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Common Themes, Methods, and Applications in Multiscale Science

by

George A. Baker, Jr.

ABSTRACT

In 1993, under the leadership of Richard Slansky, the T-Division Director, an ini-
tiative was started to facilitate cross communications and interactions between a large
number of di�erent workers who were, from their own perspectives and with regard to
their own challenges, in fact working on very di�cult problems which involved multiple
size and time scales. The realization of this common element had the potential for valuable
mutual interaction. His initiative led initially to a \competency development initiative"
and subsequently to a broadening recognition of the importance of multiscale science and
a broadening application of it to problems and concerns inherent in signi�cant �elds of
endeavor at the Los Alamos National Laboratory. One of the aspects of this e�ort was
a series of meetings which emphasized cross communication between the workers. It was
realized early on that this cross communication would be far more e�ective, considering
the di�cult technical nature and that the range of the material was well outside the area
of specialization of individual members of the group, if notes were taken, written up, and
disseminated. This report represents the collection of these notes.
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1. Introduction

It seems to me that the various multiscale problems that we have heard about group
themselves naturally into four types for the purposes of seeking common elements and
possible cross-fertilization of methods. Any such organization is bound to su�er from
imperfections of classi�cation as physics problems by their nature tend to overlap each
other in various ways. First, however, all the problems share the features of having a well-
de�ned microscopic scale with known equations of motion. Next, they all have mesoscopic
scale e�ects. There may be one, or more, or even an in�nite number of mesoscopic scales
in the problem. Finally there is the macroscopic scale, which may be either bland, or
intrinsically mixed up with in�nitely long-ranged, mesoscopic scales, or long-ranged force
behavior. These groups of problems are: (I) Problems in which there is basically one
mesoscopic scale, and it occurs in spatially isolated form. It seems to me that in this case,
the various types of adaptive grid methods are rather successful and represent an e�ective
approach. (II) Problems in which there is basically one mesoscopic scale, but its e�ects
are dispersed throughout the whole system. So far, these problems are being treated by
heroic numerical computation. It seems to me that there are other possible approaches
which have some chance of reducing the numerical challenge and can be explored in the
future. (III) Problems with not just one but several mesoscopic scales. These problems
share with those of type (II), the approach of heroic numerical computation. They di�er
in that it seems to be that the mesoscopic behavior itself is what is of the most direct
interest. Here it looks to me like there are good opportunities for cross-fertilization and
perhaps some new approaches. (IV) Problems without any well-de�ned scale beyond the
microscopic. Here, either through the build-up of long-range correlations via the dynamics,
or via a long range force, \all" scales are important. In problems of this character, the
ideas of scale-scale interaction, such as found in renormalization group theory should be
bene�cial.

The problem of turbulence as it is varied through its de�ning parameters seems to be
characterized by types II{IV, and so I group it by itself in its own category. Additionally,
I have sometimes grouped the presentations on problems which manifestly have many
mesoscopic scales in category II as those presentations seem to me to be primarily aimed
at just one mesoscopic scale (or lumping all the mesoscopic scales into one category).

We have also heard a number of talks which were devoted to methods, and rather than
segregate them under an appropriate topic, I have put them in a group by themselves.

Finally, we have heard several discussions on the applications of multiscale science to
problems of genuine practical concern. Some of these applications are ongoing, and some
of the discussions relate to fertile �elds for future endeavor.
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2. One Spatially-Isolated, Mesoscopic Scale

Presentation by Joel Dendy

This presentation was on the multigrid methods. This application is to the solution
of Poisson's equation

r2U = F

subject to the boundary condition

U = g:

One could use the Gauss-Seidel method (i.e. the method of successive displacements or the
relaxation method). The method consists of replacing Poisson's equation with a di�erence
equation on a space lattice. The simplest representation of the di�erence operator is,

�Ui;j = 4Ui;j � (Ui;j+1 + Ui;j�1 + Ui+1;j + Ui�1;j):

Then one selects an order and systematically runs through the lattice successively replacing
each U with the average of the U 's from its nearest neighbors sites on the lattice. This
procedure is iterated until convergence is obtained. Large-scale initial deviations from
the �nal state relax rather slowly to the answer by this method. The multigrid method
approaches this problem by relaxation on successively coarser grids. The V pattern was
recommended. That is, one moves at successive steps from a �ne grid to a very coarse one
and then back to a �ne one. This procedure is repeated until convergence is obtained.

One of the problems which is being studied is the problem of rapid changes in the
di�usion constant in an equation of the character

�~r � (D~rU) = F:

It was reported that conservation of ux through an anisotropy was better than linear
averaging. This is �ne in one dimension. However one must use line relaxation in two
dimensions and alternating plane relaxation in three dimensions which was alleged to be
a real pain. The relationship between the merits of the multigrid method and those of the
\large time step" implicit methods was not discussed.

Another procedure along the same line is to re�ne the grid in regions where di�culties
are detected. The multigrid method was reported to have great exibility. It can handle
\dead regions" and can do logically rectangular grids. The speaker expressed interest in
doing reservoir modeling and modeling of contaminant transport.

Presentation by Alan Glasser

This presentation represents joint work with Andrew Kuprat and is on the topic of
moving �nite elements, which was reported to be a \continuously adaptive method" for
computational uid dynamics. The multiple scales in this problem are the microscopic
scale, the region inside a shock (or mesoscopic scale), and the domain (or macroscopic
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scale). The problem addressed concerns interacting, moving shocks. The method of ap-
proach is an adaptive grid method to resolve the thin, moving fronts. The �nite elements
are triangles in two dimensions and tetrahedra in three. The grid is exible, and the el-
ements are irregularly connected. Linear interpolation is used inside each �nite element.

The method was reported to be applicable to very general uid equations.
A video of some of the results was shown. It showed a \Tsunami in a Bathtub" and

graphically illustrated the interaction of shock waves. The general form of the equations
describing the uid motion is

@~u

@t
+ ~r �$F = ~S

$
F =

$
C (t; ~x; ~u) �$D(t; ~x; ~u) �  �r~u

~S = ~S(t; ~x; ~u;
 �r~u);

where ~x is the spatial position, ~u is a vector velocity �eld, and the dyadics
$
C and

$
D and

the source vector ~S are particular to the case under study. The conventional Galarkin
methods and the moving �nite element method were compared with emphasis on the
relative merits of the latter. Mention was made of the need to add arti�cial internodal
viscosity, grid tension, and pressure to cure a singular mass matrix, node jitter, and time
step crash. Progress was reported in the area of \graph massage." Graph is understood
here to be a linear graph, which is a collection of vertices and bonds connecting them.
This procedure dynamically adds a new node when the �nite element either becomes too
elongated or when adjacent cells have too much \break." (I did not hear a precise de�nition
of \break.") The procedure also deletes nodes when adjacent cells have too little \break."
This procedure has been successful at getting out of \grid tangling."

The answer sought is the time dependent behavior. There is a need to represent
the behavior inside the shocks, or perhaps only the integral over certain aspects of the
behavior, because the chemistry is dependent on it in a highly nonlinear manner. Involved
is the fully implicit solution of large, sparse Jacobians combining both ow and dissipation.
The sparseness is irregular. The need for implicit solutions arises from the fact that the
partial di�erential equations are sti�. (Sti� means, briey, the existence of at least two
highly disparate time scales.)

Presentation by Manjit Sahota

This presentation was on the moving �nite volume method. Unstructured grids are
used, and the method is reported to be good for modeling a complex geometry, such as the
illustrative example of a NASA rocket booster with 6 jet nozzles attached. The problems
which are addressed involve turbulence, chemistry, and sprays. The scheme is a \node-
centered" scheme and uses tetrahedra or hexahedra. An important aspect for adapting
this method to parallel computation is to minimize the inter-processor communication
volume. The problem then is how to split up the computations among the di�erent central
processors. A physical analogy might be to imagine N immiscible uids with interfacial
tension to minimize their area of contact (the area over which the e�ects of the computation
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in one processor a�ects that of another). For a long cylindrical problem the di�erent
processors would each do a salami slice. For more compact geometries, the solution would
be more complex. Computationally one looks at the eigenvector for the smallest eigenvalue
of the Laplacian of the connectivity. This sort of optimization leads to a speed-up of a
factor of 5{10 on the CM-5. The major obstacles are how to put unstructured grids on a
parallel machine and how to do an implicit method on a parallel machine.

Presentation by Joel Dendy

The multigrid method is a nice mechanism to deal with spatially isolated mesoscopic
scales. It is usual, in this method, to start with a logically rectangular grid, but one does
not have to do so. The competition is the unstructured grid method, where the points
are described in a random manner with respect to their address index. That is to say,
the indices of neighboring points are not related to the index of the central point. The
structure of the grid is contained in a table of neighbors, which is often called the adjacency
matrix.

It was reported that at NASA Langley, they use the unstructured grid approach on
the Euler equations for ow. In the past they had used the multigrid approach. It is hard
to get a good solver for the unstructured grid approach. By a \solver" is meant something
that produces the values at the next time step. In a one-dimensional subset of a Laplacian
problem, for example, the relevant set of equations is a tridiagonal, inhomogeneous set.
The standard lower-left, upper-right triangular-factorization method provides the required
solution in relatively few operations and is an example of a \solver." Not having a good
solver in this case seems to mean that the magnitude of the principal error is only reduced
by a factor of .9998 in each iteration, which then means that a method which reduced the
magnitude of the principal error by a factor of .98 would be a tremendous improvement.
The folks at Langley used a Runge-Kutta smoother. The problem is a hyperbolic problem
which is unstable. The idea of the smoother is to introduce an arti�cial time and to use
the Runge-Kutta method of intergration for an ordinary di�erential equation to smooth
the problem. Then an explicit method like SOR (Successive Over Relaxation) is used.
Another technique is to use a coarse grid to get to the steady state, and then a �ner grid
to improve the accuracy.

The panelist said that he had been using the multigridmethod to get simpler \solvers."
In petro-engineering systems one can't use implicit-pressure, otherwise-explicit methods,
but fully implicit methods must be used. These methods are more di�cult to develop, but
are required by the interconnections of the variables in this sort of problem.

Presentation by Alan Glasser

The work reported is in collaboration with Kuprat. In this project, the method of an
unstructured grid of triangles is used. The work was started with moving �nite elements.
These triangles had an aspect ratio of 200. The variables are stored at the nodes (vertices)
of the triangles. This procedure is good for time-dependent problems. Here use is made of
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an adequate representation of the Rankine-Hugoniot jump conditions,* instead of resolving
the shock front directly. (This procedure is only valid when the details of the shock front
are not otherwise necessary, as may be the case when chemical reactions in the shock
front are important.) Originally the panelist thought�� that moving �nite elements would
be a panacea. The key issue is the nature of the ow across the separatrix between the
region of closed magnetic �eld lines and the region of open �eld lines. There is ow to
the core with Mach 1 and Alan gets transport coe�cients with a ratio of 105 between
parallel to and perpendicular to the �eld lines, whence the aspect ratios of 200. The use of
unstructured triangular grids where the structure of the ow is built into the metric leads
to a length anisotropy which is proportional to the square root of the transport coe�cient
anisotropy. There are conicting requirements between the time-dependent versus the
time-independent parts. One wants to advance the shock front by many shock thicknesses
per time step, but in the time-independent parts the moving �nite elements do not work
as e�ciently. Thus there is a problem here to combine moving �nite elements and the
unstructured grid method.

Presentation by Manjit Sahota

This panelist discussed his work on the controlled-volume, �nite-element method.
Unstructured grids are used, and the variables are node centered. The full 3-dimensional
Navier-Stokes equation (with turbulence) is used. The implementation allows various
�nite elements, but they must have ruled surfaces. (A ruled surface can be visualized by
a set of closely spaced tightly stretched strings, like a bent or twisted harp, for example.)
Applications are made to automotive design, in the cylinders (combustion), under hood
cooling (ow through the radiator, etc.), and external aerodynamics. There is a three-
year contract for this work. It uses adaptive grid re�nement, and multigrid methods
are also being investigated. The work is being framed to a massively parallel computing

* According to Prandtl, in the theory of normal shock waves the simplest case of a
discontinuous compression is the normal, steady-state shock wave. Here the gas is initially
owing in parallel lines with a velocity q1, pressure p1, and volume v1. At a plane interface
it is compressed into a smaller volume v2, the velocity is reduced to q2 and the pressure
increases to p2. This phenomenon is governed by (1) the equation of continuity, m =
q1=v1 = q2=v2, where m is the mass per second owing through a unit area, (2) the
momentum equationm(q1�q2) = p2�p1, and (3) the energy equation, 12q21+i1 = 1

2
q22+i2,

where i is the enthalpy or total heat. If m and the q's are eliminated from these equations,
then we get the Rankine-Hugoniot condition,

1

2
(v1 + v2)(p2 � p1) = i2 � i1:

This form is completely expressible in terms of the equation of state as enthalpy is a
thermodynamic function of p and v, for example. The p; v curve which it gives is called
the Hugoniot or dynamic adiabatic.
�� See Glasser's previous presentation.
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environment. There are multiscale aspects in the cylinders, for example, when the fuel
sprays in and also in the ow near the valves and in the gaps of the piston rings.

The geometry of these problems is very complex, which suggests the use of unstruc-
tured grids. The method of nested, spectral bisections is very useful in these problems in
breaking the problem up among di�erent processors in order to minimize communication
costs. The method seems to be as follows: In the adjacency matrix place minus the number
of nearest neighbors of the ith grid point in the diagonal element Aii and a one in every Aij

for which j is a nearest neighbor of i and zero otherwise. Note that (1; 1; : : : ; 1) is always
an eigenvector with zero eigenvalue. Now look for the next smallest eigenvalue. Bisect the
grid points accordingly as the sign of its eigenvector elements is positive or negative. This
procedure divides the system into two such systems and gives the dominant large-scale
structure. It has the property that it basically minimizes the communication time. This
procedure can be generalized to divide the system into more blocks. One needs one block
per processor. In one example, the panelist reported that originally the communication
time was 92%, but after applying this method, he got it down to 8%.

Presentation by James Hammerberg

Title: Friction and Nonequilibrium Deformations at Interfaces

The speaker said that the work reported was the result of a collaborative e�ort involv-
ing him and Brad Holian, T-12, Peter Lomdahl, T-11, Joanna R�oder, T-11, Alan Bishop,
T-11, Shujia Zhou, X-NH, Bard Bennett, X-NH, C. E. Ragan, X-TM, Bob Benjamin, DX-
3, and Paul Rightley, DX-3. The goal of this endeavor is a macroscopic model of interfacial
slip for use in the Laboratory's \hydro codes." An important concept in this study is that
of an interface. More detail on this topic will be given later. A key quantity is the tan-
gential force along the interface, Ftangential[p; T;  ; _ ; vrel], where p is the pressure, T is the

temperature,  is the plastic strain, _ is the plastic strain rate, and vrel is the relative tan-
gential velocity of the interface. It was pointed out that the asperities in the two material
surfaces meeting at the interface may deform in a ductile manner. The speaker said there
was a possibility of adopting a microstructure, relating to some sort of atomic roughness.
He also said that the hope is that highly compressed interfaces are dry metal on metal.

Hammerberg said that there are macroscopic theories of friction, and there are micro-
scopic theories, but there are no mesoscopic theories. The regimes of interest for this talk
are: pressures less than approximately 300 kilobars and relative velocities less than ap-
proximately 1

5
of the sound velocity. Hammerberg said that there are molecular dynamics

simulations and some lower-dimensional Frankel-Kantarova models.

For two ductile metals in contact and owing plastically, it is expected that the
hFtangentiali = Ae�� , where Ae� is the e�ective area of contact and � is the ow stress
of the weaker of the two materials. For at interfaces, Ae� is just the nominal area and
hFtangentiali is determined by � in an adhesive model.

The main pressure dependence of the ow stress enters through the shear modulus,
� = �0(T; ; _ )G(T; p). For pressures less than 0:5G, the speaker said that a reasonable

approximation to G is G = G0(T )
�
1 + � p

G0

�
. Thus the pressure dependence of the
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coe�cient of friction � may be deduced to be

� =
hFtangentiali
Fnormal

=
[hFtangentiali=A]
[Fnormal=A]

=
�0G0

p

�
1 +

�p

G0

�
:

Therefore the speaker said we expect that hFtangentiali is an increasing function of pressure
at �xed velocity and that the coe�cient of friction is a decreasing function of pressure.

Next the speaker turned his attention to molecular dynamic simulations (usually on
copper). In two-dimensional simulations there are reservoirs of 20 atomic layers each at
the top and at the bottom of the simulated region. The atoms in these reservoirs are
constrained to move left and right, respectively, at a velocity up. The other atoms are
unconstrained. Pressure is applied to the top and bottom to keep the average vertical
velocity zero. There is an interface in the middle with atomic scale roughness or asperities.
Results were displayed for the coe�cient of friction � for various values of up. � tends to
decrease as a function of p. The value of hFtangentiali is an increasing function of p for �xed
up and a decreasing function of velocity for �xed density.

Under the heading of microstructure we saw a plot of Ftangential as a function of
time. It shows a \bounce phenomenon." That is to say it can oscillate strongly and even
go negative. It was explained that there is a tendency to stick and then to release. In
the release phase, a contrary force is necessary to keep the speed uniform. For velocities

greater than about up = 0:5, the applied tangential force scales as hF (t)

tangentiali = F1f(�t),

where � = h�1
p
F1=� with h the distance between the interface and the reservoir. In

this regime, a region of disordered nanocrystallites is formed, and it di�uses inward. At
lower velocities, the surfaces stick and slip at the boundary between the reservoir and a
work hardened medium with a large delocation density. Finally we were shown some slides
which illustrated the grain structure at various times for a density of �0 = 1:27 and for
up = 0:49.
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3. One Dispersed, Mesoscopic Scale

Presentation by Shi-Yi Chen

Lattice-gas and lattice-Boltzmann methods are used for microscopic dynamics in a
number of systems. These methods are selected in such a way, it is believed, so as to
reproduce correctly the macroscopic dynamics, but not necessarily the microscopic dy-
namics. Three general scales are perceived as important in this problem: the microscopic,
the mesoscopic, and the bulk scales. The topic of spinodal decomposition was discussed.
The results obtained involve the study of the domain size as a function of \time" (which
means the number of steps in the dynamical simulation of the system) when a system is
suddenly quenched across a �rst order phase boundary. If R(t) is the typical domain size,
then the scaling law

R(t) / t0:66

was found.

A further topic discussed was the roughen phenomena of a surface. Again simula-
tions using lattice-gas and lattice-Boltzmann techniques where carried out. Here there
are the microscopic, roughness of the surface, and bulk scales. (The possible \thickness
of the surface or width of the interfacial density-pro�le" scale was not discussed.). It has
been suggested that the surface behavior could be described by the Kadar-Parisi-Zhang
equation,�

@h�

@t
= �r2h� +

�

2

�
~rh� � ~rh�

�
+ �(x; t);

where � is Gaussian white noise, and h� is the height of the surface. The analysis of this
equation leads to � = 1

3
whereas numerical simulations suggest � = 0:63(1 � 0:05). The

role of lattice-gas dynamics and lattice-Boltzmann methods versus the true microscopic
dynamics was not discussed.

In this study, the scaling indices are sought, and also what di�erential equations would
be appropriate to describe the important aspects of the behavior. One of the anticipated
di�culties is the study of problems involving multiphase ow in complicated geometries.

