Application of PMCAMx+ to a July 2001 PM episode in the Eastern United States

Bonyoung Koo², Kathleen M. Fahey¹, Timothy M. Gaydos¹, Greg Yarwood², Ralph Morris² Spyros N. Pandis¹, and Allen Robinson^{1*} (speaker) ¹Carnegie Mellon University, Pittsburgh, PA, 15213. ²ENVIRON, Novato, CA, 94945

Overview

- Detailed aerosol modules developed for 3-D chemical transport model PMCAMx+
- Motivation: Improve efficiency while maintaining accuracy in three areas:
 - Inorganic aerosol growth
 - Aqueous-phase chemistry
 - Organic aerosol formation and growth
- Apply PMCAMx+ to PM episodes
 - October 1995 episode in SCAB, California
 - July 2001 episode in Eastern United States

Modeling Aerosol Growth

Bulk equilibrium (EQUI)¹

- Finds equilibrium between gas and total particulate phase
- Simplest and most efficient
- Overpredicts in smallest sections
- Dynamic (MADM)²
 - Solves mass transfer explicitly
 - Most accurate but least efficient
- Hybrid (HYBR)^{1,2}
 - Uses bulk equilibrium for smallest particles and solves mass transfer for largest

CPU time(seconds/cell/simulation hour)^a ^aOn a 1.2 GHz AMD CPU with 1Gb RAM

¹Capaldo et al. (2000) ²Gaydos et al. (2003)

Hybrid Approach to Aerosol Dynamics in PMCAMx+ (SCAB)

Aqueous-Phase Atmospheric Chemistry Modeling

Bulk Models

- Homogeneous droplet population
- Can underpredict sulfate production
- Usually predicts lower sulfate production than size-resolved models

Size-Resolved Models

- Heterogeneous droplet population
- More computationally-intensive than a bulk model

Variable Size Resolution Model*

 Combines the accuracy of the sizeresolved with the computational efficiency of the bulk

*Fahey et al. (2001)

Percent Increase in Sulfate

between Bulk and VSRM Aqueous-Phase Chemistry (SCAB)

- On the second day, much of the domain shows a sulfate underprediction of ~15-30% with a maximum of nearly 60% without added droplet size-resolution.
- VSRM only adds about 50% more computational time

SOA Model Description

 SOA partitioning is typically modeled as a solution of *n* condensable products *P*₁ to *P*_n

 $ROG + oxidant \rightarrow \alpha_1 P_1 + \alpha_2 P_2 + \dots + \alpha_n P_n$

 Pseudo-ideal solution theory predicts SOA formation from condensable products

$$c_{gas,i}^{eq} = x_i c_i^*$$

- For each product a stoichiometric yield α_i and saturation concentration $c_i^*(7)$ are determined from empirical data
- Temperature dependence is included assuming saturation concentrations follow the Clausius-Clapeyron equation

$$\frac{c_i^*(T_2)}{c_i^*(T_1)} = \frac{T_1}{T_2} \exp\left[\frac{-\Delta H}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right]$$

SOA module in PMCAMx+

- Used pseudo-ideal solution theory to develop improved equilibrium weighting factor for secondary organics*
- Computational time comparable to original equilibrium method with results similar to dynamic scheme

*Koo et al. (2003)

PMCAMx+ Modeling Domain

PM_{2.5} Sulfate

July 17, 2001

- 36x36 km grid, 14 levels up to 6 km
- 10 aerosol sections, 13 aerosol species
- 20 million differential equations
- 8 CPU hours on a PC per simulation day (EQUIlibrium module)

Simulated Species

	NO	Nitric oxide		
-	NO2	Nitrogen dioxide		
Gas species:	03	Ozone		
	PAN	Peroxyacyl nitrates		
34 species	NXOY	Nitrogen in NO3 and N2O5		
	OLE	Anthropogenic olefins		
	PAR	Paraffin		
	TOL	Toluene		
	XYL	Xylene		
	FORM	Formaldehyde		
	ALD2	Higher aldehyde		
	ETH	Ethene		
	CRES	Cresol		
	MGLY	Methylglyoxal		
	OPEN	Aromatic ring opening product		
	PNA	Peroxynitric acid		
	CO	Carbon monoxide		
	HONO	Nitrous acid		
	H2O2	Hydrogen peroxide		
	HNO3	Nitric acid		
	ISOP	Isoprene		
	MEOH	Methanol		
	ЕТОН	Ethanol		
	ISPD	Isoprene product		
	NTR	Organic nitrates		
	OLE2	Biogenic olefins		
	CG1	Condensable gas precursor to SOA1		
	CG2	Condensable gas precursor to SOA2		
	CG3	Condensable gas precursor to SOA3		
	CG4	Condensable gas precursor to SOA4		
	NH3	Ammonia		
	HCL	Hydrogen chloride		
	SO2	Sulfur dioxide		
	SULF	Gas phase sulfuric acid		

Aerosol species: 13 species

PH2O	Aerosol water
PSO4	Sulfate
PNO3	Nitrate
PCL	Chloride
NA	Sodium
PNH4	Ammonium
POC	Primary organic carbon
PEC	Primary elemental carbon
CRST	Crustal material
SOA1	Secondary organic aerosol 1
SOA2	Secondary organic aerosol 2
SOA3	Secondary organic aerosol 3
SOA4	Secondary organic aerosol 4

Aerosol size sections:

1	0.039 - 0.078
2	0.078 - 0.156
3	0.156 - 0.313
4	0.313 - 0.625
5	0.625 - 1.25
6	1.25 - 2.5
7	2.5 - 5
8	5 – 10
9	10 - 20
10	20 - 40

PM_{2.5} Sulfate Simulation (July 2001)

Click on map to start simulation.

