Estimation and Effects of Vehicle Mix on On-road Emissions Estimates

> Chris Lindhjem ENVIRON International Corporation 101 Rowland Way, Suite 220 Novato, CA 94945

> > 2005 Emissions Inventory Las Vegas, Nevada April 14, 2005

Vehicle Mix: Largest Uncertainty in NOx and PM On-Road Emissions Modeling?

- Total VMT relatively well understood
- Heavy-duty vehicles produce 10 100 times the emissions per vehicle mile as light-duty vehicles
- Fraction of vehicles that meet HDV emission standards not well understood with most link level modeling
- Fraction of HDV vehicles varies dramatically
 - Temporally primarily by time of day and day of week
 - Spatially determined from road type designation

How to Determine Mix (Counting Cars & Trucks)

- Automatic Traffic Recorders (ATR)
 - Tubes, Loops, Weigh-in-motion
 - Number of axles
 - Axle spacing
- ATR data from FHWA VTRIS Database
- General FHWA vehicle classification
- EPA vehicle classification

ENVIRON

SR 525 at 76th St SW (south) @ WSDOT

SR 522 at Paradise Lake Rd (north) @WSDOT

Mon, 04 Apr 2005 16:23:14 PDT

FHWA Classification (Too general to be useful)

Rural		Urban		
Code	Classification Description	Code	Classification Description	
1	Principal Arterial – Interstate	11	Principal Arterial – Interstate	
2	Principal Arterial – Other	12	Principal Arterial – Freeways	
6	Minor Arterial	14	Principal Arterial – Other	
7	Major Collector	16	Minor Arterial	
8	Minor Collector	17	Collector	
9	Local System	19	Local System	

FHWA Class	VTRIS Vehicle Type	
1	Motorcycle	
2	Passenger cars	
3	Other 2-axle, 4-tire single unit vehicles	
4	Buses	
5	2-axle, 6-tire single-unit vehicles	
6	3-axle, 6-tire single-unit vehicles	
7	4+ axle single-unit vehicles	
8	4 or less axle combination vehicles	
9	5-axle combination vehicles	
10	6+ axle combination vehicles	
11	5-axle multitrailer vehicles	
12	6-axle multitrailer vehicles	
13	7+ axle multi-trailer vehicles	
14	Unclassified	
15	Unclassifiable	

ENVIRON

Easton Chain Up Area WSDOT @

EPA Classification (from NEI) (Tricky Business; What's a Truck?)

Tue, 05 Apr 2005 10:34:42 PDT

MOBILE Weight	Passenger Car	Other 2-axle	Single-Unit	Combination
Ratings/FHWA Types	FHWA $#2^1$	4-tire,	Trucks,	Trucks,
		FHWA #3	FHWA #5-7	FHWA #8-13
LDV	52.3%		0%	0%
6,000 lbs or less	35 404	98.3%	2/0/	00/
LDGT1 & LDGT2	55.4%	(0.524% Class	2470	070
$6001 - 10,000^2$	12.3%	2b)	210/	0 77%
LDGT3, LDGt4, Class 2b	(0% Class 2b)		2170	0.77%
10,001 – 14,000 Class 3	0	0.44	12	0.61
14,001 –16,000 Class 4	0	0.14	5.0	0.65
- 19,500 Class 5	0	0.13	4.8	0.64
- 26,000 Class 6	0	0.24	12	3.3
- 33,000 Class 7	0	0.12	6.8	3.7
- 60,000 Class 8a	0	0.05	11	28
>60,000 Class 8b	0	0.006	2.5	62

(C) WSDOT Apr 07, 2005 10:31 AM

Total Traffic Volume (Sunday – Saturday Hourly)

Rural

Urban

HDDV Vehicle Mix (Fraction of Total VMT)

- Apply 3 mixes
 - Temporal and Spatial
 - Spatial
 - General
- Total HDDV Traffic Volume Estimates

Vehicle Mix Choices

VOC Emission Effects

NOx Emission Effect

PM Emission Effects

Spatial Resolution

Considerations

- FHWA and EPA vehicle classification
 - State registrations
 - Out of state/area or through traffic
 - Weight designation mismatch
 - Weigh in motion refinement
- Site Selection Bias
 - Travel demand model refinement for trucks
 - Regional zones (industrial districts or intermodal zones for ports/rail/truck)
 - Insufficient sample sizes for less traveled roads

Conclusions (Easy or Difficult?)

- Rural roadways have higher fractions of HDDV
- Higher volume roads (freeways) have higher HDDV mix
- Higher HDDV mix overnight and during the week
- Higher HDDV translates to higher NOx and PM
- Affects the overall estimates, and spatial and temporal distribution of the NOx and PM emissions

Acknowledgements

- This work was supported by the EPA and helpful staff members Sue Kimbrough and Dave Brzezinski
- Other similar support by LADCO
- And WSDOT for the pictures