Presentation by Peter Lomdahl

The work reported is joint work with Bishop and Gr�nbech-Jensen. This project
has as its goal the study of the relaxation to an equilibrium distribution at a prescribed
temperature from an initial high-temperature state (quenching) of a number of interesting
systems. The method employed is the integration in time of the Langevin equations. One

� I remark that this equation can be linearized by the substitution  = exp(�h�=2�)
provided � and � are constants. The result is @ =@� = r2

�
 +  �, which is of the well-

known parabolic type with multiplicative noise. The distance is scaled by ~r = (
p
�=2�2)~�,

and the time by t = (�=2�)� .
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such example is a Josephson junction array, whose Hamiltonian is

H =
1

2

X
i;j

�2
i;j
�E0

X
i;j

[cos(�i;j � �i�1;j �Ai�1;j;i;j ) + cos(�i;j � �i;j�1 �Ai;j�1;i;j )];

where the �'s are phase variables, the �'s are their conjugate momenta, and the sum of the
A's around a plaquette is equal to the number of magnetic ux quanta passing through
that plaquette and represents a frustration of the system in the sense of a disruption of
the order of the ground state.

A second example is multimillion particle (107 - 109) molecular dynamics. Here the
Hamiltonian is

H =

NX
i=1

p2
i

2mi

+
X
i<j

V (j~ri � ~rj j);

where the potential is a cut-o�, Lennard-Jones potential,

V (r) =
4�
h�

�

r

�12 � ��
r

�6i
; r � 2:5�;

0; r > 2:5�:

The Langevin equations are just the Hamilton equations of motion with added terms
to represent dissipation and the interaction with a heat bath. In both cases, nonlinear
e�ects cause self-organized, coherent, mesoscopic structures to arise which complicates the
relaxation phenomena. Examples could be solitons, dendrites, fractals, cracks, etc. Their
dynamics control a complex macroscopic response, but they themselves are controlled by
the microscopic behavior. There are probably three, distinct scales here: the bulk scale,
the fracture scale, and the microdynamic scale. The central problem is to understand the
various time scales and how they are related to those length scales.

Presentation by Mac Hyman

Three approaches to multiscale problems were discussed. The �rst is a numerical
approach through adaptive grid methods. This method is used for example in the solution
of di�erential equations: the problem is grided, and where accuracy problems are identi�ed,
more mesh points are added, but where the solution is smooth, fewer mesh points are used.
In principle, any range of spatially isolated, di�erent length scales can be accommodated
by this method; however, there are surely practical limits in this regard. This sort of
method has found appropriate application in problems involving boundary layers, shock
fronts, and combustion fronts. There are three distinct scales here: the microscopic, the
layer thickness, and the macroscopic.�

The second approach is \homogenization." Examples of problems to which this ap-
proach has been applied are turbulent ow and neutron or heat transport with widely
varying (with spatial position) di�usion coe�cients. For example, in the study of neutron
transport, there could be medium, holes, and rods, each with widely (a factor of 1000 was

� These remarks are expounded more fully in Section 2.
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mentioned) di�erent di�usion coe�cients. A moment's thought shows that the ow of neu-
trons will adjust itself to pass preferentially through the regions of high di�usivity. When
the di�usivity varies much more rapidly than the desired grid size, the idea of this approach
is to replace the original highly nonuniform material with an appropriate, homogenized
material which will correctly give the macroscopic ows of interest. Even regular patterns,
such as a checkerboard with two di�erent di�usivities can lead to a direction-dependent
di�usivity in a homogenized medium, calling for a full di�usion tensor with o�-diagonal
terms. Equations such as

ut = ~r � (d~ru)
have been well studied, and the appropriate procedures are known, but those involving utt
are not yet under control.�

The third approach involves both analytical and numerical methods. The problem
approached is for example one of global ocean modeling. Here most of the energy is in
eddies whose size is well below the cell size of the grid. The problem is to try to �gure out
how to incorporate these e�ects into the model run on the desire cell size, by for example,
the use of a better set of mesoscale equations.��

Presentation by Alan Bishop

The work reported here is joint work with Lomdahl and Gr�nbech-Jensen. It concen-
trates exclusively on the Josephson junction array and does not discuss the multimillion
particle molecular dynamics. Both topics were discussed by Lomdahl and reported in the
Notes for the meeting of March 18, 1994. The Josephson junction array can be described
as lying on a red-black checkerboard (plane square lattice). There are superconducting
squares (grains) on the black squares and the Josephson junctions lie at the corners where
the superconducting grains meet. A magnetic �eld perpendicular to the plane (excluded
from the superconductors by the Meissner e�ect) passes through the red squares. This
structure is topologically equivalent to a plane square lattice with superconducting nodes
and Josephson junctions for bonds. A typical size that this collaboration can handle is
128 � 128 or 256 � 256. Each superconducting node has associated with it a phase �i;j
for its order parameter. The equations of motion of the system can be derived from the
Hamiltonian.y They are

��i;j =sin(�i;j+1 � �i;j �Ai;j;i;j+1) + sin(�i;j�1 � �i;j �Ai;j;i;j�1)

+ sin(�i+1;j � �i;j �Ai;j;i+1;j ) + sin(�i�1;j � �i;j �Ai;j;i�1;j )

� �( _�i;j+1 + _�i;j�1 + _�i+1;j + _�i�1;j � 4 _�i;j+) + �i;j(t);

� The idea behind this approach is closely related to the idea of the renormalization
(semi-)group transformation where the smallest scales are integrated out inducing a map-
ping in the space of Hamiltonians. The analogous statement here is a mapping in the space
of equations. If carried out exactly, the description of the larger scales remains precise, but
it is likely that only approximate mappings will be practical. The same sort of remarks
apply to the presentation of Shi-Yi Chen above.
�� This topic is discussed more fully by D. Holm beginning on the next page.
y See the presentation of P. Lomdahl on the previous two pages.

11



where the sine terms are the tunneling currents, and the non-Hamiltonian terms are the
� terms which are the dissipation, and the � term is thermal noise which is taken to be
independent at di�erent times and to have a spatial correlation equal to the product of
2� times the temperature times the inverse lattice Green's function.� The magnetic �eld
can introduce a degree of frustration. The sum of the A's around a plaquette (a red
square) must equal the magnetic ux passing through the plaquette. This e�ect can make
it impossible to assign values to all the �'s so that the right hand side of the equation of
motion vanishes for all i; j. This situation is what is meant by frustration. In order to
describe the ground state it is useful to de�ne a \fractional charge" for each black square.
It is

qi;j =Mod(�i;j+1 � �i;j �Ai;j;i;j+1) +Mod(�i;j�1 � �i;j �Ai;j;i;j�1)

+Mod(�i+1;j � �i;j �Ai;j;i+1;j) +Mod(�i�1;j � �i;j �Ai;j;i�1;j );

where Mod means to subtract (or add) enough multiples of 2� to keep the result in the
range �� < x � �. The case, called \f = 1

2
" which leads to maximum frustration was

discussed. Here in the ground state values of qi;j = �1
2
are what occurs. The mesoscopic

disruptions have been identi�ed and are domain walls and vortex-antivortex pairs. Here
a domain wall means that two antiferromagnetically ordered regions are out of registry
with each other by one lattice spacing. That is to say, it is a wall of two adjacent like-
charge states. The simplest vortex-antivortex pair is, for example, a simple interchange
between a q = +1

2
value and a neighboring q = �1

2
case. The relaxation of such systems

is studied, and these mesoscopic structures signi�cantly a�ect this process. Decay of the
form exp[�(t=� )�] was reported.

This problem has the microscopic scale, the mesoscopic scale of domain walls and
vortex-antivortex pairs, and the macroscopic scale. What is sought is a way to bridge
over the \mesoscopic barrier" to go from the microscopic to the macroscopic scales. The
problem is currently being explored by large scale numerical computation.

Presentation by Darryl Holm

This presentation represents joint work with Roberto Camassa and is on the Hamil-
tonian asymptotics for coherent structures in ideal shallow-water ows. Suppose that the
bottom is level and B is the quiet water depth. Suppose next that there are waves on
the surface with crest separation of L and a crest to trough height of h0. Suppose further
that the parameter � = B=L� 1, which corresponds to shallow water waves. In addition,
it will be assumed that h0=B � 1. From these two conditions, it follows at once that
h0=L � 1, which corresponds to small amplitude waves. The upper surface of the uid
is free with a uniform pressure boundary condition, and its position is z(x; y; t) measured
from the quiet water level. The velocities in the horizontal and vertical directions will be
denoted by ~u and w, respectively, and c is the \natural" wave speed. An important case

� This noise is a correlated random Markov �eld. Its type is closely related to Boson
�eld theory. Its e�cient generation is of interest in itself, but none of these aspects were
discussed.
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is ocean modeling. For the wave motion corresponding to the dominant eddies,� we have
the following characteristic values:

u � 100s of cm=sec; w � 1 cm=sec � u�;

L � 100s of km; B � 5 km � L�;

c �
p
g � 4 km = 200 m=sec; u=c � 0:005 = � � �2;

h0 � 100s of cm; h0=B � 0:00002 � �2; and

time scale :
L

��c
=

1

��

20 km

200 m=sec
=

1

��
� 3 min � 2 days:

Thus for these purposes, the ocean represents a shallow water system with � � 0:07.
Relaxing the condition on a level bottom, we allow for the bottom to be given by z =
�b(x; y). The system is described by the Euler equations, which are, in dimensionless
form,

D~u

Dt
+ ~rP = 0;

D

Dt
=

@

@t
+ ~u � ~r+ w

@

@z
;

�2
Dw

Dt
+
@P

@z
= 0; (� ! 0; hydrostatic); and

~r � ~u+ @w

@z
= 0;

subject to boundary conditions involving � = j~uj=c, c = pBg, with g the acceleration due
to gravity. The case �! 0 corresponds to a rigid lid, and h0=B = O(�2).

By expanding in the small quantities appropriate for small-amplitude, shallow-water
waves, the equation for the motion of the free surface has been derived as

ut + c0ux � �
�
1

3
uxxt +

3

2
uux +

1

6
c0uxxx

�
=
�2

3

�
uxuxx +

1

2
uuxxx

�
:

The method of derivation for this equation is reported to be able to retain the basic proper-
ties of Euler's equations with a free surface, i.e., the action principal, energy conservation,
Kelvin's Theorem, and Galilean invariance for the at bottom case. As far as this initiative
is concerned, we now see only the scale of order L, the mesoscopic scale, and are no longer
compelled to work on the scale of order B = L�, the microscopic scale. This result is an
apparently successful e�ort to breach the mesoscopic barrier.

Presentation by Alan Bishop

Micro �! Meso �! Macro

� See the presentation by C. Zemach in Section 6.
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There are a lot of buzz words attached to the mesoscopic scale such as emergent structure,
multiple space, and time scales. It was suggested that local or regional balance is the
key, as otherwise one regime will dominate. This would be described by a lower level of
approximation. There are three important questions.

1. What are the microscopic mechanisms driving \complexity"? (Examples: compet-
ing interactions and coupled �elds.)

2. How can mesoscopic structure be described? [Examples: collective modes/reduced
models, coupled space and time, relevant \statistical" descriptions such as collective modes
plus uxations (compare with f(�)*), or perhaps image resolutions.] K � � turbulence
modeling of di�usive uxes was mentioned here.

3. There is interest in \What do the vortex-antivortex pairs, and domain walls etc.,
do to the macroscopic `functionality'?"

Presentation by Gary Doolen

This discussion was on laying-down patterns on two-dimensional surfaces. It seems
that electro-deposition of aluminum can form a pattern of cylindrical voids of the order
of 10 nanometers in diameter and arbitray heights which occur at regular intervals. The
voids form a hexagonal lattice, and the spacing changes with the voltage. There are a lot
of questions. For example what if we vary the substrate? It was mentioned that DARPA
will fund laying-down chemistry on 2D surfaces and the growth of these patterns.

If the electric �eld is varied in time, then we get a cheap, uniform layered-material in
this way. One can lay down incredibly complex patterns. Some pictures of chlorine and
starch were shown where blobs would grow and bifurcate. Study is also being made of
the growth of tubulene. It grows tubes. It will grow and shrink, perhaps in response to
local electrical gradients, and it samples space to see where it can grow. All these various
phenomena are on the mesoscopic scale. The holy grail of this area is to try to explain
mitosis.

Presentation by Neils Gr�nbech-Jensen

This presentation reects work by A. Bishop, D. Dominguez, P. Lomdahl, and S.
Shenoy as well as the speaker.�� The system under study is a three-dimensional network of
superconductors connected by Josephson junctions. The system is topologically equivalent
to a space lattice with superconducting nodes and Josephson junctions for bonds, but is
not one such. Each superconducting node has associated with it a phase �ijk for its order
parameter. The model being discussed is the 3-D RSJ (XY ) system. Its equations of
motion are

��ijk +
X
�

a�( _�ijk � _�ijk+�) +
X
�

i� sin(�ijk � �ijk+�) =
X
�

�ijk;� + �(�0j0 � �NX�1;j;0):

* By f(�) is meant the distribution of lengths in a fractal which are greater than �.
�� See also the previous presentations by P. Lomdahl and A. Bishop.
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The �rst term is a capacitance term, the sum over � is a sum over nearest neighbors, the
second term is a damping term, the third term is the Josephson term, the fourth term is
the noise term and the last term is a bias term reecting a current put in at the bottom
and taken out at the top of the system (rectangular parallelepiped). The various relevant
parameters and average values are

� =
�h

2e

1

RabIab
;  =

2e

�h
C0R

2
abIab; � = Ibias=Iab;

a� = Rab=R�; i� = I�=Iab; h�ijk;�i = 0; and

h�ijk;�(t)�i0j0k0;�0(t0)i = 2
kT

Iab

2e

�h
a��(ijk;�)(i0j0k0;�0)�(t � t0):

The subscript ab refers to the horizontal plane. The fundamental ac-Josephson relation is

�Vij;kl(t) =
�h

2e

d

dt
[�ij(t) � �kl(t)] :

The speaker said that he is allowing both dissipative IR and capacitive IC currents in
addition to the supercurrent IS , both of which are given in units of Ic as

IR
ij;kl

=
�Vij;kl
IcR

=
�h

2eIcR

�
_�ij � _�kl

�
and IC

ij;kl
=
C

Ic

d

dt
�Vij;kl =

�hC

2eIc

�
��ij � ��kl

�
:

Up to this point, there is no intra-plane coupling in the equations, and one might
have been wondering how this work di�ers from a bunch of independent, one-dimensional
problems. The answer is in the electromagnetic �eld. If we start with the equations

@�

@t
=

2e

�h
V =

2e

�h

Z 2

1

Ez dz;

@�

@x
=

2e

�h

Z 2

1

By dz =
2ed

�h
By; and

@�

@y
= �2e

�h

Z 2

1

Bx dz = �2ed
�h
Bx;

where 1 lies in the lower plane below the gap plus the penetration depth, and 2 similarly
lies in the upper plane above the gap plus the penetration depth, and d is the gap plus
twice the penetration depth. By treating the horizontal directions as continuous for the
moment and then by taking some partial derivatives and using Maxwell's equations, we
come to the basic equation

�h

2ed�

�
@2�

@x2
+
@2�

@y2

�
= J0 sin�+ IbG�

�h

2e

@�

@t
+

��h

2et0x

@2�

@t2
:

In addition, the surface losses in the superconductors must be considered, which will
modify the above results. One could write,

@�

@x
+ �

@2�

@x@t
= By; ) @�

@t
+ �

@2�

@t2
= V;
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which is a modi�ed Josephson relation. It is only correct to �rst order in � and is only
self-consistent to that order as well. The quantity � is the ratio of the number of particles
to quasi-particles. The equations

@�

@t
= V + �

@V

@t
; and

@�

@x
+ �

@V

@x
= By = �ix

lead to self-consistency.
Computer simulations of these equations have been applied to Giaever's DC ux trans-

former, which has a horizontal current applied to a primary (horizontal) layer, separated
by an insulating layer from a secondary layer. There are two electrical contacts, top and
bottom, to measure the results. Also a pseudo DC ux transformer was studied which was
a layer of superconductor with the CuO planes lying horizontally. There were 4 contacts
top and bottom, and current was inserted in the �rst and withdrawn from the fourth top
contact. The simulations were carried out on a 48�48�8 lattice system using second-order
Runge-Kutta time integration (Greenside-Helfand). The speaker explained that these re-
sults were compared with experimental results on Bi2Sr2CaCu2O8�y single crystals with
good agreement. A video was shown which illustrated the behavior of the simulation and
showed, it was pointed out, that the picture of a rigid object being dragged through the
system is not valid here, but rather things unfold from the top down. It is these structures
that occur on the mesoscopic scale (and block progress from the microscopic scale to the
macroscopic scale) that are what is relevant to this initiative.

Presentation by Darryl Holm

This presentation was on the subject of self-consistent, Hamiltonian dynamics of wave,
mean-ow interaction for a rotating strati�ed incompressible uid, and it reported joint
work with Ivan Gjaja. First, the speaker gave a description of various types of waves in the
ocean and some of the things that a�ect them. Briey, sunshine causes wind which exerts
a force on the surface of the water. The water near the surface moves in a superposition
of various motions to produce waves. In addition, there are currents in the ocean which
in turn are a�ected by the Coriolis force due to the rotation of the earth. At the bottom
of the ocean, there is an uneven lower surface, which can vary signi�cantly in depth. The
ow past the unevenness, as well as past promontories, etc., can cause eddies and various
other motions.

The speaker said that our current capability in the heroic e�ort to produce a global
climate model on a computer is a horizontal grid system of about 20 kilometers spacing,
which is an important advance over previous horizontal spacings of about 100 kilometers
because it captures much more of the ocean's kinetic energy|in particular, the eddies. In
the atmosphere, the bulk of the kinetic energy is in gyres around 1,000 kilometers in size.
However, in the ocean a lot of the kinetic energy resides in eddies about 15 kilometers
in size. The peak in the kinetic energy spectrum varies with latitude and arises from
a balance between hydrostatic pressure and the Coriolis force on the free surface. This
feature makes numerical ocean modeling computationally di�cult because about half the
kinetic energy is below the previously used grid sizes of 100 kilometers spacing or more.
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The speaker also reported that, as has been known for twenty years, the power spectrum
of vertical displacement lies between about 0.04 cycles per hour and about 3 cycles per
hour and has an !�2 decay.

The �rst results of the speaker's method were reported to be the derivation of new
equations for the wave, mean-ow interaction. The �rst case studied was for a single
frequency wave train. These equations are then expanded� in a ratio of time scales, �,
and the wave amplitude, �. In addition, a phase averaging in Hamilton's principle for
the three-dimensional Euler equations is used. The results are new equations for the \ray
optics" limit for the wave, mean-ow, interaction equations. A further step would extend
the theory to describe an ensemble of waves which have a spectral distribution in wave
number ~k.

In answer to a question about the relation of the Laboratory's numerical ocean model-
ing e�orts to experimental data, the speaker pointed out that our e�orts are benchmarked
by various measurements performed in the ongoing World Ocean-Circulation Experiment
(WOCE) and the TOPEX-Poseidon joint experiment. The latter involves cooperation
between France and the U.S. to measure sea-surface height variability with great accu-
racy and over long times using satellite altimetry. Our e�orts are supported by a U.S.
DOE program called Computer Hardware, Advanced Mathematics and Modeling Physics
(CHAMMP). Measurements of opportunity were also discussed in connection with the fa-
mous rubber ducky experiment. Apparently, a ship loaded with hundreds of thousands
of rubber duck bathtub toys sank o� Japan and released its cargo. Being bathtub toys,
the rubber duckies oat, and it was possible to use them to track the transport by ocean
currents when they washed up on various shores across the Paci�c ocean at various times.
This transport is signi�cant, and it was stated that the ocean currents carry at least half
of the heat from the equator to the poles.

