individual word
characteristics while preserving the overall Arabic or
Devanagari look of the word; see Figure 1.

Figure 1. Rescaling Arabic and
Devanagari words

Table 1. Datasets
Language (number of images)

Script Training Testing Challenge
Arabic Arabic (4), Dari (2), Farsi (4) Arabic (2), Dari (1), Farsi (2) Arabic (4)
Armenian Armenian (10) Armenian (5) Armenian (3)
Burmese Burmese (10) Burmese (5)
Chinese Chinese (10) Chinese (5) Chinese (7)
Cyrillic Russian (8), Serbian (2) Russian (4), Serbian (1) Russian (3), Macedonian (1),

Ukrainian (1)
Devanagari Hindi (6), Marathi (2), Sanskrit

(2)
Hindi (3), Marathi (1), Sanskrit
(1)

Hindi (2)

Ethiopic Amharic (8), Tigrinian (2) Amharic (4), Tigrinian (1) Amharic (5), Tigrinian (2)
Greek Greek (10) Greek (5) Greek (6)
Hebrew Hebrew (7), Yiddish (3) Hebrew (3), Yiddish (2) Hebrew (5)
Japanese Japanese (10) Japanese (5) Japanese (3)
Korean Korean (10) Korean (5) Korean (6)
Roman English (2), French (2), German

(2), Italian (2), Slovak (2)
English (1), French (1), German
(1), Italian (1), Slovak (1)

Eng. (5), Gmn. (2), Gael. (1),
Welsh (1), Hung. (1), It. (1), Pol.
(1), Port. (1), Span. (2), Swed. (1)

Thai Thai (10) Thai (5) Thai (4)

RomanKorean

JapaneseHebrew

GreekEthiopic

DevanagariCyrillic

ChineseBurmese

Arabic

Thai

Armenian

2.3 Templates

We used a hierarchical clustering algorithm to find sim-
ilar symbols within each script. Each training symbol
was examined in turn. If it differed markedly from all ex-
isting clusters (each defined by their first member) it was
assigned to a new cluster; otherwise, it was added to the
most similar cluster. The similarity metric used was
Hamming distance: the number of pixels (black or white)
that differed between two symbols. "Markedly different"
was defined as having 250 or more differing pixels (out of
900).

Once symbols had been clustered, we calculated each
cluster's centroid: the pixel-by-pixel average (a byte value)
of all the symbols in the cluster. We then downcast the
centroid to bit (black-and-white) by thresholding at a
grayscale value of 128. This was the cluster's template.

We eliminated clusters with only one or two members
in order to focus on the templates that were most likely to
be useful, and to speed up the identification process. We
then made a second pass through the training set in order
to quantify the reliability of the remaining templates. For
each training symbol, we found the overall best match
from among all templates based on Hamming distance.
As we did this we kept track, for each template, of the
number of symbols matched to the template and the pro-
portion of these that were from the correct script. For ex-
ample, of the 479 training symbols best-matched to our
third Cyrillic template, 468 were Cyrillic, giving a relia-
bility figure of 98%.

Table 2 summarizes the number of templates made for
each script. Figure 2 shows the two most frequent tem-
plates from each script with a reliability figure of at least
90%.

Table 2. Templates
Script Original

templates
%

Eliminated
Final

templates
Arabic 148 14 127
Armenian 195 21 155
Burmese 432 34 283
Chinese 1623 50 804
Cyrillic 329 32 223
Devanagari 674 30 470
Ethiopic 390 33 261
Greek 284 37 178
Hebrew 140 23 108
Japanese 719 49 367
Korean 339 18 279
Roman 337 33 226
Thai 463 28 334

2.4 Matching new symbols to the templates

Our classification algorithm accepted two parameters:
N, the number of symbols to examine, and R, a reliability
threshold. When processing a test document, we first
identified and rescaled N textual symbols. For each of
these symbols, we found the best match within each script
(based on Hamming distance), saving the matching scores.
Ignoring symbols whose overall best match (across all
scripts) was to a template with reliability less than R, we
calculated the mean matching score for each script. We
picked the script with the best mean matching score.