PM_{2.5} Nitrate Simulation (July 2001)

-35

-30

Click on map to start simulation.

SOA Simulation (July 2001)

Click on map to start simulation.

Click on map to start simulation.

PM_{2.5} Mass Simulation (July 2001)

Click on map to start simulation.

Predicted vs. Estimated in Pittsburgh (Primary and Secondary OA)

• EC Tracer Method (Cabada et al., 2003)

Predicted PM_{2.5} Concentrations

July 18, 2001

Sulfate Response (%) to 30% SO₂ Emission Reduction

July 18, 2001

Concentration Change ($\mu g m^{-3}$)

Nitrate Response (%) to 30% SO₂ Emission Reduction July 18, 2001 Concentration Change ($\mu g m^{-3}$) Percent Change 90 90 3.5 20 3 10 2.5 1.5 -10 -20 0.5 97 97

Conclusions

- CMU aerosol modules have been implemented into PMCAMx+, providing better efficiency and good accuracy
- Model predictions compare well to measurements in Eastern United States
 - Diurnal pattern of species replicated
 - PM_{2.5} sulfate, nitrate, ammonium, and total mass compare well to measurements
 - Presence and magnitude of secondary organic aerosol in good agreement with measurements
 - Both biogenic and anthropogenic SOA contribute to PM in Eastern US

Acknowledgements

- LADCO
 - Kirk Baker
 - Mark Janssen
 - Mike Koerber
- Funding
 - EPA
 - DOE/NETL
 - CRC

PM_{2.5} Ammonium Simulation (July 2001)

Click on map to start simulation.

Predicted vs. Measured PM

Effects of Higher Size-Resolution

Use of Trajectory-Grid Approach for the Condensation Equation

Condensation equation:

$$\frac{\partial q_i}{\partial t} = H_i q - \frac{1}{3} \frac{\partial H q_i}{\partial \mu}$$

 H_i is condensation rate of species *i*, $H=\Sigma H_i$, $q_i \Delta \mu$ is concentration of *i* in section of size $\Delta \mu$, and μ is the logarithm of the diameter

Analytical solution along trajectory $\mu^{n+1} = \mu^n + H\Delta t/3$ with constant H_i :

$$q_{i}(\mu, t + \Delta t) = q_{i}(\mu, t) + \frac{H_{i}}{H}q(\mu, t)(e^{H\Delta t} - 1) \quad \text{for H}\neq 0$$
$$q_{i}(\mu, t + \Delta t) = q_{i}(\mu, t) + H_{i}q(\mu, t)\Delta t \quad \text{for H}=0$$

Time step selection scheme: $q(H_{n+1} - H_n) \Delta t \leq \varepsilon$

Limitation on Hydrogen Ion Flux

The hydrogen ion flux can be calculated from the fluxes of the inorganic gases

$$J_{H+,k} = 2J_{H_2SO_4,k} + J_{HNO_3,k} + J_{HCl,k} - J_{NH_3,k}$$

To avoid unrealistically large evaporation rates and reduce stiffness, the hydrogen flux is kept within a critical value by modifying the flux of the acids or bases

Ses
$$J_{i,k}^* = \frac{J_{i,k}}{Q_k} \begin{cases} i=\text{HNO}_3, \text{HCl if } J_{H+,k} > \gamma \\ i=\text{NH}_3 \text{ if } J_{H+,k} < -\gamma \end{cases}$$

where γ is 10% of the hydrogen ion concentration per second

VSRM Aqueous-Phase Chemistry Module^{*}

- Simulates mass transfer between the phases and aqueous chemistry
- Treats 50 aqueous-phase and 21 gas-phase species and includes 109 aqueous phase reactions
- Choice of droplet resolution: bulk, 2-section size resolution, and variable size resolution based on simulated conditions
- Faster than six-section dynamic approach by a factor of 15
- *Fahey, K. and Pandis, S. 2001. Optimizing model performance: variable size resolution in cloud chemistry modeling. Atmospheric Environment 35, 4471-4478.

Sulfate $(\mu g/m^3)$, Six-Section Dynamic

^aSulfate predicted by the VSRM vs. sulfate predicted by a sixsection size resolved model. The 1:1 line is shown. Average VSRM sulfate predictions are within 3% of the more highly resolved model.

Aqueous-Phase Chemistry Variable Size Resolution Model (VSRM)

Inputs: Liquid water content, alkalinity of crustal aerosol, gas-phase concentrations of SO_2 , H_2O_2 , HNO_3 , and NH_3

Model	Average CPU Time per simulated hour (sec)	Standard Deviation (sec)	Model to VSRM ratio
Six-Section, Dynamic Transfer of HNO ₃	20	33	15
VSRM, Immediate Dissolution of HNO ₃	1.3	1.5	1
Bulk, Immediate Dissolution of HNO ₃	0.9	1.3	0.7

Improving the Weighting Scheme for the Equilibrium Method

The fraction, $f_{i,k}$, of total flux of species, *i*, between gas and aerosol phases that condenses onto or evaporates from an aerosol size section, *k*:

 $x_{i,k} \leftarrow x_{i,k}$ from the previous time step