In order to proceed, we were reminded of Lord Kelvin's theorem (see the Appendix),
which is, the speaker said, a geometrical statement of uid dynamics. If the ocean is
considered as a strati�ed, rotating, incompressible uid in a conservative force �eld (namely
gravity), Kelvin's theorem is expressed as

d

dt

I
(t)

(~u+ ~R(~x)) � d~x =
I
(t)

h
~r(u2=2� p) � d~x � g�dz

i
;

where the contour (t) moves with the uid velocity, ~u. Hence,

I
(t)

h
~ut + (~u � ~r)~u+ uj ~ruj � ~u� (~r� ~R)

i
� d~x =

I
(t)

�
uj ~ruj � ~rp� g�~ez

�
� d~x;

where the subscript t means time di�erentiation, the subscript j and superscript j refer,
respectively, to covariant and contravariant components of a vector, and the Einstein
summation convention is employed. Finally, ~ez is the unit vector in the vertical direction,
and g is the acceleration due to gravity. Equating the integrands in the above expression of
Kelvin's theorem gives the equations of motion for the uid in the approximation considered

� See the previous presentation by Darryl Holm for related work.
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by the speaker. In \coordinate-free" notation, the speaker wrote the content of the previous
equation as

(@t + Lu)
�
(~u+ ~R(~x)) � d~x

�
= d(1

2
u2 � p) � g�dz ;

where Lu denotes the Lie derivative with respect to the vector �eld ~u � ~r. Such ideal
uid dynamics in Eulerian variables possesses a Hamiltonian principle, i.e., �L = 0. The
Lagrangian which yields the motion equations under consideration is given by

L =

Z
dt

Z
d3x

h
1
2
Dj~uj2 +D~u � ~R(~x)�D�(~l)gz � p(D � 1)

i
;

where
@lA

@t
= �~u � ~rlA; D = det

�
@lA

@xi

�
:

Now to obtain the equations of motion, one varies the Lagrangian with respect to the
lA(~x; t), A = 1; 2; 3 at �xed ~x and t. These steps yield

�lA ) (@t + L~u)( 1
D

�L
�~u
� d~x)� d

�
�L
�D

+ �gz

�
+ g�dz = 0;

�p ) D � 1 = 0; (incompressibility); � = �(~l) ) @�

@t
= �~u � ~r�;

where the equation that results from �lA is Lord Kelvin's theorem in geometrical form for
an arbitrary Lagrangian L[~u;D; �]!

With this formalism �nally before us, the strategy is now to make approximations in
the uid Lagrangian, L. Speci�cally we will decompose the total uid trajectory denoted
~X(lA; t) for a uid element with label lA into the sum ~x(lA; t) + �~�(~x; t), where ~x is
the trajectory of the uid element along the mean ow, which is to be determined self-
consistently along with the motion due to the waves. The ratio of wave amplitude to
wavelength, �, is regarded as small (� � 1), and �~� represents the displacement of the
uid due to the presence of the wave. Thus we regard the waves as riding on the mean
ow which it also inuences self-consistently. If we write ~� = ~a exp(i�=�) +~a� exp(�i�=�),
then the Lagrangian may be expanded as

L(�;�)( ~X) = L(0;0) + �2
h
L(2;0) + �L(2;1) + �2L(2;2)

i
+O(�4);

where the �0 term describes the mean ow, the �2 term describes the wave, mean-ow
interaction, and the �4 term describes the wave{wave interactions.

Next, Holm explained that if we set � = 0, then the variation of the mean-ow
quantities leads to the Euler equations for the mean ow. If instead we vary the wave
quantities, evaluated at �L(0;0) = 0, then we get the linearized spectral equations. On
the other hand, if we phase-average (over �), then vary the wave quantities and evaluate
the mean ow at �L(0;0) = 0, then we get Whitham's modulation equations at order
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O(�2; �2�), and the WKB� stability equations at order O(�2�2). If we phase-average, and
then vary both the wave and the mean-ow quantities (omitting the order �4 terms in the
action), we arrive at the wave, mean-ow interaction equations. The speaker remarked
that he wanted to avoid analyzing the wave-wave interactions, as too many people had
failed on this in the past. The averaged Lagrangian was given by the speaker in compact
notation as

�L = �Lhydro + �2 �Lwave

=

Z
dt

Z
d3x

n
D
h
1
2
j~�uj2 � �(l(~x; t))gz + ~�uL � ~R(~x)

i
+ p0(1 �D)

o
+ �2

Z
dt

Z
d3xF ��D��F

�:

The following notation has been employed:

~
 = 1
2
~r� ~R; F� = (~a; b); k� = (~k;�!); x� = (~x; t); ~! = !�~�u�~k; (D��)

y = D�� ;

Dij = D~!2�ij � 1
2
(D + 1)p0;ij � 2iD~!�ijk
k; D4j = �iDkj = �Dj4; and D44 = 0:

In this form, the variations
� �L

�F ��
= D��F

� = 0

imply the dispersion relation for the waves, detD�� = 0. The resulting dispersion relation
governs internal waves propagating in the slowly varying oceanic mean ow. It generalizes
the dispersion relation for internal waves linearized around a steady, stably strati�ed,
equilibrium ow. In addition, �L invariance under �! � 0 + const implies the conservation
law

@�tN +
@

@�~x
� (~vgN) = 0; and ~vgN = N~�uL + 2D=(b�~a)

for the wave action density

N = D~!j~aj2 + 2i~
 � ~a� ~al:

Next the speaker made the observation, which is interesting from the structural point
of view, that the wave, mean-ow interaction equations are Hamiltonian with a Lie-Poisson
bracket. He writes duality relations for the variables as

� = f~m;D; �; ~P ;Ng is dual to
V s (�0 � �n)| {z }�V s�0| {z }
mean� ow waves

;

where s represents the semidirect-product Lie algebra of vector �elds acting amongst
themselves by the Lie commutator and on di�erential forms by the Lie derivative, and �

� The letters stand for G. Wentzel, H. A. Kramers, and L. Brillouin.
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represents the direct sum. With this understanding of the Hamiltonian structure, we may
express the self-consistent wave, mean-ow dynamics as

_� = f�; �HgLP = �ad�(�H=��); fF;HgLP =

�
�;

�
�F

��
;
�H

��

��
:

Here < �; � > denotes the pairing between elements of the Lie algebra and its dual. The
dual variables � are expressed in terms of the original uid variables as

~m = D
�
~�uL + ~
� ~x

�
� �2N~k; and ~P = N~k; (wave momentum density);

and the Hamiltonian has the following variational derivatives with respect to these vari-
ables:

�H

�~m
= ~�uL (Lagrangian�mean uid velocity); and

�H

�~P
= ~vg (group velocity):

These Hamiltonian wave, mean-ow interaction equations may be expressed in coordinate-
free form as

(@t +L�uL)
�
(~m=D) � d~x

�
= d

�
� � �H
�D

+ �d
� �H
��

�
� �d�

�H
��
; (Lord Kelvin0s theorem)

(@t + L�uL) � = 0; (buoyancy)

(@t +L�uL) (Dd3x) = 0; (continuity); and�
@t +Lvg

� �
(~P=N) � d~x

�
= �d �� �H=�N��

@t + Lvg
�
(Nd3x) = 0

)
@t~k = �~!; (wave transport equation);

(wave action conservation);

where, e.g., L�uL denotes Lie derivative with respect to the vector �eld (~�uL � @=@~x).
We now come to the high point of the talk. Darryl explained that these equations sep-

arate into equations for a two-uid model. Each uid carries its own momentum density.

The mean-ow uid carries mass and volume along the Lagrangian mean uid velocity,
~�uL. The wave \uid" carries wave action along the wave group velocity, ~vg. This two-uid

model is analogous to the Landau model for superuid He4, except in the Landau theory the

wave-excitation uid carries mass, whereas here the recti�ed wave uid carries momentum

and wave action density, but no mass.
As a �nal remark, the speaker pointed out that the leading order e�ect of the waves

on the uid is the Coriolis force on the uid due to the passage of the wave. This force
causes an Eulerian mean acceleration given by

d~�u

d�t
= � �2

�
N~k � 2
~ez;

and appears in the leading-order Eulerian mean-motion equation as,

@~�u

@(�t)
+
�
~�u � ~r�~x

�
~�u� �2

�
N~k � 2
~ez +

1

�

�
�~�u� 2
~ez + g�~ez + ~rp0

�
= O(�2):
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Appendix to the presentation of Darryl Holm by G. A. Baker, Jr.

Title: A Discussion of Kelvin's Theorem

This theorem is really one of vector analysis. I follow the presentation of H. Lass in
his \Vector and Tensor Analysis." First, let us consider the velocity of particles occupying
an element of volume of a uid. Let P be a point in that region and let ~vP be the velocity
of the uid at P . The velocity at a nearby point Q is just ~vQ = ~vP + (d~r � ~r)~vP to �rst
order in the separation d~r. Here it is meant that the derivatives are to be evaluated at P .
For convenience, we will now write ~r as shorthand for d~r. There is a vector identity which
says

~r(~r � ~w) = ~r � (~r� ~w) + (~r � ~r)~w + ~w:

Let us now choose, ~w � (~r � ~r)~vP . Thus,

(~r � ~r)~w = x
@x

@x

@~v

@x

����
P

+ y
@y

@y

@~v

@y

����
P

+ z
@z

@z

@~v

@z

����
P

= ~w:

Note that the @~v=@x is evaluated at P and does not depend on d~r which we have shortened
to ~r, and so was not di�erentiated in the above equation. Therefore for this choice of ~w,
we have the result

~w = 1
2
~r(~r � ~w) + 1

2
(~r� ~q) � ~r:

Since ~vQ = ~vP + ~w, we have ~r� vQ = ~r� ~w = (~r� ~v)P , where the last equality follows
by direct computation using our de�nition of ~w. If we de�ne ~! = 1

2
(~r�~v)P , then we may

write

~vQ = ~vP + ~! � ~r + 1
2
~r(~r � ~w):

There is a geometrical interpretation of this form. The velocity at Q is (i) the velocity at
P , plus (ii) the rigid body rotation about a line through P in the direction of ~!, plus the
motion of Q relative to P in this translating and rotating framework. The �rst two parts
of the velocity also occur in a rigid body, and the third is related to the uid character.

The next step toward Lord Kelvin's theorem, is to compute the circulation around
any closed curve � moving with the uid. It is

C =

I
�

~v � d~r =
Z
S

Z
(~r� ~v) � d~�;

where the second inequality is true by Stokes' better-known theorem. Here S is the surface
bounded by �, and d~� is the area of a surface element with the direction of the normal to
the surface. Notice that as ~r� ~r � 0, only the second term in our expression just given
for the velocity makes a nonzero contribution to the circulation. A curve which is parallel
to ! at every point is called a vortex line. It is convenient to write the circulation as

C =

I
�

~v � d~r
ds
ds;
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where s is an integration parameter along the curve �. Let us now see how the circulation
changes in time if we let the particles which compose the curve � move with the motion
of the uid. As time goes on, assuming continuity of the ow, the closed curve remains
closed. Therefore,

dC

dt
=

I
�

d~v

dt
� d~r
ds

+

I
�

~v � d
dt

�
d~r

ds

�
ds =

I
�

d~v

dt
� d~r
ds

+

I
�

~v � d
ds

�
d~r

dt

�
ds:

Euler's equation of motion for the uid is

d~v

dt
= ~f �

~rp
�
;

where p is the pressure and � is the density. If we have a conservative �eld, then ~f = �~r�,
and if � is a function of p alone, then we can write

V = �+

Z
dp

�
;

d~v

dt
= �~rV:

Substituting this result into the equation for the time derivative of the circulation, we get
Lord Kelvin's theorem

dC

dt
= �

I
~rV � d~r +

I
1

2

dv2

ds
ds = �

I
d(V � 1

2
v2) � 0

for a conservative �eld and for the density a function of pressure alone. In other words,
the circulation is a conserved quantity with these restrictions.

Presentation by David Sherrington

Title: Non-Equilibrium Macrodynamics of Disordered and Frustrated Systems

The work reported is joint work with Ton Coolen and Stephen Laughton.

Microdynamics �! Macrodynamics
Many variables �! Few variables

Possibly stochastic �! deterministic ?

Interest in the above transitions, the speaker said, was not just con�ned to long-time
equilibrium. Various questions regarding these matters arise, such as: How many macro-
scopic variables are needed? Are there closed autonomous equations for these macroscopic
variables? Are there speci�c results?

The speaker would like a general theory with the following characteristics. One starts
with the microscopic state which is described by ~S, a vector variable of high dimension
and a time-dependent distribution pt(~S): There would be stochastic dynamics de�ned by
a master equation

d

dt
pt(~S) = f

�
pt(~S)

�
:
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One would then derive from this information a set of order parameters ~
 of lower (hopefully
low) dimensionality, and a distribution

Pt[~
] =
X
~S

pt(~S)�
�
~
� ~
(~S)

�
:

The form of the dynamics was not clear, but it should be that the master equation for
pt(~S) implies the equations of motion for Pt[~
], which may or may not be closed.

By way of further introduction the speaker said that eventually he has obtained what
he believes to be a very good description/theory, but that he prefers �rst to guide us
through the thinking which led to it.

Sherrington then turned to a speci�c example. Consider a system in which the micro-
scopic variables are �i = �1, for example, Ising spins. Impose Glauber dynamics, i.e., the
spins are updated in a random sequential manner according to the transition probabilities,

p(�i ! �0i) =
1

2
f1 + �0i tanh�hig ; where hi =

X
j

Jij�j + �i:

The hi represent local �elds, the Jij represent the exchange energies, and the �i represent
an external �eld. David then explained that range-free interactions imply no spatial de-
pendence on ~
. Examples would be: (i) the Jij are independently randomly distributed
variables drawn from P (Jij) (a Sherrington-Kirkpatrick or Viana-Bray spin glass), or (ii)
Jij = ff��

i
; ��
j
g with the ��

i
independent and randomly distributed [a Hop�eld neural

network storing patterns, f��
i
g = f�1g; � = 1; : : : ; p)].

The plan is now random sequential dynamics. That is, the Glauber dynamics implies
a master equation, which in turn implies the equations of motion for Pt[~
]. The master
equation for pt[~�] is

d

dt
pt(�) =

X
i

[pt(Fi~�)Wi(Fi~�)� pt(~�)Wi(~�)] :

Then the equation of motion for Pt[~
], where the 
's are the macroscopic order parameters,
becomes

d

dt
Pt[~
] =

X
l�1

(�1)l
l!

KX
k1

� � �
KX
kl

@l

@
k1 � � � @
kl

n
Pt[~
]F

(l)

k1;:::;kl
[~
; t]

o
;

where

F
(l)

k1;:::;kl
[~
; t] �

*X
j

Wj(~�)�jk1(~�) � � ��jkl(~�)

+

;t

�jk(~�) � 
k(Fj�)� 
k(~�):
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These equations in their turn imply the behavior at �nite times, t, for the limit as the
system size, N , tends to in�nity. Next we get a Liouville equation for Pt[~
] and lastly a

deterministic equation for ~
(t), namely,

d

dt
~
(t) =

*X
i

Wi(~�)
h
~
(Fi~�)� 
(~�)

i+
~
;t

;

where the notation h i~
;t is called a sub-shell average, and

Wk(~� ) =
1

2
[1� �k tanh�hk(~�)] ;

Fk�(~� ) = �(�1; : : : ;��k; : : : ; �N ); and

hf(~� )i~
;t =
P

~�
pt(~�)�

h
~
� ~
(~�)

i
f(~�)P

~�
pt(~�)�

h
~
� ~
(~�)

i :

Since pt(~�) depends on the whole distribution for the microscopic variables, the equations
are not closed.

By way of clarifying remarks, the speaker said \No loops are relatively easy, and
no disorder is easy, but strong disorder together with loops is di�cult." An example
of an easy problem is the mean-�eld Ising model, which he called an \in�nite-ranged,
Ising ferromagnet." Here in terms of variables previously de�ned, we set Jij = J0=N and
�i = �. One macroscopic variable su�ces, and it is m = N�1

P
i
�i. The distribution

pt(~�) depends on ~�, only via m in this case. The equation of motion is

dm

dt
= tanh(�(J0m+ �)) �m;

and the equilibrium solution dm=dt = 0 is, of course, the usual mean-�eld theory result,
m = tanh(�(J0m+ �)).

A hard example which contains both disorder and frustration is as follows. Select

Jij =
J0

N
+
Jzijp
N
; where hziji = 0; and hz2

ij
i = 1:

Sherrington then remarked that this problem is much more di�cult if J � O(1). Examples
of this case are the Sherrington-Kirkpatrick spin-glass, where the zij are independently
distributed Gaussian random variables, and the Hop�eld neural network within the basin
of attraction of one pattern. This basin is to be gauged to �1

i
= 1 for i = 1; : : : ;N . The

other patterns are f��
i
g for � = 2; : : : ; p = �N . Here, the variables are selected to be,

zij =
1p
p

pX
�>1

�
�

i
�
�

j
; J0 = 1; and J =

p
� =

r
p

N
;
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which in line with the previous remarks is only di�cult for � � O(1), i.e., for an extensive
number of patterns.

David next began a discussion of \Hop�eld neural nets." First, patterns are stored,

f��
i
= �1g; � = 1; : : : ; p; and i = 1; : : : ;N:

Next \synapses" are de�ned by

Jij =
1

p

X
�

�
�

i
�
�

j
;

and the overlap of the microscopic variable state with a pattern � is de�ned as

m� = N�1
X
i

�
�

i
�i:

The dynamics of this model are as described before, with the Jij being used in the de�nition
of hi, which in turn is used in the de�nition of Wi and so forth through the previously
described dynamic equations. A microscopic state is said to be in the \basin of attraction"
of a pattern � if the ow under the dynamics is such that, with the passage of time,
m� � O(1) and for all � 6= �, m� � O(N1=3). The overlap with � is expected to increase
with time in such a case, and the overlap with other patterns to decrease, or at least not
to increase. Basins of attraction so de�ned, do not necessarily �ll the whole of state space.
There may be other attractors which are not patterns.

A \phase diagram" was displayed for the Hop�eld model in equilibrium. The coordi-
nates were temperature and � = p=N . Three phase regions were shown. The �rst region,
which was bounded by the coordinate axes and a convex line from (0; Tc) to (�c; 0) was
labeled \retrieval of memorized patterns, `ferromagnet'." The second region was bounded
by the temperature axis and a line of positive slope starting from (0; Tc) and was labeled
\no restricted attractors, `paramagnet'." Finally the third region was bounded by the two
aforementioned lines plus part of the �-axis and was labeled \restricted attractors not
related to memorized patterns, `spin glass'."