Figure 2. The two most frequent 90%
reliable templates in each script

Table 3. Number of misclassified document images (test/challenge)
out of 65 test, 68 challenge

Value of R parameter (reliability threshold)
No. of
symbols

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

10 1 / 17 2 / 14 3 / 16 4 / 16 4 / 16 5 / 17 5 / 16 4 / 14 6 / 19 9 / 21
20 0 / 13 0 / 10 0 / 11 0 / 11 0 / 10 0 / 11 0 / 9 0 / 8 1 / 11 2 / 10
30 0 / 10 0 / 7 0 / 8 0 / 7 0 / 9 0 / 7 0 / 7 0 / 8 1 / 8 1 / 8
40 0 / 7 0 / 4 0 / 4 0 / 4 0 / 4 0 / 4 0 / 2 0 / 3 0 / 4 1 / 3
50 0 / 6 0 / 4 0 / 2 0 / 2 0 / 4 0 / 3 0 / 3 0 / 3 0 / 3 1 / 2
75 0 / 6 0 / 6 0 / 5 0 / 3 0 / 5 0 / 5 0 / 4 0 / 3 0 / 4 0 / 1
100 0 / 6 0 / 4 0 / 3 0 / 2 0 / 3 0 / 3 0 / 3 0 / 2 0 / 2 0 / 2
150 0 / 6 0 / 4 0 / 4 0 / 2 0 / 2 0 / 3 0 / 2 0 / 2 0 / 2 0 / 2
200 0 / 6 0 / 4 0 / 3 0 / 3 0 / 3 0 / 2 0 / 2 0 / 2 0 / 2 0 / 2
250 0 / 5 0 / 4 0 / 3 0 / 3 0 / 2 0 / 2 0 / 2 0 / 2 0 / 2 0 / 2
300 0 / 6 0 / 4 0 / 3 0 / 3 0 / 3 0 / 3 0 / 2 0 / 2 0 / 2 0 / 2
350 0 / 6 0 / 4 0 / 3 0 / 3 0 / 3 0 / 3 0 / 2 0 / 3 0 / 2 0 / 2
400 0 / 6 0 / 4 0 / 3 0 / 3 0 / 4 0 / 4 0 / 3 0 / 2 0 / 2 0 / 2
450 0 / 5 0 / 4 0 / 4 0 / 3 0 / 4 0 / 3 0 / 3 0 / 3 0 / 2 0 / 2
500 0 / 5 0 / 4 0 / 3 0 / 3 0 / 3 0 / 3 0 / 2 0 / 3 0 / 2 0 / 2

3 . Results

As shown in Table 3, with N over 75 and R over 50
all test images, and all but two or three challenge images,
were correctly classified. All misclassified images in this
region, and most outside of it, were printed in fonts
markedly different from those in the training set. For ex-
ample, a German image in the Fraktur font was misclassi-
fied as Ethiopic or Thai, a Spanish image in italics was
misclassified as Armenian, and a Cyrillic image in a mod-
ern sans-serif font was misclassified as Roman or Greek.
The correct classification of all other challenge images,
including many with novel fonts and languages, showed
that the system was able to generalize except in extreme
cases.

This conclusion is buttressed by our experience with
the system. In our previous round of training and testing,
one Hebrew challenge image with a modern font was con-
sistently misclassified as Thai. Adding a few images with
modern fonts (distinct from the problematic font) to the
training set corrected the misclassification.

4 . Conclusion

Our system learns to accurately distinguish among a
set of scripts that includes alphabetic and non-alphabetic
scripts, discrete and connected scripts, and pairs or triplets
of fairly similar scripts. Little preprocessing is required.
The system can overcome 'noise' in the form of moderate
skew, numerals, foreign characters, illustrations, and
blurred or fragmented characters.

The next step in our research is to link this algorithm
with appropriate language identification algorithms for
multi-language scripts such as Roman. One approach

would be to perform script-specific OCR followed by n-
gram analysis. However, we would prefer to base lan-
guage identification on the script identification templates.
This would be faster, as the symbols would have already
been matched to templates. It would also avoid the para-
dox pointed out in [2], that OCR is most accurate when
the language of a document is already known.

REFERENCES

[1] Church, K. (1986) Stress assignment in letter to sound
rules for speech synthesis. Proceedings of ICASSP 1986
(Tokyo), pp. 2423-6.

[2] Sibun, P. & A.L. Spitz (1994) Language determination:
Natural language processing from scanned document im-
ages. Proceedings of ANLP 1994.

[3] Spitz, A.L. (1994) Script and language determination
from document images. Proceedings of the 3rd Annual
Symposium on Document Analysis and Information
Retrieval, April 1994 (Las Vegas, Nevada), pp. 229-35.

[4] Spitz, A.L. (1994) Text characterization by connected
component transformations. In L.M. Vincent & T.
Pavlidis (Eds.), Document Recognition (SPIE Vol.
2181), pp. 97-105.

[5] Rasure, J. & C. Williams (1991) An integrated visual
language and software development environment.
Journal of Visual Languages and Computing 2: 217-46.

Acknowledgments

This work was performed under the auspices of the United
States Department of Energy, contract W-7405-ENG-36; a
patent has been filed. We thank the many individuals who
helped us build our dataset, and Chris Brislawn, Jeff
Kubina, and Doug Muir, for much useful input.