Next Sherrington discussed the order parameters of interest. In the �rst case, the set
consisted of the magnetization and the overlap with a \nominated" pattern:

m = N�1
X
i

�i; and m� = N�1
X
i

�
�

i
�i:

Other order parameters needed to describe equilibrium might be deduced from

p1(~�) � exp(��H(~�));

where the Hamiltonian could be written as

H(~�) = f(m(~�)) +R(~�):
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The function f is meant to absorb all the direct dependence on m(~�). The speaker said
that an additional order parameter would be needed if R(~�) � O(1). He said that we will
now consider the case where

H=N = �1
2
J0m

2(~�) � J r(~�) +O(N�1); and r(~�) = N�3=2
X
i<j

�izij�j ;

where the zij are as before. Here the minimal set of order parameters is, for this simple
version of the theory,

~
(~�) = fm(~�); r(~�)g:
If one works through from the microscopic variables to the Liouville equations to the
macroscopic variables, one gets deterministic ows described by

dm

dt
=

Z
dzDm;r;t(z) tanh[�(J0m+ Jz + �)] �m;

dr

dt
=

Z
dzDm;r;t(z) tanh[�(J0m+ Jz + �)] � 2r;

where

Dm;r;t(z) = lim
N!1

*
N�1

X
i

�(z � zi(~�)
+
~
;t

is the sub-shell average as de�ned before. In this case he denotes

hi(~�) = J0m(~�) + J zi(~�); and zi(~�) = N�1=2
X
j

zij�j ;

where Jzi(~�) is the noisy contribution to the local �eld.
So far, these equations are not closed.* Sherrington proposed making two Ans�atze

to obtain closure. These are (i) self-averaging over the speci�c microscopic realization of
disorder, and (ii) equi-partitioning of the microscopic state probability pt(~�) within each
(m; r) sub-shell. This second assumption is only made during the calculation of the D's
and eliminates pt(~�) from Dr;m;t and with it the time dependence, so we have only the
static Dr;m instead of a dynamic variable. The speaker said that the resulting expression
can be evaluated by replica theory.�� Even so we were told, the evaluation is nontrivial,
but after several manipulations the results can be expressed in the form

Dm;r(z) = lim
n!0

Z Y
i;j

Y
�;�=1;:::;n

dx�
i
dy��

j
exp[�N�(m; r; z; fx�

i
g; fy��

j
g)];

* This is the usual type of bugbear in this sort of work in statistical mechanics. For
example, the exact equations for a few particles always involve the behavior of at least one
more particle, and so on up the line.
�� According to the speaker, we are confronted with the problem of averaging an expres-

sion of the form

hf(�)i = Tr[f(�)WfJg(�)]

Tr[WfJg(�)]

over a probability distribution for J . In this work, the denominator is di�cult to deal
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where the number of indices i; j is �nite, � is O(N0), and n is the number of replicas.
The D's are in general non-Gaussian. The reader will notice from the product structure
that n is necessarily an integer, so one might wonder about taking its limit as n! 0. The
replica method involves developing a straightforward type of expression for general n and
then extrapolating it to zero.� Since the exponent is proportional to N (and hopefully
there are not too many maxima), the method of steepest descents is useful to evaluate this
expression. These procedures lead to a closed set of equations.

The speaker then showed some plots in the m-r plane of numerical simulations of
this problem for � = 0:1. Time trajectories were displayed for zero temperature with
the starting points (m; r) = (0:1; 1); (0:2; 1); : : : ; (0:8; 1) and for N = 2; 000 - 16; 000.
The construction of these trajectories also involved a replica-symmetry hypothesis. There
appeared to be attractors at (m; r) = (1; 1) and (0; 11). These curves started with a
positive slope and lay in two roughly triangular regions. For m � 0:3, they tended to the
(0,11) attractor, and the other trajectories to the other attractor. These two triangular
regions are bounded by the lines m = 0, r = 1, a convex curve joining the two attractors,
and a line of positive slope starting from about (0:35; 1) and running up to the concave
curve just mentioned. Mention was made of the de Almeida-Thouless line (limit of replica-
symmetry stability) in this regard. A plot was displayed for N = 32; 000 to compare the
results of this simple theory with a numerical simulation. The theory did pretty well (as
a function of time) before the trajectories crossed the de Almeida-Thouless line, but not
too well afterwards.

In order to improve the comparison of the theory with the numerical simulations,
Sherrington elaborated on a more advanced theory. In essence, he now abandons the
raison d'être which he had been advocating heretofore. Instead of trying to reduce the
description of the system to the use of a \few" macroscopic variables, he proposes instead
to use an order function. A function, in fact, is equivalent to an (if analytic countable)
in�nite number of parameters. His justi�cation was that he thought that the addition of
any �nite number of extra observables would not give more than just minor improvements.

with. The method of replicas removes the denominator by considering instead

lim
n!0

Num:(Den:)n�1;

which can be expressed as

hf(�)i = lim
n!0

(
Tr

��;�=1;:::;n

"
f(�1)

nY
�=1

WfJg(�
�)

#)
;

and is relatively easier to average.
� Some care must be exercised in this step because the values for n = 1; 2; : : : are

insu�cient to uniquely determine the value at zero as can be seen by considering the
function (sin�n)=n.
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The order function is introduced to be

D[�; h;~�] = N�1
X
i

��;�i� (h� hi(~�)) :

It turns out that the quantities m; r used in the simpler version are just moments of this
distribution, so that theory is a true simpli�cation of this one, and this one should retain
all the virtues (except simplicity of course) of the simpler one. The probability distribution
of this order function is given by

Pt [D[�; h] ] =
X
~�

pt(~�)� fD[�; h]�D[�; h;~�]g ;

which, of course, involves microscopic quantities, and a delta function of delta functions!
By the same type of techniques as used before, one can obtain an equation of motion
for Pt[D]. By discretizing h, one can run through (although with increased di�culty) a
good share of the step recounted above, again making the same sort of hypotheses. As an
example of the results, the following dynamical equation was obtained for the Sherrington-
Kirkpatrick model with J0 = 0:

@

@t
D[�; h] = @

@h

(
D[�; h]

X
�1

Z
dh1A(�; h;�1; h1)(�1 � tanh�h1)D[�1; h1]

)

+
@2

@h2

 
D[�; h]

(
1�

X
�1

Z
dh1�1 tanh�h1D[�1; h1]

)!

+
1

2
� tanh�h fD[�; h] +D[��; h]g � 1

2
fD[�; h]�D[��; h]g;

where the A's are solved for from a set of complicated saddle-point equations. We then
saw a graph that showed the time evolution of the binding energy for the Sherrington-
Kirkpatrick model at T = 0, which compared the simple theory and the advanced theory
with a numerical simulation using N = 8; 000. The advanced theory was a great improve-
ment for all the times shown. We also saw some more plots for other cases and histograms
of the distributions D.

At this point, Sherrington gave us a whirlwind tour of some results of Normand
Mousseau.

The question at hand is the way an example of parallel microdynamics leads to inter-
esting macrodynamics. It starts with a cellular automata model. There are two general
cases. The microscopic variables reside on either a hypercubic lattice or a randomly con-
nected network. The microscopic scale variables are Si(t) = 0; 1 for i = 1; : : : ;N . The
rule is that

Si(t + 1) = f

0
@X
j2Ji

Sj(t)

1
A ;
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where the set Ji consists of all the nearest neighbor sites j to the site i. The form of f(x)
considered is f(x) = 1 8xmin � x � xmax and zero otherwise. The macroscopic variable is

c(t) = N�1
X
i

Si(t):

The idea seems to be to begin with a random con�guration ~S(t = 0) which yields an
intermediate value of c(0), e.g., 1

4
� c(0) � 3

4
. Then one iterates the dynamics and

observes the relation between c(t) and c(t+ 1). What one sees is an attractor. The type
depends on the rule employed and the connectivity of the underlying lattice or network.
The various types observed are �xed points, periodic cycles, quasi-periodic cycles, and
chaotic attractors. For a randomly quenched mixture of incompatible rules, one sees all of
the above plus glassiness for cases with su�cient frustration. Here

C(t� t0) = N�1
X
i

(Si(t) � c(t)) (Si(t0) � c(t))

was said to decay slowly.
The work of Chat�e and Manneville was mentioned. We then viewed a series of plots

of c(t+ 1) vs. c(t), which mainly looked sort of like harp-shaped �gures, a bit fuzzed out.
There is no theory, but simulations still give quasi-three cycles. We saw one �gure in
which a spray of dots seemed to be approaching the exact solution, a bell-shaped curve.
This feature indicates chaotic systems. In the case of quenched random mixtures, we saw
a fuzzy harp (quasi-three cycle), a �xed point, and a two cycle. Finally we saw a plot
of log logC(t) vs. log t. The speaker said that it showed a stretched exponential, i.e.,
C(t) � A exp(��t0:4), which was a signal of glass. Thus he said the middle phase is glassy.

Sherrington ended his presentation with some remarks about generalizations, the pos-
sible applications of his methods to problems of aging, a plea for more experiments in
this area, and a couple of plots of the auto-correlation functions for the three-dimensional
Edwards-Anderson model.

Presentation by Len Margolin

Title: The Application of Nonlinear Enslavement to Global Ocean Modeling

This work was reported to have been in collaboration with Darryl Holm, Don Jones,
Drew Poje, and Edriss Titi. It concerns dissipative systems. The speaker started with a
color plot of the ocean surface temperature done with a grid spacing of 30 kilometers. He
said that his talk would cover the ocean's multiscales, the enslavement method (which, he
said, leads to a better stochastic ow or chaotic ow), and a more complicated example.
The ocean has a huge range of scales and 95% of the energy is subgrid at the currently
feasible grid spacing.* Margolin is currently able to calculate stretches of 30 years of time,
but that peroid is short for oceans and doesn't resolve the physics.

* See also the immediately previous presentation of Darryl Holm.
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The speaker quoted E. N. Lorenz as saying, \Climate is what you expect; weather is
what you get." Len said that about half the equatorial heat is transported towards the
poles by the ocean, of which half is by the western boundary currents and the other half
by mesoscale eddies. (The rest of the heat is transported by the atmosphere.) He further
said that the climate of the earth has multiple equilibria, and he wants to understand how
you get from one equilibrium to another. A fundamental length scale for rotating uids is
the Rossby radius,

R �
p
gH

jf j ;

where g is the acceleration due to gravity, H is the depth of the ocean, and jf j is the
Coriolis force.

Some of the time scales in the ocean are, (i) the transit time of a gravity wave, about
10 hours, (ii) the variability of insolation, ice, and run-o� forcing, about 1 year, and (iii)
the natural scales for climate variability, about 1,000 years. Some of the spatial scales in
the ocean are (i) convective instabilities, 1 km., (ii) peak of the horizontal energy spectrum,
20 km., (iii) width of the western boundary currents 100 km., and (iv) the width of the
ocean 10,000 km. Clearly this problem is a multiscale one.

Margolin then describe the current state of the art. For high-resolution runs, the
mid-latitude cells are 18 km. on an edge; the problem time is 30 years and the wall clock
time to do the run is about 3 months. For climate runs, the mid-latitude cells are about
150 km. on an edge, and the problem time is about 1,000 years. The issue is that the
high-resolution runs do not resolve the Rossby radius (but are close to doing so). Can the
accuracy be improved without changing the cell size or the associated time step, and even
if we do improve the accuracy, how do we measure the improvement?

Margolin next discussed the approximate inertial manifold (AIM) method. It is a
methodology which was developed for solving nonlinear, dissipative partial di�erential
equations. It is based on ideas from nonlinear dynamics, including asymptotic balance,
the theory of attractors and inertial forms. The underlying idea is nonlinear enslavement.
That is, the small scales are slaved to the large scales by the nonlinearity of the problem.
These schemes are most often implemented in Galerkin procedures.� Since oceans are
not dissipative (in their principal balance) and ocean models are based on �nite di�erence
approximations, the issue is the following: do AIM methods apply to the oceans?

Burger's equation was presented as an example. For this example, the problem is
recovering a solution on a coarse mesh with the accuracy of a �ne mesh. The equation is

@u

@t
+ u

@u

@x
� �@

2u

@x2
= f(x; t):

Consider two meshes, one with half the mesh spacing of the other. On the �ne mesh
label the values of u at successive mesh points �k; �k; �k+1; �k+1; : : :, and call the
corresponding right-hand sides fk; gk; fk+1; gk+1; : : :. Then start with the di�erence

� expansion in orthogonal polynomials
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scheme:

�n+1
k
� �n

k

�t
+
(�n

k
)2 � (�n

k�1)
2

2 �x
� 4�

�n
k
+ �n

k�1 � 2�n
k

�x2
= fk; and

�n+1
k
� �n

k

�t
+
(�n

k+1)
2 � (�n

k
)2

2 �x
� 4�

�n
k+1 + �n

k
� 2�n

k

�x2
= gk:

Next consider the change of variables�

ak � �k + �k � O(u); and bk � �k � �k � O

�
@u

@x
�x

�
:

Back substitution for � and � in terms of a and b leads to the re-expression of the above
equations in terms of a and b. The result is to express in terms of variables de�ned on the
coarser mesh equations which are so far exactly equivalent to those on the �ner mesh. Of
course, there are now twice as many variables per mesh point as before. These equations
are

an+1
k
� an

k

�t
� 2�

an
k+1 + an

k�1 � 2an
k
� bn

k+1 + bn
k�1

�x2
+
(an
k+1)

2 � (an
k�1)

2

4 �x

+
�2an

k+1b
n

k+1 + 4an
k
bn
k
� 2an

k�1b
n

k�1 + (bn
k+1)

2 � (bn
k�1)

2

4 �x
= f+

k
; and

bn+1
k
� bn

k

�t
� 2�

an
k+1 � ank�1 � 6bn

k
� bn

k+1 � bnk�1
�x2

+
(an
k+1)

2 + (an
k�1)

2 � 2(an
k
)2

4 �x

+
�2an

k+1b
n

k+1 + 2an
k�1b

n

k�1 + (bn
k+1)

2 + (bn
k�1)

2 � 2(bn
k
)2

4 �x
= f�

k
:

The idea now is somehow or other to eliminate the small scale represented by the
variables b, and to obtain an expression, bk = �(ak), so that the resulting equation on the
coarse scale no longer depends on the set of auxiliary variables bk. This representation of
the b's in terms of the a's is what is meant by the speaker when he speaks of the small
scales being enslaved to the large scales (by nonlinearity).

In order to provide a rationale to justify his method of approach to the achievement
of these ends, Len gave a scaling analysis of Burger's equation. Taking out the dominant
scale of each variable, he got

�U
T

�
@u

@t
+

�U2
L

�
u
@u

@x
�
�
�U
L2
�
@2u

@x2
= [F ]f(x; t):

He then assumes that the primary balance of terms is between the forcing, advection, and
di�usion. This assumption is presumably appropriate for the applications he has in mind.

� The idea of averaging out the scale of the highest frequency also appears in the theory
of the renormalization group. See, for example, the presentation by George A. Baker, Jr.
in Section 5.
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The forcing determines the velocity scale U , and thus we have the order of magnitude
relations,

F � U
2

L ; U � �

L ; and U � LT :

He also performed a scaling analysis of the di�erence equation for the u's and found that
a linear stability analysis shows that

� =
��t

�x2
� 1

2
; and U =

u�t

�x
� 1

2

are necessary (and hopefullly su�cient although this part wasn't said) for the stability of
his explicit, numerical equations. He further noted that

U

�
=
UL
�

�x

L :

The ratio

� � �x

L =
1

N
� 1;

being one over the number of points in the grid, is a small parameter. The stability is
controlled by the viscous condition and the condition �t � �x2=� (but of course, necessarily
� 0:5�x2=�). Thus the new variables introduced have the scales

ak � U ; and bk � @u

@x
�x =

U
L �x = U�:

There then followed the scaling of the \b" equation, to limited order in �. Matching
terms to the second order in � leads to the enslavement expression sought,

bk =
ak+1 � ak�1

8
� �a2k+1 � 2a2k + a2k�1

� �x

64�

+

�
ak+1

�
ak+2 � ak

8

�
� ak�1

�
ak+2 � ak

8

��
�x

32�
;

where the superscripts n are suppressed. Note that in this derivation, in addition to the
stability requirements, the requirement that � be small, there is also the requirement that
bn+1
k
� bn

k
� b�t=T .

Margolin concluded his presentation with the example of the 2-dimensional, shallow
water equations. They are

@h

@t
+ ~r � (h~u) = 0; and

@~u

@t
+ (~u � ~r)~u = �g~rh+ f(1 + �~r � ~ey)(~u� ~ez) + �r2~u+ ~F ;

where h is the thickness of the uid and ~F is the forcing term (winds).
The example system computed was 2,000 km north to south and 1,000 km east to

west. It was subject to winds which varied sinusoidally (north to south). The ow in the
\idealized ocean basin" resolved into two counter-rotating gyres. Various solutions were
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presented: the solution on a �ne grid, the solution on a coarse grid, and the enslaved
di�erence approximation on a coarse grid, for example. The enslaved di�erence approxi-
mation on a coarse grid seemed to agree very well with the solution on a �ne grid, while
the coarse-grid solution di�ered noticeably. What makes it work is that, in this case, the
ow is almost steady. The kinetic energies as a function of time were also compared. The
statistical moments and the heat transport were compared as well. The overall picture was
that the enslaved coarse-grid solution compares well with the standard �ne-grid solution.

33



4. Many Mesoscopic Scales

Presentation by Lee Collins

The general topic here is cluster dynamics and this presentation reports joint work
with Joel Kress. The goal is the modeling of hot, dense, disordered media. Examples
would be systems of ions and electrons, dense plasmas, and alkali liquids. The sought an-
swers are transport properties, both material and radiation. Additional results of interest
are thermodynamic properties, the pair correlation functions, conductivity, diagnostics,
e.g., line broadening mechanisms, and cluster formation rates and their size distribution.
The interest in the cluster properties stems from the fact that the radiation transport is
very sensitive to them. A number of time scales of importance have been identi�ed in the
dense plasma case. Densities of the order of 1010 to 1017 to 18 (or perhaps only to 1014

electrons/cc.) were mentioned. There is the electron time scale of about 10�17 seconds,
the motion scale of the nuclei of about 10�15 to 10�14 seconds, the cluster formation scale
of about 10�13 to 10�11 seconds, and the transport scale of about 10�12 to 10�11 seconds
which overlaps the cluster scale. There is not a direct analogy between the time scales and
the distance scales. The distance scale for transport is in the range of 100 to 1,000 Bohr (1
Bohr = 5:2917�10�9 cm). The approach that has been used to attack this problem is (ap-
proximate) quantum, molecular-dynamical simulation applied to a periodically replicated
cell of N atoms. Classical equations are used for the nuclei, and density functional and
empirical methods are used for the electrons. Problems of size N = 50 have been treated
using density functional method and N = 1; 000 with semi-empirical methods. The major
obstacle here is that the equations of motion of the system are on the microscopic time
scale and answers on the macroscopic scale are sought.

Presentation by Salman Habib

The methods discussed in this presentation were all computer based, and in particular,
parallel computation is emphasized and the Thinking Machines CM5 is used. One of the
procedures used is solving �eld theoretic Langevin equations. This is a molecular dynamics
type of approach.

One example of the sort of problem under study is the statistical mechanics of kinks.
This problem can be thought of as a version of one-space and one-time dimensional � : �4 :
theory. For simplicity it can be viewed as a chain of classical particles each of which is in
its own, two-equivalent-minima potential, together with interactions between the particles
along the chain. When the temperature is low, each particle will sit, subject to small
thermal vibrations, at one of its two possible minima. A kink is where one particle is
in the positive-value-of-the-coordinate minima and the next particle along the chain is in
the other minima. An antikink is where the particles are vice versa. The possibility is
present, when the temperature is not too low, that the transition from one minima to the
other may require a span of several particles along the chain. These particles, of course,
would not be particularly near to their respective potential minima. Thus there are three
length scales in this problem: (1) the length scale of the phonons, (2) the length scale,
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or width, of the kinks, and (3) the length scale between kinks, or the distance along the
chain that the particles are all in one minima. The answers sought in this investigation are
correlation functions, density of kinks, etc. There is an (approximate) analytical theory
of these phenomena based on a dilute gas theory. As one runs a computer simulation
forward, the kinks and antikinks can annihilate each other, and also kink{antikink pairs
can be formed. If nk(t) denotes the number of kinks at time t, then the autocorrelation
function, hnk(t)nk(t + � )i � hnk(t)ihnk(t + � )i, is expected to decay like the sum of two
exponentials in \computer time." There have been problems with previous simulations
e.g., a recent PRL in which, the speaker said, the wrong correlation between kinks was
reported. Mention was made of multiplicative noise.* The most important obstacle was
reported to be the nonlinearity of the �eld equations.

There are, or potentially are, applications of these methods to (1) Nonequilibrium
dynamics in general and those near phase transitions in particular, (2) beams and galactic
dynamics, (3) quantum dynamics, and (4) shaped-memory problems.

Presentation by Fred Cooper

The problem described in this presentation concerns heavy-ion collisions as calculated
from quantum chromodynamics (QCD), but the work is also relevant to the problem of
the early universe. There are three time scales: (1) the oscillation scale, (2) the plasma
frequency scale, and (3) the electric-�eld to quantum-�eld equilibration time. There is also
a fourth or relaxation time scale, but it has not yet been incorporated. The oscillations
referred to are caused by the impossibility of constructing solutions to (for example) the
Dirac equation from the basis of positive energy states alone, particularly when the density
is enough to crowd particles into regions smaller than their Compton wavelength. The
admixture of these negative energy states causes very high frequency real oscillation, larger
than 2mc2=�h � 2� 1021s�1 for electrons. This phenomenon is called Zitterbewegung. The
plasma frequency is the usual plasma frequency expected in a gas of positive and negative
charges. There is a bimodal distribution in the power spectrum. One peak is for the
Zitterbewegung and the next for the plasma frequency. The third scale refers to the rate
of transfer of energy from the electromagnetic �eld to the quantum �eld. The results
displayed look like a damped oscillator with high-frequency static. That is to say, there
are the static frequency, the oscillator frequency, and the rate of damping.

The object is to predict the distribution of the quarks in the quark-gluon plasma phase,
and from that to determine the distribution function for the rates of lepton production.
The principal obstacles are the multiple time scales and the chaotic behavior. The type of
chaotic behavior referred to here was described as being characterized by a single square-
wave-shaped portion of the power spectrum. The approach is through the numerical
integration of, among other things, classical oscillator equations on the Thinking Machines
CM5. The appropriate Lagrangian is

L =
1

2
_x2 +

1

2
_A2 � 1

2
(m2 + e2A2)x2

* See also the footnote to the presentation by S.-Y. Chen, Section 3.
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subject to
hx(t)i = 0; and hx(t)x(t)i = G(t):

Presentation by Lee Collins

The physical problem under discussion is that of dense plasmas with temperatures of
the order of volts. These conditions occur in lots of places. There are multiple scales in
this problem. The smallest in space and the quickest in time is the motion of electrons
on the atomic scale. Next there is the scale of nuclear motion. There is the cluster
formation scale, and somewhat overlapping it, is the transport properties (e.g., di�usion
and viscosity) scale. The clustering of say 3, 4, or 5 particles has a strong e�ect on
the radiation properties, but not particularly on the transport properties. The radiation
properties are quite sensitive to changes in the density. There are several types of quantum
molecular dynamical methods to approach these problems. One group is the Car-Parninello
methods. In these methods, a self-consistent, calculation is not done, but basically pseudo-
particles are used, i.e., nucleons dressed with electrons. Alternatively, as used by the
panelist and his coworkers, there is the density functional approach. The codes used were
developed with Norm Troullier of the University of Minnesota. One �xes the nuclei and
�nds the time asymptotic distribution of the electrons by density functional methods. A
full matrix diagonalization of the electronic Hamiltonian is used, but maybe not at every
step. From this distribution, the forces on the nuclei are computed. These procedures

peel o� the microscopic scale, at the expense of more computation per mesoscopic scale

time step. These sort of procedures are e�ectively equivalent to integrating out the fast
nodes. Could they be applicable to the problems involving the \mesoscopic barriers" of
the previous panel discussions supposing the fundamental pseudo-particles or structures
can be identi�ed? Discussions during the course of this meeting also led to the question,
are there regions of interest such as in inertial con�nement fusion in which the opacity
problem could be treated by �nite-temperature, quantum many-body perturbation theory
(plus series summation methods)?

Presentation by Fred Cooper

Work has concentrated on two things. One is the distribution of quarks in a quark-
gluon plasma. The other is a simple model of N+1 coupled quantum oscillators. Analytic
results can be obtained for this model, and it is thought to exemplify the basic character
of the other model. How does the large N expansion work here? Consider N phase-locked
copies satisfying

�x+ (m2 + e2A2)x = 0

plus one copy of
�A + e2x2A = 0:

In lowest-order approximation (in 1=N ), you get

�A+ e2hx2iA = 0;
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�x + [m2 + e2A2(t)]x = 0:

The trick is to make A a classical �eld (A �
p
NA0; ê

2 = e2=N). Alternatively, the
Hamiltonian approach gives

H = N
_x2

2
+

_A2

2
+Nm2x2 + e2A2Nx2; and

H

N
=

_x2

2
+

_A2

2N
+m2x2 + e2A2x2;

where we have the restrictions

hxi = 0; and hx2i � 1:

The A �eld behaves as if it had a very large mass, and it is centered about a big value
(see above), but its uctuations are of order unity. The lowest-order problem turns out to
be chaotic and is very sensitive to the initial conditions. The time scale for which chaos
sets in is governed by the Lipanov exponents. There is also the time scale for the order
1=N quantum corrections. If this time scale isn't longer than the chaos time scale, then
this method doesn't work, and this approach is out of luck. This approach has similarities
to a mean-�eld theory for the electric �eld carried by A. The question of whether the
quantum dynamic corrections swamp the fastest motion of the resultant equations should
also be investigated in the problem described by the previous panelist. A further question
is whether the methods of dressed quarks and/or self-consistent �eld methods could be
usefully applied here as they were in the problems studied by the �rst panelist.

Presentation by Salman Habib

This presentation began with the fundamental question, \How do the scales arise and
what are they?" The answer is hard to discover a priori. Suppose that the microscopic
physics is known, or only partially known, then you may miss things like gels. Here is
an example* which illustrates some of the complexities. Consider N-point masses with a
1=r potential, for example, a globular cluster. It was stated that N-body codes are very
dangerous because the error control is bad. Energy errors of the order of one percent
occur. Gravitational systems are unstable.�� Very complicated things happen, and one
can't follow the motion. It was reported that there is a big argument about whether
such a system is integrable or not. Whether the orbits are chaotic or not, or whether

* This example is closely related to problems with no �xed scale. See the presentation
of Mike Warren in Section 5.
�� This point is important. Since energy is conserved, one might think that a bound

(negative energy system) could not disperse, and this lack of dispersion is assumed in the
usual proof of the virial theorem. However, a moment's reection shows that near-collision
processes could lead to two mass points becoming more tightly bound and a third being
given enough energy to be ejected.
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by scattering they might go into a stochastic orbits,� or when they might be trapped in
periodic (or quasi-periodic) orbits is poorly understood. The addition of a very small
amount of noise can cause the orbits to leak through the Cantori�� and cause the di�usion
time scale to change from linear to exponential.

AOT Division wants to build a proton LINAC (linear accelerator) at an energy of 1
GeV and a current of 100 mA. The behavior of the proton beam shares much in common
with the above described gravitational problem.y

The relaxation time for a galaxy was computed by Chandrasekar to be about 100
times the age of the universe. However, there is a much faster time scale hidden in the
N-body system that he missed. The mean-�eld potential problem is nonintegrable, and we
get a new time scale governed by the Lipanov exponents which tends rapidly to a quasi-
equilibrium, rather than the true equilibrium with which Chandrasekar was concerned.
This time scale is about one-tenth the age of the universe.

An example of systems for which the appropriate physics is not known comes from
nanotechnology and is a metascopic gold wire about 20 microns long. The resistance in
this wire in a magnetic �eld changes in a random way. If the wire is long enough, quantum
interference e�ects stop these changes, but how the phase-breaking length comes out of
the fundamentals is not known.

Another example is gravity wave detectors. One-ton aluminum bar detectors are
made. They have very high Q. Single crystal detectors will ring for about a year at about
1 kHz. The quantum coherence time is much smaller, and the dissipative mechanism in
this problem is not understood.

Referring to the kink-nucleation problem,yy the panelist said that noise can change
the time scale. When the heat bath is multiplicative, the time scale can be changed by
orders of magnitude. One must be careful of the color of the noise as well. An important
question is \What is the role of uctuations, or what aspect is it of uctuations, that
can change the time scales by orders of magnitude?" The panelist also said that certain
expansions go bad after some time and that the 1=N expansion is sort of like the BBGKY
truncation scheme because they both treat 3- or 4-body and higher e�ects in an averaged
way. Another time scale found in many body studies is the long time tails of Cohen and
Dorfman in dense gases.

Presentation by Emil Mottola

In this talk, of interest are problems in which there is a rapid (basically uninteresting)

� By a stochastic orbit, as distinguished from a regular orbit, is meant that if one
considers a Poincar�e section of phase space, a region of this section [bounded by a KAM-
tori (Kolmogorov, Arnold, Moser)] is randomly penetrated by successives passage of the
orbit, more or less �lling the region.
�� These are generalized tori in phase space that, without the noise which causes the

leaks, would have contained the orbits of the system. They are named after G. Cantor.
y Except of course, there are no bound states because the sign of the interaction is

purely repulsive.
yy See the previous presentation by S. Habib.
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microscopic scale uctuation plus interesting mesoscopic and macroscopic behavior. In
this series we have previously heard of some examples of such microscopic scales. For
instance, the Zitterbewegung described by Fred Cooper or the phonon length scale in the
kink problem discussed by Salman Habib. Two methods of approach are described. The
�rst one, Gaussian dynamics, is able, with considerable computational e�ort, to deal with
the microscopic and mesoscopic scales. Unfortunately, the involved approximations break
down at the longer times of the macroscopic scale. The second method is a kinetic theory
approach. Cross comparison of this method with the �rst shows that the kinetic theory
approach gives results in which the mesoscopic scale behavior is well reproduced, and the
microscopic-scale variations are smoothed out. Thus, the kinetic theory approach takes a
big step forward by not having to work at the microscopic scale.

First, the speaker described the Gaussian dynamics method. Consider a wave function
which is a general Gaussian,

 (x; t) = N exp

�
�(x� �q)2

�
1

4G
� i�

�
+ i�p(x � �q)

�
;

where �q; �p;G, and � are real functions of time. They are, for the moment, arbitrary, but
as the formalism develops, choices will be made so that they will obey a set of Hamilton's
equations. These quantities can be expressed in terms of expectation values:

�q(t) = h jq̂j i =
Z
1

�1

x � dx;

�p(t) = h jp̂j i =
Z
1

�1

 �
�
�i @
@x

�
 dx;

G(t) = h jq̂2j i � �q2 =

Z
1

�1

(x � �q)2 � dx;

4G(t)�(t) = h jp̂q̂ + q̂p̂j i � 2�q�p; and

1

4G(t)
+ 4�2(t)G(t) = h jp̂2j i � K(t):

Alternatively, and this idea is crucial, one may use these expectation values to de�ne a
Gaussian approximation to the wave function. This procedure was called the mean-�eld

approximation. The idea then is to follow a set of 5 parameters in time rather than to
deal with a wave function. (Of course this is an approximation, as the wave function in
most problems does not retain a Gaussian shape.) The parameters in such a Gaussian
wave function, however, are not su�ciently general to encompass the full range of such
expectation values for the �rst and second moments of the operators q̂; p̂ (their mean
values and their variance), but as noted in the last of the above equations, there must be a
relation between K;G, and �. In order to overcome this problem and have 5 independent
quantities, the speaker next moved to the corresponding density matrix, which he writes
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as,�

�(x0; x; t) �hx0j�̂Gauss(t)jxi = (2��hG)�
1
2 exp

(
i�p(x0 � x)

�h
� 1

2

(K � 4G�2)

�h2
(x � x0)2

� i�

�h

�
(x� �q)2 � (x0 � �q)2

�� 1

8G
(x + x0 � 2�q)2

)
:

This form of the density matrix permits all �ve parameters to be independent.��

With malice aforethought, the speaker next introduced the following equations to
describe the time dependence of 5 time-dependent parameters in the density matrix,

_�q = �p; (1)

_�p = �!2(t)�q; (2)

_G = 4�G; (3)

_� = �!
2(t)

2
� 4�2 +

K

2G
; (4)

_K = �4!2(t)G�; (5)

with !(t) a de�nite function of time depending on the application. A directly calculable
consequence of these equations of motion is that d

dt
[GK � 4G2�2] = 0 so that GK �

4G2�2 � �h2�2=4 is a constant of the motion. (It is just the quantity which we found
from the Cauchy-Schwartz inequality.) The quantity � is called the mixing parameter
since Tr �̂(t) = 1, but Tr �̂2(t) = ��1 � 1 follows by direct calculation. It follows in the
usual way that, as a density matrix de�ned from a pure state is a projection operator,

� This equation di�ers from that for a pure state by replacing the coe�cient of the
(x � x0)2 with that displayed, instead of the pure state value of 1=8G. This replacement
has the e�ect of multiplying the density matrix by the factor

C = exp

�
1

2

�
1

4G
�K + 4�2G

�
(x � x0)2

�
:

This term can be expanded in a sum of products of function �n(x)�n(x
0), and so the

density matrix represents an ensemble instead of a pure state. The �n's are themselves
each expressible as a �nite sum of Hermite polynomials times a Gaussian. The set of
Hermite polynomials times their Gaussian weight function is a complete set. While it is
true that the ensemble so generated has component states which span the whole space,
it nevertheless only represents a one-dimensional subset of an in�nite dimensional set of
density matrices.
�� In order to maintain normalizability, it must be that K � 4G�2. For values of the

parameters determined by taking expectations with respect to a general wave function, this
inequality, in the form, GK � 4G2�2, can be derived by an application of the Cauchy-
Schwartz inequality, (

R
f2dz

R
g2dz � (

R
fgdz)2, provided G 6= 0.
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the trace of its square is also unity, and so � = 1 for any pure state. As we saw above,
the general, mean-�eld approximation can be represented by a one-dimensional family of
Gaussian density matrices which in turn are appropriate to an ensemble of (not purely
Gaussian) states.

The next step in the setup of the Gaussian dynamics formalism is to convert the
equations into a classical form. Let us de�ne

�2(t) � G(t); and

_�(t) = 2�(t)�(t);

where the second equation follows from the �rst by virtue of Equation (3) above. We may
now eliminate K in favor of � and � as K = 1

4
�h2�2=�2+ _�2. In this form, the equations of

motion (1-5) above can be derived as Hamilton's equations for the Hamiltonian,

He�(�p; �q ; p�; �) =
�p2

2
+
p2
�

2
+ Ve�(�q; �); and

Ve�(�q; �) =
!2(t)

2

�
�q2 + �2

�
+
�h2�2

8�2
:

Here the Gaussian dynamics of certain density matrices has been re-expressed as strictly
classical dynamics, and the only appearance of �h is as a central repulsion in the e�ec-
tive potential.* In this formulation, �h comes purely from the initial data, e.g., that for
Tr �̂2(0) and G(0)K(0) � 4G(0)2�(0). These equations of motion are identical to those
for a Gaussian phase-space distribution of a cloud of independent particles. For such a
Gaussian distribution under these equations of motion, direct computation shows that the
second moment of the distribution,

R
dx
R
dpf2(x; p) = �2 � 1=(h�), is a time-independent

constant. The only role of �h here is to normalize this distribution.
Next Emil presented a simple example. It was the two-well, anharmonic oscillator.

The Lagrangian of the system is L = 1
2
_q2 � �(q2 � v2)2=8. In the example, the large-N

method�� or mean-�eld method is used. In this method, q ! PN

i=1 qiqi. The notation

� = ��v2=2 + (�=2N)
PN

i=1 qiqi is needed, and so is the de�nition of the f 's as mode
functions in the expansion

q = �q + af(t) + ayf�(t); p = �p + a _f (t) + ay _f�(t);
with a; ay the usual creation and annihilation operators. With the further de�nition �2(t) �
h(q � �q)2i, when this problem is worked out in this approximation, it leads to�

d2

dt2
+ ��(t)

�
�q(t) = 0; (10)

* To make a full connection with quantum mechanics, it would be necessary also to give
the quantum Hamiltonian for which H = i�h(@=@t) yields the same equations of motion.
The speaker did not address this issue, but in the context of the mean-�eld approximation
the time dependent quantities �q; �p;G;� were supposed to have come from the solution of
some such more fundamental equation.
�� See also the above presentation of Fred Cooper regarding the large-N method.
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��(t) =
�

2

��v2 + �q2(t) + �2(t)
�
; (20)�

d2

dt2
+ ��(t)

�
f(t) = 0; (30)

�2(t) = (2n + 1)jf(t)j2; and (40)

f
d

dt
f� � f� d

dt
f = i�h: (50)

These equations are the Heisenberg representation. The usual commutation relation [a; ay]
implies by (50) the expected results [p; q] = i�h. Finally, the speaker pointed out that
these equations are identical with (1-5) given earlier when we identify !2(t) ! ��(t) and
�! 2n+1, so that the large-N method applied to this example reproduces the mean-�eld
Heisenberg equations which are equivalent to the Gaussian density matrix evolution in the
Schr�odinger picture.

This same procedure can also be applied to systems with many degrees of freedom

which is where the method is of interest to this initiative. The problem described was the
Schwinger problem. In this problem, one has a large condenser with a high charge on the
plates. This produces a very strong electric �eld. The quantum electro-dynamics problem
is to study the system of electrons and positrons which are pulled out of the vacuum in
the space between the condenser plates. A plot of the solution (including 60,000 modes
and run on the CM5) reveals that the current shows plasma oscillations, but riding on top
of them is a small amplitude, very high-frequency jitter (Zitterbewegung). It was pointed
out by the audience that there is an analogous problem in solid-state physics involving an
applied-�eld, the Stark e�ect, and excitons, etc. There is also a longer-term time scale
which is related to Landau (collisionless) damping. In this problem, it is manifest by
\dephasing" or \decoherence." The approximations in the Gaussian dynamics prevent it
from accurately describing the solutions over such long times, however.

Next, the kinetic theory approach was discussed by the speaker. The Boltzmann

equation, to the lowest order, is

�
@

@t
+ e ~E � ~r~p

�
N(~p; t) = ?

for the spatially homogeneous case. We have the time dependence

_Ez = � _jz = �2e
Z

d3~p

(2�)3

�
pz

!~p

�
N(~p; t):

If ? = 0, then there is no particle creation, no entropy production, but only dissipationless

plasma oscillations. Since we know that QED does lead to particle creation, Emil suggested

the Schwinger-inspired source term,

? = � (1 � 2N)| {z } jeEj ln
n
1� e��m2

=jeEj

o
| {z } �(p)|{z} :

42



The �rst factor is the Pauli blocking term, the second the Schwinger rate term, and the last

assumes creation at rest. We were shown a graph comparing the solutions for the current

which illustrated the result that the kinetic theory method produces a nonjittery version

which agrees quite well with the actual solution as generated by Gaussian dynamics, at

least for the �rst few cycles.*
The speaker claimed that these equations of motion (i.e., for the Gaussian density-

matrix) are chaotic, and that this feature can easily be seen even in the simple anharmonic
oscillator case discussed above. The reason, he said, was that while chaos is impossible
with one degree of freedom, these equations describe a distribution, and so they can be
chaotic. The Lyapanov exponent is

lim
t!1

lim
�!0

ln

�
�p(t) � �p+�(t)

�

�
t

= L > 0;

where �p(t) is the phase space trajectory with initial data p, and � is an in�nitesimal.
This inequality means that the orbits are exponentially diverging which feature leads, of
course, to decoherence. (An analogy in solid state physics is polaron tunneling.) We were
shown graphs of the results for eE=m2 = 1:000; 0:999 to illustrate this point. They were
quite similar at �rst, even down to the jitter. In the Gaussian approximation, di�erent
initial conditions lead to di�erent !(t) functions. This e�ect, in turn, leads to the rapid
phase decoherence between di�erent states.

Altogether then, we see in the Schwinger problem what we can call a microscopic (fast
decoherence time), a mesoscopic (plasma or collective excitation time), and a macroscopic
scale (plasmon damping time) in this problem. The kinetic theory method gives a good,
nonjittery solution as displayed at the mesoscopic time scale. The Gaussian approxima-
tion method succeeds in representing the �rst two time scales, but the third is a time
scale on which the approximation breaks down, and it is not unreasonable for this to be
the Lyapanov time scale. This last idea is not proven in general, but does hold for the
comparison of Schr�odinger dynamics with Gaussian dynamics. One result along this line,
which is known, is that the maximal Lyapanov exponent of classical SU(Nc) gauge theory
is just twice the quantum plasmon damping exponent.

Presentation by Lee Collins:

Title: Transient Quantum Mechanical Processes

This problem has multiple time scales. It involves hitting a molecule with a laser.
Laser pulses can now be generated in the range of femtoseconds rather than nanoseconds,
which was the previous state of the art. This time scale is of the same order as some of
the molecular processes. If you can hit during such a process, you can probe deeply, or
maybe control the molecular process. Special shaped pulses are required for some of these
applications. As an example, HCl vibrates, and one could use such a laser to control the
excited-state populations.

* Emphasis added.
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The time scales are as follows:
1. Electrons in the molecule move very fast.

2. Vibrations of the electron cloud are of the order of 10s to 100s of fem-
toseconds.

3. Rotations are of the order of 1000 femtoseconds.

Experiments have been conducted in MST Division on K2. Here the experimenters
can probe, on a 50 femtosecond time scale, where the molecule is during the vibrations.
They get plots of the energy versus distance. By pulse shaping techniques, you can force
the molecule into one con�guration or another. One of the questions of interest here is
an \inverse scattering type question," i.e., given a process rate what is the laser pulse re-
quired to produce it? (The solution need not be unique.) The basis is the time-dependent
Schr�odinger equation. Time-dependent perturbation theory doesn't work well here because
the perturbation is not small and the process is transient. The method being used is a
version of optimal control theory. All three of (i) the penalty properties, (ii) the optimiza-
tion properties, and (iii) the constraints, which here are the time-dependent Schr�odinger
equation, feed into a measuring functional. The resulting output would be the necessary
electric �eld.

Presentation by Hans Frauenfelder

Title: Energy Landscapes

This talk focused on biomolecules, and in particular, on the problems of protein fold-
ing. He explained that there is a primary structure of the protein molecule in which the
molecule is like a somewhat wavy line, there is a secondary structure in which the molecule
looks like an �-helix or a coil spring, and a tertiary structure in which the molecule looks
like a coil spring that is all wadded up. This structure was referred to as space �lling. He
showed plots of properties which one might have naively expected to decay exponentially
but which seemed to decay in a power-law manner. This behavior is thought to reect
a multitude of time scales. From here, the discussion moved to the energy landscape.
This phrase refers to a semiclassical description of the energy of a protein in terms of the
conformation of the molecule. To some limited extent, it seems to be like a phonograph
record. When viewed from a distance, it seems fairly smooth. When viewed more closely,
it has a lot of very similar grooves. When the grooves are examined in detail, one �nds
various internal structures. So it is with the energy landscape of a protein. When the free
energy is plotted against the conformation coordinates, one sees valleys. These are called
\substates." Looked at in more detail, the surface is rough with small valleys in the valley
oor. If we look here in more detail, we see \folding funnels." As the funnel narrows down,
we come to the region called a \molten globule." With further narrowing, we reach the
bottom of the funnel, where we have the \native protein." Here however, we again �nd a
rough bottom. The valleys in this rough bottom are called taxonomic CSs (conformational
substates) and if we now look at the valleys in the bottom of these valleys, we �nd again
more roughness. The new tiny valleys so discovered are called statistical CSs.

New results were also discussed. Hole burning was mentioned: if you have a broad
line, you can burn a hole in it with a laser. Myoglobin was reported to have a structure
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which bifurcates (actually, multifurcates) to a depth of 7 levels. You see di�erent e�ects
as the temperature goes up. The various motions have been classi�ed. The ones on the
largest scale are called vibrations. Some concluding remarks were the following: Proteins
can unfold in nanoseconds, and the x-ray structure that one sees is just the resting state
and not the working state. The phenomena extend over 6 orders of magnitude in time.
Lastly, light has an enormous e�ect.

Presentation by Alan Glasser

Glasser talked to us about NIMROD (NonIdeal Magneto-hydrodynamics, Rotation,
Open Discussion) which is a team e�ort involving D. C. Barnes, A. H. Glasser, R. A. Nebel,
C. R. Sovinec, and a number of outsiders. They are developing a new computer code.
They have talked to the potential customers and are dealing with conicting requirements.
This project involves parallel computing. He reported that fusion funding was down one-
third this year but not dead, and he expects this will be mostly paid for by Europe and
Japan. The code is for numerical simulation of a Tokamak, which is basically an axi-
symmetric torus, whose purpose is to con�ne a su�ciently hot plasma in order to induce
a thermonuclear fusion reaction to generate heat energy. This energy, in turn, is to be
used to drive a generator for the production of electric power. These objects are pretty
good sized. We saw a picture of one with a man standing up inside it. There were several
more pictures including one at General Atomics and one at the Massachusetts Institute of
Technology. The constructors of these machines tend to have lots of inspection ports and
equipment all over the outside. They have toroidal coils to produce a toroidal �eld plus
central coils to produce a poloidal �eld. There is a proposal to build one which will stand
30 meters high and cost 6 billion dollars. It is hoped the Japanese will pay for it.

The con�nement time � in a tokamak is given by � / a2=D, where a is the linear
dimension of size, and D is the di�usion constant. The volume over area V=A / a scales
as the linear size. The stored energy scales like the volume, but the structure to receive
the energy is only proportional to the area A. Thus the problems of disruptions become
more acute as the size increases. An important parameter with regard to disruptions is
� = f=E, where f is the plasma frequency and E is the magnetic �eld energy. Not all
modes are unstable, and not all unstable modes lead to a disruption, but they can lock
onto the walls and cause a disruption.

The transport coe�cients can di�er by a factor of a million from along the magnetic
�eld lines to across them. This anisotropy leads directly to multiscale phenomena. There
is also the alphen time which is of the order of megahertz and the plasma frequency which
is of the order of gigahertz, among other important scales. The con�nement time is of the
order of seconds, so many, many computer time steps are required.

A second problem is the heat load on the diverter plates. (It was explained that the
escaping material is swept against the diverter plates.) There is worry about burning out
the diverter plates.

The equations governing the behavior inside a tokamak are as follows. First, the uid
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equations are

@nj
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�j : ~r~vj = Qj ;

where nj is the particle density for species j, �j is the mass density, P is the scalar part
of the pressure, � is the linear part of the pressure tensor, Rj is the force on species j by
the other particles, qj is the charge, ~qj is the ux, and Qj is the heat source term. The
speaker remarked that the mean free path along the �eld is of the order of kilometers, so
the uid equations are not quite valid. The quiet implicit method developed by Barnes is
used. Note was also taken that the uid equations alone don't close. It is assumed that

the bulk of the material is Maxwellian plus a �f for the particles; ~q and
$

� are given by
higher moments of the particle distribution.

The Maxwell equations are

~r � ~B = ~r� ~E +
1

c

@ ~B

@t
= 0;

~B = ~r� ~A; ~E = �~r�� 1

c

@ ~A

@t
;

r2 ~A = �4�
c
~J; and

~r � ~A = ~r � ~J = ~0:

The constitutive equations are

~J =
X
j

~Jj =
X
j

njqj~vj :

An important part, the speaker said, is the numerical grid. First of all, it is to be
uniform in the angle �, the angle in cylindrical coordinates about the axis of symmetry.
In an r-Z cross section, the grid is sort of like a (distorted) set of polar coordinates
about the core of the con�ned material, except that a patch of rectangular coordinates
is placed in the very center. This is a nonorthogonal coordinate system, although it is
a logically rectangular grid. Glasser then remarked that nonlinear instabilities and their
time evolution lead to disruptions. He also mentioned �nite elements in the ux core and
the use of bilinear elements represented by bicubic splines (The product of a cubic spline in
each of the two dimensions.) Glasser also spoke of exact conservation laws, �nite-element
conservation laws, and implicit time steps.
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The exact conservation laws are
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The �nite-element conservation laws are

u(x; t) = ui(t)�i(~x); (f; g) �
Z
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Presentation by Mark Herant

Title: Supernovae and How They Blow Up

There are two types of supernova and the speaker said that he would con�ne his
remarks to Type II. This type involves the death of a massive star, which has a mass
greater than 10M�, i.e., ten solar masses. Supernovae of this type yield the most powerful
explosions releasing of the order of 1053 ergs of which the order of 1051 is in kinetic
energy. They eject heavy elements and energize the interstellar matter. They occur at the
rate of about one per 30 to 100 years per galaxy. Previously, computer simulations had
yielded a black hole instead of an explosion. The famous 1987 supernova, imaginatively
named SN1987A, showed evidence of mixing of material from the deeper layers and the
surface layers. The problem with previous simulations seems to be that, as they were one-
dimensional, the symmetry of this solution did not allow for convective mixing which is
necessarily an asymmetrical behavior. We see experimental evidence that this asymmetry
occurs in nature because we see high-velocity neutron stars which are believed to be kicked
out of an asymmetrical supernova explosion.

We pick up the description of the calculation in the red giant phase. The star is the
size of the orbit of Jupiter, but the core is about the size of Earth. One notices that there
is a ratio of almost 6 orders of magnitude between the star size and the core size. This
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certainly quali�es as a multiscale problem. The core is mainly iron.* When the nuclear
production of energy ends, there is no more pressure generated to hold up the star, and the
core collapses in about 1 second to a neutron star with a diameter of about 20 km. This
leaves the core about 8 orders of magnitude smaller in diameter (or 24 orders of magnitude
in volume) than the star, on a times scale, say less than 10�14, of that of the life of the star.
The time scale of the nuclear reactions is similarly short compared with the collapse time.
As the density goes up, the reaction, p + e ! n + � + energy, takes place. The collapse
results in a neutron star which is so dense that it is opaque to neutrinos, and it takes several
seconds to bleed this reaction heat and the reaction heat of compression out of the core.
The neutron degeneracy provides pressure support at the center, but the original collapse
produced an inward-moving shock wave, as the outside doesn't know about this change at
the center yet. Near the center, the colder gases fall in and are heated by convection and
rise out against the shock. This e�ect then forces the shock out. One needs at least two
dimensions to model this convection process. After the explosion (about 100 seconds), you
get instabilities which lead to mixing (on a scale of 106 kilometers). The time scale is now
about one hour (3,600 seconds), and one sees the characteristic, mushroom-shaped caps.��

To do things properly, one really needs to do a three-dimensional calculation, on, as we
have seen, a wide range of time (0.1 milliseconds to minutes or hours) and length scales.

Continuation of the Presentation by Mike Warren

Using particle hydrodynamics algorithms to integrate the equations of motion for
every particle means that there is a need to �nd each particle's neighbors which are nearer
in distance than say R. Here we range from a very dense region in the center to a very
dilute region outside, and the usual neighbor �nding schemes are poor for this situation.
We use tree data-structures. That is to say, the region is broken into octants, and then
each octant is further subdivided. The process is continued until, on average, there is one
particle per cell. Obviously, the number of levels of subdivision will be greater in the dense
regions than in the dilute regions. On a parallel machine, domain decomposition is used
so that the number of particles is roughly equal on each processor. A one-page C-code was
ashed up to illustrate the load-balancing procedure with 16 processors. The building of
the data structure and the load balancing are very quick, and they are done for each time
step. The two-dimensional problems can be run on a large workstation in a day or so. For
a three-dimensional problem, much more computational time is required. The programs
have been written so that the same code plus a special machine-dependent �le run on any
message-passing machine.

* The reason that it is iron comes from nuclear physics. Iron has given up the maximum
energy per particle so that further nuclear reactions do not yield more energy.
�� The calculation is two-dimensional, and the mushroom shape is characteristic in the

two-dimensional, version of the famous \bubble problem." The bubble problem is as
follows: Consider a motionless sphere of heated gas in an ambient atmosphere of cool gas.
Assuming no mixing across the boundary, describe the subsequent motion. The trouble
with this problem is that the bottom rises faster than the top, and it may or may not
eventually form a torus.
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Presentation by Avadh Saxena

Title: Multiscale Issues in Low-Dimensional Electronic and Magnetic Materials

Saxena said that the following aspects of his subject will be of particular importance:
(i) Competing interactions (e.g., electron-phonon, e-e, J, etc.), (ii) The case of two cou-
pled �elds. Here one integrates one of them out, and nonlinearity implies length and/or
time scales, (iii) Competition with intrinsic length and times scales (e.g., lattice, external
�eld periodicity), (iv) Pattern evolution, (v) Nonadiabatic e�ects (e.g., quantum lattice
uctuations), (vi) Multiple length and/or time scales, and (vii) Complexity.

The speaker explained the emergence of multiple scales in the following way. Elec-
tronic �lling of bands implies incommensurability which in turn implies the \polaron"
lattice. There are then the length scales: a, the lattice spacing, �, the correlation length,
and d, the macroscopic sample size. Also, �ne-scale structure (e.g., twinning) couples to
the polaron lattice in electronic materials (striped phases in high-temperature supercon-
ductors).* In addition, there is competition with internal degrees of freedom (e.g., shape
modes). Finally, the speaker pointed to the melting of phases due to (i) quantum uc-
tuations, (ii) thermal e�ects, (iii) external �eld, (iv) discommensurations (or topological
defects), and (v) impurities/disorder.

In a further laying out of the general ground, Avadh pointed to the modeling of
nanostructures in materials. In this regard, he mentioned MX (metal-halogen) chains,
doped polymers, and some coaxial graphitic microtubules which he said are quasi-one-
dimensional. There are high-Tc superconductors, other coaxial graphitic microtubules,
and some fullerenes which are reported to be quasi-two-dimensional. Other fullerenes and
quantum dots were described as quasi-zero-dimensional. In addition, he mentioned self-
assembly on surfaces, inorganic-organic stacks, and the self-organization of large Josephson
junction arrays. He next described in a qualitative manner his modeling strategy. It
is to develop a new synergism of (i) statistical and quantum mechanics, (ii) nonlinear
and nonequilibrium techniques, and (iii) pattern recognition and computational strategies.
There are important issues at the boundaries between (i) solid state phyics and organic
chemistry, (ii) physics, organic/macromolecular chemistry and biology, and (iii) condensed
matter and materials science. Next, the speaker gave a list of important e�ects. With
regard to the ground states, he mentioned (i) charge density waves, (ii) bond order waves,
(iii) spin density waves, (iv) spin-Peierls phases, and (v) long-period \superlattice" phases.
With regard to excitation, he listed (i) solitons, (ii) polarons, (iii) bipolarons, (iv) excitons,
(v) breathers, and (vi) soliton and (bi)polaron lattices.

Saxena next turned his attention to solitons in degenerate systems such as trans-poly-
acetylene. He showed us pictures of the chemical diagrams. They looked like footprints
marching across the screen from left to right. Each footprint was labeled with a C with
a line sticking up from a left footprint and down from a right footprint. On the �rst row
(R), the left-right footprints were connected with a single line and the right-left footprints
with a double line. In a the second row (L), these connecting lines were interchanged. He
also showed a plot of the energy per unit length versus the band gap. It had a double

* See also the following presentation by P. Swart.
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minimum at ��0, where 2�0 is the Peierls gap. If doped, the system will create polarons.
The Hamiltonian for the Takayam, Lin-Liu, Maki (TLM) continuum model was given as

HTLM =
1

2��vF

Z
dx�2(x) +

X
s

Z
dx y(x)

�
�i�hvF �3
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is a two-component spinor, and the �i are the Pauli matrices. This formula leads to the
eigenvalue problem,
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These spinor �elds can be decoupled by the change of variables
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Next the speaker showed a plot of the order parameter (Peierls distortion, boson �eld).
In the �rst of these �gures, there was a single polaron which looked like an upside-down
Gaussian curve. With more doping, a polaron lattice was displayed. It looked like the sum
of a whole set of single polarons with their centers regularly spaced with a spacing d.

The speaker next gave us a taste of the connections with a (solvable) �eld theory,
speci�cally, with the Gross-Neveu (Larkin), coupled, N-avor, massless Fermion model.
Here the Lagrangian is
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where � for � = 0; 1 are the two-dimensional Dirac  matrices. That is

0 = �3; 1 = i�1;  (�) =

�
 
(�)
1

 
(�)
2

�
; and � =  y0:

This model has a number of properties. It has discrete chiral symmetry,  ! 01 . The
index � = 1; : : :N labels the particle type, and in this regard there is internal SU(N)
symmetry. The introduction of an auxiliary meson �eld �(x) results in a system of non-
interacting fermions plus bosons. The model has spontaneous dynamical symmetry break-
ing which leads to \mass generation." In the adiabatic static limit, one gets the same
fermion and self-consistency equations as for the continuum Peierls systems. The Peierls
gap corresponds to the mass in this model.

Avadh followed that with a structural diagram of a halogen-bridged transition metal
complex (MX chain) which was a line of bivalent and tetravalent platinums, each sur-
rounded by a ring of four nitrogens and with a chlorine between each on the central line.
Between each such ring there are also two ClO4 structures. The chemical formula is
[Pt(en)2][Pt(en)2X2](ClO4)4, where X stands for Cl, Br, or I, and en stands for ethylene-
diamine. Of interest here was how time scales with energy. We then saw a number of plots
of computer results. In one plot for a photoexcited hole polaron, starting with an initial
polaron we get intragap levels which correspond to a soliton. We also got to see a plot of
\breathers," which in this mode of presentation, look like crinkled wrinkles.

In a �nal sample of his work, Saxena discussed the role of spin anisotropy. For his
model, he took a cylinder covered with classical Heisenberg spins all over. How does
spin-anisotropy a�ect deformation? For the anisotropic part of the Hamiltonian, he uses

Hanisotropy = Jw2
0 sin

2 �:

If there is no spin anisotropy, then a Sine-Gordon equation results for the spin part, and it
doesn't a�ect the deformation, but if there is anisotropy, then it does a�ect the deformation.
The characteristic length of the deformations is �0, the radius of the cylinder. In the
simple cases, there appears a periodic slight squashing of the cylinder as the deformation.
If the winding number is greater than zero, then much more contorted-looking shapes were
obtained.

Presentation by Pieter Swart

Title: Martensitic Mesostructure

Martensitic phase transitions are displacive, �rst-order, solid-solid, di�usionless, and
reversible. An example would be the following: a system is in a high-temperature, high-
symmetry phase like a face-centered-cubic structure for temperatures above the transition
temperature, and the system goes into a low-temperature, low-symmetry phase for lower
temperatures, such as a face-centered-orthorhombic phase of which there are three vari-
ants. Classic examples of martensitic transitions occur in Steel, NiTi (Nitinol), and LiNiO3

(lithium niobate). There can be recoverable local strains as large as 10%. Large crystals
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(bigger than a cubic micron) form characteristic and hierarchical mesostructures for tem-
peratures below the transition temperatures. The crystal, when cooling down, forms its
own composite. Re�nement is driven by incompatibility, e.g., austenite-martensite inter-
faces. Surprisingly enough, the resulting geometries can be extremely well predicted by
continuum-based theories.* We saw a number of pictures illustrating the interesting things
that can happen. Sometimes temperature changes the length scale. We saw needle do-
mains and microstructure within microstructure. We saw pictures of a material built out
of blocks of material which had its own distinct microstructure. It was pointed out that
the interfaces are typically sharp and coherent (not grain boundaries). There are severe
constraints on (i) which variant can join with which (rotated) variant, (ii) orientation, (iii)
Y junction geometry, etc. Junctions can occur between (mirror-image) twins. The bound-
aries between twins can be highly mobile (although they need not be, as, for example,
in steel). This feature, plus the huge strains involved, implies the possibility of e�ective
actuators, sensors, and many other unique applications.

Example Sensor and Actuator Materials

Class Property Material Switching Field

Ferroelectric Piezoelectric Pb(Zr, Ti)O3 E
Electrostrictive Pb(Mg13Nb2=3O3 E

Ferromagnetic Magnetostrictive Terfenol H
Ferroelastic Shape Memory Nitinol, NiAl Stress, Strain

There are a number of applications for this type of physics. Under the heading of
Shape Memory Alloys (CuZn, CuZnAl, AuCd, NiTi, NiAl, FePd, ...) there are the follow-
ing: hydraulic couplings and fasteners, guidewires for medical applications, orthodontic
braces, temperature regulators, thermally/current driven actuators, and dampers. Under
the heading of Ferro & Piezoelectrics (BaTiO3, PZT, PLZT, ...) there are the following:
senors & actuators (medical, sonar, ...), surface acoustic wave devices (sur�ng, analog �l-
ters), damping patches, micromechanical devices (MEMS), and real-time optical control
(deformable telescope mirrors). The speaker projects a $10 billion market here by 1998.
Under the heading of Magnetostrictive Devices (Terfenol, FeTbDy ) there are the follow-
ing: high-power actuators, vibration isolators, induction and stepping motors, high-power
sonar, and maybe even memory storage devices. The speaker said that Terfenol is under-
exploited. We saw a picture of a sonar dome on a navy ship. This was claimed to be
the largest application, at least in terms of physical size. Finally, under the heading of
Composites there are \smart materials."

The major problems in this area were reported to be the following: (i) These materials
exhibit aging, albeit slowly. (ii) The materials have a limited temperature range. (iii) They
are di�cult to machine. (iv) They are expensive. And (v) they are poorly understood be-
cause of a lack of experimental evidence at the mesoscopic and microscopic levels. Marten-
sitic microstructures are a result of dynamics acting on a complicated energy surface. Swart

* See the presentation by David Kinderlehrer in Section 7 for related material.
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says the total, \stored-elastic" energy can be expressed as E =
R
�(
 �r~u; : : :) dx for some

�, nonconvex in
 �r~u, so that, using this continuum picture, the martensitic mesostructure

should be just the solution to min
R
�(
 �r~u; : : :) dx+ constraints. It is important to pay

attention to the following issues: (i) When does one expect many ground states with �ne
structure? (ii) What is the homogenized energy of such ground states, i.e., energy mini-
mizers? (iii) What is the role of dynamics in selecting the observed mesostructures? And
(iv) what is the role of thermodynamics and noise?

The nature of the energy landscape was next discussed briey under the assumption

of constant temperature, sharp interfaces, and statics. Let
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where P is the point symmetry group, and for coherent interfaces

 �r~u =
$

F 1

��� �r~u =$

F 2; with
$

F 1 �
$

F 2= a 
 n = rank 1:

Hence Swart concludes that in 9-dimensional matrix space there exist several isolated
energy wells.

In conclusion, the speaker propounded questions which have been a recurrent theme
in this initiative: What is the macroscopic (or homogenized) nature of �ne mesostructures
and how do solutions to nonlinear partial di�erential equations arising from the variational
settings blow up because of the highly oscillatory (or singular) behavior? He further said
that this area represents a renaissance in the dusty topic of the variational calculus. Inter-
facial physics is needed to understand going from the mesoscopic level to the microscopic
level, and we must be very careful here. Lastly he addressed the question, \Why is this
class of problems a suitable candidate for the combined micro+meso+macro (3M) attack?"
In answer, he listed a number of the reasons which have been advanced to establish this
initiative: (i) There is important physics and a large and growing number of applications.
(ii) All the levels are important, with strong interactions. (iii) The experimental roadblocks
are serious barriers to progress. (iv) Even the engineering community concedes that a de-
tailed understanding of mesodynamics is the key to success (translation, they have worked
hard and failed without it.) As a last example, he cited the problem of what happens in
tip propagation when it meets a di�erent phase or microstructure of the material.
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Presentation by Salman Habib

Title: Nonequilibrium Phases and Transitions

This talk gives an added perspective* on a Laboratory Directed Research and Devel-
opment-funded project to explore future possibilities. The participants in this group are
E. Mottola (principal investigator), A. Bishop, F. Cooper and the speaker. The idea is to
get a focused program.

Some of the topics of interest were listed as: nonequilibrium phases such as metastable
phases and stable nonequilibrium states; nonequilibrium transitions such as
quenches, spinodal decomposition, transitions in driven systems, defect formation, and
heavy ion collisions; and related topics such as the statistical mechanics of nonlinear co-
herent structures, low-temperature transport and mesoscopic quantum tunneling. Habib
said that the participants were interested in how microscopic physics implies relevant phe-
nomenology and in the analytic and computational techniques applicable to both.

Next the speaker cited the O(3) nonlinear �-model as an example. First however, he
introduced a quantum mechanical toy model, the pendulum. It is de�ned by a potential
V (�) = !2(1 � cos �). There is a static, unstable solution to this equation with energy
Esph = 2!2. It was explained that the \sphaleron" rides over the top of the potential,
while the \instantons" and \periodic instantons" tunnel through the potential barriers
between the potential minima. The tunneling factors for instantons was reported to be
�tunnel � exp(�2S0) = exp[�2(16!)], where 16! is the instanton action, and the thermal
\tunneling" factor was reported to be �thermal � exp(�2!2=kT ). A �gure was shown of
the behavior in the (S=!)-(�!) plane. In the plane, the sphaleron solutions form a straight
line through the origin with a positive slope. For �! less than some critical value, there
is classical hopping and when it is greater there is quantum tunneling. There is a line,
roughly parabolic opening to the right for the instanton solutions. It was shown as tangent
to the sphaleron at the critical value of �!. The portion of this curve for �! less than about
1.5 times the critical value was marked \periodic instanton," and the rest \instanton."

The nonlinear �-model is de�ned by the equation,

S =
1

2g2

Z
dx d� (@�n

a)
2
+
m2

g2

Z
dx d� (1 + n3);

where the Einstein summation convention is used and the range of a is 1 to 3. The
normalization nana = 1 is imposed, and the second term (mass or magnetic �eld term)
breaks the conformal symmetry. Salman next explained that there are \winding number"
transitions in the O(3). The point seems to be that, in the �-model, the spins live on a
sphere, ::

_
~n � ~n = 1. If one picks the boundary conditions that the na tend to constants as

(x; t) ! (1;1), then it follows that R2 7! S2, and so we have a mapping from S2 7! S2

which is characterized by the winding number. A similar plot to that for the pendulum
problem was then displayed. It showed the g2S-m� plane. Here again, for a critical value
of m�, there is a sharp dividing line between the classical (left-side) and the quantum
(right-side) portions. Again there is a diagonal line whose value at the critical value of

* See also the presentation by Alan Bishop in Section 8.
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m� gives a critical value of g2S which divides the quarter plane into upper and lower
parts. Presumably, this diagonal line again corresponds to the sphaleron. Here as in the
pendulum case, the calculations can be done, but they are much harder, and the behavior is
very di�erent. Next we were treated to a graph of �W versus time. Here the value of �W
oscillated with small amplitude about various integer values and then made a relatively
big jump (up or down) to the next integer value where it remained for a fair period of
time, until it made its next jump.

Habib next turned his attention to \kinks" in the � : �4 : statistical mechanics.* (The
: �4 : notation means a normal ordered product.) This work was reported to be with F. J.
Alexander and A. Kovner, and also with A. Saxena on the � : �6 : case. The model being
considered is in one-space and one-time dimension. The Lagrangian is

L =
1

2
_�2 � 1

2
(@x�)

2
+
1

2
m2�2 � 1

4
��4;

which leads to the equation of motion,

�� = @2x�+m2�� ��3:

This equation has the \kink" solution,

�k =
mp
�
tanh

�
mp
2
(x� x0)

�
; with the energy Ek =

r
8

9

m3

�
:

There are nonequilibrium aspects to this problem. The standard (naive) approach
is, if nk(t) denotes the density of kinks at a time t, then the autocorrelation function,
hnk(t)nk(t + � )i � hnk(t)ihnk(t + � )i is expected to decay like an exponential e�t=� in
\computer time," t, with � the kink lifetime. In fact, Habib has found that it decays like
the sum of two exponentials! He said that they are the result of two distinct processes
going on in the system. If one plots the kink locations as a function of time, Salman was led
to the concept of \geminate" and \nongeminate" recombination of kinks. The geminate
type corresponds to closed loops in this sort of picture and the nongeminate type does
not. The e�ects of the geminate recombination is dominant in the early stages and leads
to the more rapidly decaying exponential. The nongeminate processes lead to the more
slowly decaying term and are dominant at longer times. These latter terms were described
as di�usive e�ects. Thus with multiple time scales present, it was the speaker's view that
no simple analysis is possible. He then discussed the e�ect of the type of noise present, for
example, multiplicative or additive noise. He presented results on the nucleation problem
[here n(t = 0) = 0], which demonstrated that the equilibrium value of n(t) depends on the
noise type, being greater for nonlinear than for linear noise type.

He concluded that the strong dependence on noise type implies that the whole theory
of kink nucleation and dynamics may have to be rethought and that more numerical data
are needed. He said that he felt that the equilibrium statistical mechanics of kinks is now

* See also the �rst presentation by Habib in this section.
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well understood, but the nonequilibrium behavior is still far from being understood. He
plans to undertake heroic calculations in the future and to work on an analytic theory for
the nucleation problem, perhaps an inhomogeneous mean-�eld type of theory.

Presentation by Fred Cooper

Title: Is Chaos a Limiting Factor in Numerically Simulating Time-Dependent Quantum
Mechanical Systems and Time Evolution in Quantum Field Theory Using Dirac's Time-
Dependent Variational Method?
Subtitle: (Semi) Quantum Chaos and Variational Methods

Cooper said that the work he is reporting was done in collaboration with Salman
Habib, Rob Ryne, and John Dawson. By way of introduction, he said that the long time
average is not sensitive to the distributional behavior of the expectation values. He will
approximate a quantum mechanical problem in a very reasonable way. It will turn out,
however, that the approximation will be sensitive to the initial conditions. The Lipano�
time scale gives an estimate of how long you can believe the approximation. One can do
the quantum mechanical problem on the computer for comparison with the approximation,
but the �eld theory problem is too hard to do this way. The problem considered will be a
purely Hamiltonian system and thus not dissipative.

For the action,

S =

Z
t2

t1

dt h	j
�
i
@

@t
�H

�
j	i=h	j	i;

Dirac's action principle (�S = 0; �j	(t1)i; �j	(t1)i) leads to the time-dependent Schr�o-
dinger equation, �

i
@

@t
�H

�
j	i = 0:

If we minimize the action within a restricted variational basis, then

	 7! 	v(yi(t)); and

Z
dx	�

v
	v = 1

leads to an e�ective action functional de�ned on the variational parameters, yi(t), as

�[yi(t)] =

Z
dt h	vj

�
i
@

@t
�H

�
j	vi:

Lagrange's equations for the variational parameters follow from ��[yi] = 0. We now have
a variational wave function which is dependent on just a few parameters.

The structure of the action leads to symplectic Hamiltonian dynamics.* The Dirac
form of the actions with the above described variational ansatz leads to

�[~y ] =

Z
dt

Z +1

�1

dx	(x; ~y)

�
i
@

@t
�H

�
	(x; ~y(t)) =

Z
dtL(~y; _~y);

* For a discussion of symplectic methods, see Section 7. It was pointed out there that,
for symplectic Hamiltonian dynamics, the Jacobian of the transformation of phase space in
Liouville's theorem is just unity. Put otherwise, symplectic Hamiltonian dynamics means
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where H is chosen to be

H = �1
2

d2

dx2
+ V (x):

It follows directly from the above structure of the equations that

L(~y; _~y) =

NX
i=1

�i(~y) _yi � h(~y)

is the most general form allowed. The quantities in this form are

�i(~y) =
i

2

Z +1

�1

�
	�(x; ~y)

@

@yi
	(x; ~y) �	(x; ~y)

@

@yi
	�(x; ~y)

�
;

and

h(y) =

Z +1

�1

dx	�(x; ~y)H	(x; ~y):

If we now minimize the action, �[~y ] given above, we get Lagrange's equations,

d

dt

@L

@ _yi
� @L

@yi
= 0; for i = 1; : : : ;N:

For the general form of L for our case given above, the equations of motion are derived
from

NX
j=1

Mij(~y) _yj =
@h(~y)

@yi
;

where Mij(~y) is given by

Mij(~y) =
@�i

@yj
� @�j

@yi
= �Mji(~y);

which is immediately seen to be an antisymmetric matrix. Now if the inverse of Mij exits,
the equations of motion can be put into a symplectic form:

_yi =

NX
j=1

M�1
ij

(~y)
@h(~y)

@yj
:

that the system possesses the Poisson bracket structure of classical dynamics. The notion
of symplectic refers to the symplectic group. The orthogonal group in n dimensions O(n)
is the group of linear transformations Ai;j which leave the scalar product ~x �~y �

Pn

i=1 xiyi
invariant. More generally, we could have chosen ~x ? ~y � Pn

i;j=1 xiSi;jyj , where Si;j is
any positive de�nite quadratic form. The symplectic group in n dimensions Sp(n) is the
set of all linear transformations Ai;j which leave invariant a nondegenerate bilinear form
f~x; ~yg = Pn

i;j=1 xiMi;jyj , where Mi;j = �Mj;i is antisymmetric. It follows directly that
detM = (�1)n detM so that if n is odd, then detM = 0, and so the bilinear form is
degenerate. Thus the symplectic group can only be de�ned in even dimensions.
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Since M�1
ij

is necessarily also antisymmetric, h(y) is a conserved quantity because

dh(y)

dt
=
X
i

@h

@yi
_yi =

X
i;j

@h

@yi
M�1

ij

@H

@yj
= 0:

It is convenient at this point, the speaker said, to introduce Poisson brackets for our
system using the de�nition

fA;Bg �
X
i;j

@A(~y)

@yi
M�1

ij

@B(~y)

@yj
:

This de�nition satis�es Jacobi's identity.� In terms of this notation, the equations of
motions can be rewritten as,

_yi = fyi; h(y)g =
X
j

M�1
ij

@h

@yi
=
X
j

fyi; yjg @h
@yi

;

and so these equations of motion are symplectic in structure. The point of all this formal
work is to show that the approximation of the original quantum mechnical problem by
wave functions which depend on a few parameters can be cast in the form of a Hamil-
tonian system with symplectic dynamics, which in its turn is suitable for �nite-di�erence
approximation.

Cooper next described an example. It is the case of the N + 1 oscillator problem
(scalar electrodynamics). The Hamiltonian for the N + 1 oscillator system is

H =
1

2

"
p2A +

NX
i=1

p2i + (m2 + e2A2)

NX
i=1

x2i

#
;

wherem is the mass and e is the electron charge. We have introduced an N+1 component
oscillator x�; � = 0; 1; : : : ;N with x0 = A and the other N oscillators labeled by the
Roman indices, i = 1; : : : ;N .

In this example, the operator equations of motion are

�xi + (m2 + e2A2)xi = 0; and �A +

 
e2
X
i

x2
i

!
A = 0:

Taking the expectation values, we get

h�xii +m2hxii+ e2hA2xii = 0; and h �Ai + e2
X
i

hx2iAi = 0:

� fu; fv;wgg+ fv; fw;ugg+ fw; fu; vgg = 0
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The choice made by the speaker for a trial wave function is

	v(x�) = N exp

�
� 1
�h
(x � q(t))�(x � q(t))�

�
1
4
G�1 � i��

��
+
i

�h
p�(t)(x � q(t))�

�
;

where repeated subscripts are to be summed over, and the normalization constant is given
by�

N = exp

�
�1
4
Trfln(2��hG��g

�
:

The variational parameters in this trial wave function are

q�(t) = h	vjx�j	vi;
p�(t) = �h	vji�h @

@x�
j	vi;

G��(t) + q�(t)q� (t) = h	vjx�x� j	vi; and
2q�(t)p�(t) + 4

X
�

���G�� = h	vj (x�p� + p�x�) j	vi:

Note is taken that the number of parameters is always even. The e�ective action is given
by

� =

Z
dt

(
NX
i=1

pi _qi + pA _A� �hTr
h
_��;�G�;�

i
�He�

)
;

where the e�ective Hamiltonian is

He� = h	vjHj	vi

=

NX
i=1

p2
i

2
+
p2
A

2
+
�h

8
Tr[G�1] + 2�hTr[�G�] +

1

2

�
m2 + e2(A2 +G0;0)

� NX
i=1

(q2i +Gii):

Next, Cooper specialized these general equations to the case q(t) = p(t) = 0 and
remarked that, in this case, both G and � are diagonal. Making the further specialization
to N = 1, he denotes G1;1 = G(t) and G0;0 = D(t). In Hartree approximation, the e�ective
Hamiltonian becomes

H
(0)

H =
1

2
p2A + 2�h

�
�2
GG+�2

DD
�
+
�h

8

�
1

G
+

1

D

�
+
�h

2

�
m2 + e2(A2 + �hD)

�
G:

In addition, the speaker described the other special case where N ! 1. Here we
de�ne the average e�ective Hamiltonian as

~H
(0)

e� = lim
N!1

H
(0)

e� =N

=
1

2
p2A + 2�h�2

GG+
�h

8G
+
�h

2

�
m2 + e2A2

�
G:

� See also the presentation by Emil Mottola starting on page 38.
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In the Hartree approximation, Hamilton's equations for the expectation values are

_A = pA; _pA = �e2�hAG; _G = 4�h�GG; _D = 4�h�DD;

_�G =
�h

8G2
� 2�h�2

G
� m2

2
� 1

2
e2�h(A2 + �hD); and _�D =

�h

8D2
� 2�h�2

D
� 1

2
e2�h2G:

To the leading order in large N , D = 0, and there is no equation for �D.
Next Fred showed us some of the numerical results in graphical form. First, there was

a Poincar�e recurrence map in the hxp + pxi hx2i plane. It looked like a smiley conehead.
Next, we had a plot of A versus t. All the curves start out at about +4 with a small
negative slope and then move sharply downward. At a little past unit time, the exact
curve parted company with the other two curves. The curve labeled 1=N reversed slope
at about time 4 and parted company with the curve labeled H which reversed slope at
around 5. Subsequently, the curves continued to oscillate and bore little resemblance to
each other. This feature was explained as being due to the sensitivity of the approximations
to the initial conditions, a feature not shared by the exact solution. A plot of the Lipano�
exponent at large times shows that for the 1=N curve to be about 0.7, while that for the H
curve was about 0.5. Then we saw a couple of graphs that demonstrated that the frequency
distribution as a function of x or A, while quite Gaussian in shape initially, is de�nitely
non-Gaussian for later times. This shape error represents a signi�cant di�erence from the
assumed shape of the trial wave functions being used.

At this point in the presentation, the speaker switched from dynamics to statics. The
connection with the above work is to explore methods to treat non-Gaussian wave func-
tions. In this regard, he considered the anharmonic oscillator, for which the Hamiltonian
is

H = � d2

dx2
+
1

4
(x2 + �x4); and (H �E) (x) = 0:

Using conventional Rayleigh-Schr�odinger perturbation theory, one can deduce that

 (x; �) � exp(�x2=4)
1X
n=0

�nPn(x) and E(�) �
1X
n=0

�nEn;

where the Pn are polynomials of degree 2n in x
2, and P0 = 1. For all n > 0, Pn(0) = 0. Us-

ing these results, the speaker proposed for the more general case than the anharmonic oscil-
lator a wave function of the same structure, but with the coe�cients now being adjustable
parameters. He found that if we compute the cumulants (also called connected parts),

W [2n], and demand, as was the case for the anharmonic oscillator, thatW [2n] = O(�
1
2
n�1),

then through Nth order in �, there are N + 1 free parameters. Note was taken that to
get a scattering correction, a quartic polynomial is required. Fred then said that what
he proposed to do in the dynamic case was to treat the free parameters as variational
parameters. He concluded by saying that chaos provides an upper bound on the validity
of the variational computation.
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5. No Fixed Scale

Presentation by Rajan Gupta

The work reported here is joint work with Pablo Tamayo. Three topics were men-
tioned: (1) QCD, (2) the statistical mechanics of spin models at and near the critical point,
and (3) nonequilibrium statistical mechanics in the critical region. The �rst topic was not
discussed.

Concerning topic two, the XY -model has been studied in two dimensions. It has a
Kosterlitz-Thouless transition at temperature Tc. Here the spin-spin correlation length
behaves as

� / exp

�
� b

(T � Tc) 12

�
:

In addition, the O(3), nonlinear �-model was studied. This model is asymptotically free.
Here the critical temperature is Tc = 0, and the spin-spin correlation length behaves as

� / exp

�
2�

T

�
:

In three dimensions, the spin-1
2
Ising model was studied. Here the spin-spin correlation

length behaves as

� /
�
T

Tc
� 1

���
:

Thus, in these three cases we get a considerable spectrum of behaviors. What these
problems share is that all length scales contribute to the problem and, according to renor-
malization group theory, in an asymptotically self-similar manner. The contribution by all
scales is the major obstacle to the solution of the problem. The approach used here is that
of Monte Carlo techniques. The e�ects of the contribution by all scales is made manifest by
what is called \critical slowing down." That is to say, that larger and larger structures are
generated as one approaches the critical point, and it takes progressively longer times for
them to relax to an equilibrium distribution. Modern Monte Carlo algorithms adapted to
respond to this problem have very greatly ameliorated this problem. The answers sought
here are the behavior of the various thermodynamic functions and critical exponents.

Under the third topic, a two-temperature Ising model was studied using the Metropolis
Monte-Carlo algorithm. Here the Hamiltonian is

�H =
J

kT

X
bonds

SiSj ; and T = T1 or T2

randomly at each time step with probabilities p and 1� p, respectively.

Presentation by Mike Warren

This presentation concerns the N-body problem and reports joint work with Wojiceh
Zurek. It concerns the dynamical motion of large numbers of particles interacing via long-
range forces, e.g., gravity. A problem of astrophysical interest might be one with a system
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size of 100 megaparsecs (5:82 � 1034 Bohr). On this scale, a galaxy would be the size of
a computer screen pixel. A problem of interest here would be structure formation on a
cosmological scale. Other problems of interest in this project are collisions between stars,
merger of galaxies, accretion of black holes, etc. These problems involve enormous density
contrasts, and very irregular time-dependent structures. The approach used builds on the
result proved by Newton (Principia) for the 1=r2 gravitational force that for a spherical
distribution of mass, the force on a test particle is the same as if all the mass inside a sphere
passing through the test particle were concentrated at the center point of the sphere and
all the mass outside of that sphere were not there. On this basis, the multipole expansion
is started and is useful for more complicated forces than 1=r2. In this project, the problem
space is decomposed into boxes, and for each box, the potential can be expanded as

X
j

Gmjm

j~r � ~rj j �
GMm

j~r � ~rcmj +K(�; �)
GMm

j~r � ~rcmj2 + � � � ;

where ~r is outside the smallest circumscribed sphere about ~rcm containing all the ~rj ,
M =

P
j
mj , ~rcm is the center of mass, and K(�; �) depends only on the �rst order

spherical harmonics. The scheme employed decomposes the problem space into boxes of
variable size. It is called the oct-tree method, as the whole space is �rst divided into
octants, which are then re�ned by further such divisions, stopping when only one particle
remains in a given box. For each box, a truncated multipole expansion is computed. The
scheme has a tree structure in the sense that if box A is divided, the information for box
A is also retained. In this way, the interaction for a distant particle is computed from the
largest reasonable box, and thus achieves a considerable saving in computational time.

This method has also been used to do vortex particle motion, a bubble hit by a shock
wave, two stars (or bucky balls) colliding, and the ow on the surface of a sphere (by the
panel method). Note is made that there must always be a �xed point in the last problem
since inversion through the origin is not possible for ow.

Presentation by Mike Warren

The subject of this discussion was the dynamical motion of an N-body problem,
interacting, for example, under the force of gravity.* One of the key aspects in doing
computations on this problem is the data structure. The panelist reported that he �rst
divided the model space into octants, and then each octant into smaller octants in a
hierarchical manner. This process of re�nement stops when the number of particles in
each box becomes small enough. The interaction of a small box with the rest of the system
is then represented by a multipole expansion of the interaction potential. (This type of
hierarchical method can also be applied to computer-monitor pixels for image compression
problems. If we have a large high-de�nition picture which we wish to shrink, we can divide
the original into boxes corresponding to the �nal pixels and use a majority rule or whatever
to assign a value to the pixel in the new image.) In this hierarchical method it is important
to characterize the errors and to develop criteria necessary to derive the least set of boxes

* See also the �rst presentation by Mike Warren in this section.
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to give that error or less. Each decimal place costs a factor of two or three in time. For
an accuracy of about one part in one thousand, there is a crossover for a system of about
10,000 particles between the box method and doing each particle individually.

It is very di�cult to break this problem down in a suitable manner for a paral-
lel machine. This panelist has used successfully a one-dimensional list.� It is based on
classical studies of space-�lling curves. Two were mentioned, the Morton order and the
Peano-Hilbert space-�lling curve. The Morton order was used and there is a simple al-
gorithm to produce it, One takes the x; y; z coordinates of a particle and interleaves the
bits 1; bx1 ; b

y

1 ; b
z

1; b
x

2 ; b
y

2; b
z

2; b
x

3 ; : : : to form a number associated with each particle and then
rank orders these numbers. The initial 1 bit was described as a \stack-holder" bit. The
list is then chopped into a number of sections equal to the number of processers employed.
There are some big spatial jumps between neighboring members of this list, but they occur
with low enough frequency so that it was reported not to be a serious problem.�� It was
not reported how often the particles were reassigned to processors during the course of a
calculation. Most of these calculations were done on a paragon computer. This method is
called a spatial oct-tree method. It has applications to, for example, galactic clusters, star
collisions, mock-redshifts, and comet impacts.

Presentation by Rajan Gupta

The subject of this discussion was QCD. There are at �rst sight at least 4 mesoscopic
scales. They correspond to the b, c, s and l quarks and are 5{10 GeV, 2{4 GeV., 1{2 GeV,
and 0.1{1.5 GeV, respectively. So this problem might appear to belong in the multiple-
mesoscopic scale panel.y However, consider, for example, � and � interactions. These are
mediated by gluons, and integrals of the formZ

dp

p

occur. It is these loop integrals which introduce an in�nite number of scales. It was noted
that every decade makes the same contribution to such an integral. The perturbative
content of this theory is just taken over a range from an infrared cuto� given by �(p) �
1= ln(p=�) to an ultraviolet cuto� above which (for large p) the content is computed by
nonperturbative methods. Therefore, we can sum up this part of the contributions from
perturbation theory. The modus operandi is to use the perturbation theory for scales in
the low energy range 0{5 GeV and a nonperturbative lattice treatment for scales above
this range (shorter spatial range). One of the major questions which arises is,\Is there a
self-consistent way of matching these two parts?" There are a couple of ways, but there
are errors in both. Work on an appropriate formalism to do this matching is in progress.yy

� See also an alternate procedure given in the presentation of M. Sahota in Section 2.
�� We do know that neither 2- nor 3-space can be well ordered, and this problem may

be a reection of that theorem.
y See Section 4.
yy One member of the audience suggested the use of a two-point Pad�e approximant in

the interpolation region.
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Presentation by George A. Baker, Jr.

In order to introduce another type of in�nitely-many-mesoscopic-scale problem, the
panelist described briey the Ising model. In this model there is a space lattice of spins
which point either up or down. These spins have a spin-spin interaction Js~{s~{+~�, where ~�
is a fundamental, nearest-neighbor lattice vector. If the two interacting spins are parallel,
the interaction is J , and if they are antiparallel, �J . Note that any such con�guration of
spins can be decomposed into clusters of parallel spins with boundaries across which the
spins are antiparallel. The distribution of cluster sizes sets the scale or scales of this type
of problem. If J > 0 there is a tendency for the spins to align, which is in competition
with the tendency toward random orientation caused by the temperature. The statistical
mechanics of this model are controlled by the partition function,

Z =
X
s~{=�1

e�E=kT ;

where k is Boltzmann's constant, E is the total energy which is the sum over all the
bonds of the system of the bond energies given above, and T is the absolute temperature.
There are many quantities of physical interest. The panelist chose to discuss just one, the
two-spin correlation function,

hs~0s~ri / �0:5(3�d)+�
e�r=�

r0:5(d�1)

in the limit as r ! 1. This is a version of the Ornstein-Zernike form. Here, � is the
correlation length, d is the spatial dimension, and � is a critical exponent charaterizing the
spin-spin correlation function at the critical temperature. For temperatures di�erent from
the critical temperature, � <1, and it sets the scale. The critical (or Curie) temperature
is the lowest temperature at which there is no spontaneous magnetization. Below this
temperature, the spins can be on average polarized up or down. As this temperture is
approached, clusters of inde�nitely large size with either up or down polarization occur.

The next idea is the idea of scaling. The idea here is that the details of the micro-
scopic behavior don't matter! When K = J=kT ! Kc, at the critical temperature, as we
have just remarked, � !1, and the two-spin correlation function (for �xed r) goes over
to the form

hs~0s~ri /
1

rd�2+�
:

In this limit, the distribution of cluster sizes (which sets the scales) behaves like a power
law and does not de�ne a single mesoscopic scale, but rather an in�nity of scales. When we
are close the the critical point, we have a continuum of scales up to the correlation length
which provides a cuto�, but at the critical point there is no such cuto�. The approach to
the critical point is called the \scaling region." Here, let

~x = ~r=�; and �~x = �as~r ;
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which rescales the distances and the amplitude of the spins. Then we set

h�~0�~xi ! F (x) �
x!1

Ae�x

x0:5(d�1)
;

where the power of x in the denominator might be di�erent. We still need to get from the
microscopic scale to this limit!

We now come to the idea of scale-scale interaction (thanks to Ken Wilson). The
insight is that the physics is in the interaction between one length scale and its neighboring
length scales. To exploit this insight, one seeks equations which result from the systematic
reduction in the number of degrees of freedom. (We start from the microscopic scale for
example.)

� � � � � � � � �
� X � � X � � X �
� � � � � � � � �
� � � � � � � � �
� X � � X � � X �
� � � � � � � � �
� � � � � � � � �
� X � � X � � X �
� � � � � � � � � !

X X X

X X X

X X X

In the above �gure, we have outlined blocks of nine spins. They are all the same but the
one in the center is denoted by X for emphasis. The mapping envisioned is to replace each
block by a single spin, as at the right which is an appropriately scaled version of the average
block spin. The spin-spin interactions are no longer just between nearest neighbor pairs,
but are adjusted to keep the answers correct. Without going into details, these arguments
can lead to the de�nition of a mapping R in the space of Hamiltonians, and we can look
to see if it has a �xed point.

RH� = H�:
An example of these ideas is the Hierarchical model. The interactions are illustrated

by horizontal lines in the following �gure.

interactions l
3
2
1
0

. . . . . . . . . . . . . . . .
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

The usual Ising model Hamiltonian is

�J
X
j

�j�j+1 �mh
X
j

=
1

2

X
(�j � �j+1)2 � J

X
j

�2
j
�mh

X
j

�j :
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In the model, we keep the (�1� �2)2; (�3� �4)2; : : : terms for the zero level (l = 0). In the
next level, we replace

(�3 � �2)2 7!
�
1

2
(�3 + �4) � 1

2
(�2 + �1)

�2
; : : : ;

and so on, as indicated by the �gure for l = 1. In the successively higher levels, in like
manner we make a substitution of successively larger block averages. The argument here
is that this change shouldn't be too bad, since �1 � �2 and �3 � �4 near the critical point
because of long-range correlations. In more formal terms, let us de�ne for �1; : : : ; �2L,

sm;0 =(�2m�1 � �2m)=
p
2;

ŝm;0 =(�2m�1 + �2m)=
p
2; m = 1; : : : ; 2L�1;

...

sm;l+1 =(ŝ2m+1;l � ŝ2m;l)=
p
2; m = 1; : : : ; 2L�2�l;

ŝm;l+1 =(ŝ2m+1;l + ŝ2m;l)=
p
2; l = 0; : : : ; L� 2;

which de�nes 2L new variables in terms of the �j. The Hamiltonian for the hierarchical
model is then

H = J

L�1X
l=0

2�l(2��)
2L�1�lX
m=1

s2m;l �
1

2
J

�
1� 2L(��3)

1� 2��3

�X
j

�2j ;

where the parameter � introduces a weighting of the di�erent interaction levels so as to
correspond to the above usage of �.

Now, following the renormalization group ideas, we �rst integrate over the sm;l for
level l = 0, then l = 1; : : :. Let us pick the initial spin distribution as

f(�) = exp

�
�1
2
(a�2 + b�4)

�
; where a < 0; and b > 0:

Performing the above mentioned integrations, we are led to the scale-scale recursion rela-
tions:

Il(x) =

Z +1

�1

dy exp

�
�Ky2 � 1

2
Ql(x + y) � 1

2
Ql(x � y)

�
; and

Ql+1(x) = �2 ln
h
Il

�
2(1��)=2x

�
=Il(0)

i
:

The initial conditions are

Q0(x) = P (x=
p
2); and exp[�1

2
P (x)] = f(x) exp

�
1

2
K

�
1� 2L(��3)

1� 2��3

�
x2
�
:

66



The partition function then reduces to

Z =

L�1Y
l=0

n
(22��)2

L�2�l

[Il(0)]
2L�1�l

o

�
Z +1

�1

exp

(
mh�2L=2ŝ1;L�1 � 1

2
QL

 p
2ŝ1;L�1

2(2��)L=2

!)
dŝ1;L�1

2(2��)L=2
;

where � = 1=kT , h is the magnetic �eld, and m is the magnetic moment. Notice that
the scale-scale recursion relations are solved by all the Ql's equal to quadratic functions.
In the cases where K 6= Kc, the Ql tend to such a �xed point, and these are called the
high-temperature or low-temperature �xed points. Here the susceptibility � / 1=Q00(0) is
�nite. In the case in which K = Kc, the Q's tend to a �xed point Q� and � / 2L(2��)

which goes to in�nity. If we expand about Kc,

Ql(x;K) = Qc(x) + (K �Kc)ql(x) + o(K �Kc);

and we expect that ql � 2l�Qc. From � we can compute other critical indices. The critical
index for � is  = (2 � �)=� and that for � is � = 1=�.

The question is: To what extent can these scale-scale interaction ideas be usefully

employed in any (or all) the other problems of this initiative? Can they be used to move

o� the microscopic scale?
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6. Turbulence

Presentation by Charles Zemach

This presentation is on the subject of uid turbulence in general. By way of intro-
duction, several view graphs were shown displaying density pro�les of rather wavy plumes
of smoke from a rectangular building. These pictures show three principal attributes: (1)
variations down to the smallest length scale, (2) unpredictability in time, and (3) mixing
is rapid. In addition, view graphs were shown of the results when the previously men-
tioned pictorial information was digitized and averaged over about 100 to 1,800 frames.
These results were quite smooth and regular. One question is to understand this average
smoothness. Flow can be described by the Navier-Stokes equation,

d~u

dt
=
@~u

@t
+ (~u � ~r)~u = �

~r(p)
�

+
�

�
r2~u;

starting from an initial condition ~u(x; t0) for some initial time t0. In this equation, the
nonlinear term in the velocity �eld ~u is called the advective term, and the term involving
the viscosity � is called the dissipative term. This term is so called because its action
is to spread out and dissipate the initial velocity �eld. The pressure is p and � is the
density, which may sometimes be regarded as a constant. The advective term tends to
destabilize the problem by causing any initial irregularities to grow worse and without the
dissipative term could lead to \catastrophe time." It is the competition between these two
terms which determines the nature of the solution. This competition is described by the
Reynolds' number,

�(~u � ~r)~u
�r2~u

� �UL

�
� Re:

This equation has built-in instability, and we get a statistical distribution driven by an
explicit equation.

The total energy in the system is the mean energy, that is the energy of the mean
ow, plus the turbulent energy. The Fourier transform of the turbulent energy gives a
characteristic power spectrum. Starting from the low frequencies (large-scale behavior),

we see a scaling law so that logE(~k) / log j~kj. The spectrum reaches a peak at a value of

j~kj which corresponds to the size of the dominant eddies. As j~kj increases further, we come
into the region called the inertial range. Here the spectrum decays like E(~k) / j~kj�5=3. It
is called the inertial range because it is in this range that the turbulent ow interacts with
the mean ow. The ux over the inertial range is a constant. Above a limiting value, the
dissipative wave length, kd (Kolmogoro�), the spectrum drops o� exponentially fast. It is
in this region that the energy is converted into heat.

What one wants for this problem is a set of reliable codes which predict the ows,
including turbulence. Modern turbulence theory started in the 1960s. We can now do
(512)3 to (1024)3 grids which are satisfactory up to Reynolds' numbers 100{300. There
are real, important problems with Reynolds' numbers of the order of a million, however.
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Presentation by Charlie Doering

The work reported was done in collaboration with Peter Constantino and Mac Hyman.
The speaker said that when you have chaos on many scales, you have turbulence. First, an
example of uid ow was considered. Suppose we have a hot lower surface and a cold upper
surface, separated by height h. Then there will be convective transport of heat upward.
The Rayleigh number is R = g��Th3=��, where g is the acceleration due to gravity, �
is the isothermal expansion coe�cient, �T is the di�erence in temperature between the
upper and lower surfaces, and � is the viscosity. Stability is equivalent to the statement
that the eigenvalues of the linearized operator have a positive real part which in turn is
equivalent to the real part of a particular quadratic form being positive. For the de�nite
models, the time behavior is characterized by e��t. When � > 0, the mode is stable, and
when � < 0, it is unstable. We were shown plots of R vs horizontal wave number. There
is a U-shaped curve of neutral stability. Above this curve is the unstable region and below
it is the stable region. The minimum point occurs at the critical Rayleigh number Rc and
the critical wave number kc. A second plot was presented in the �{k plane. Here again we
saw U-shaped curves of constant Rayleigh number. For R < Rc, the curves lie completely
above the � = 0 line. For R = Rc, the curve is tangent to it, and for R > Rc the curves
intersect the line twice each, with part of the curve below that line.

Deep in the turbulent regime, nonlinear e�ects take over, and the true problem doesn't
look like this linearized version. However, these modes may still have some relevance.

At low Rayleigh numbers, there is no ow and there is a linear temperature gradient
in the vertical direction. As the Rayleigh number increases, you get convective heat ow
by means of rolls. By the time the Rayleigh number is approximately equal to, or a bit
greater than, the critical Rayleigh number, the temperature pro�le has developed marked
boundary layer e�ects. The temperature gradient dT=dz is high near the top and bottom
surface, and much lower in the center of the sample. When the Rayleigh number is much
greater than Rc, the central region is almost isothermal and all the temperature change
takes place in the boundary layers. There are now descending blobs of cold uid and
ascending blobs of hot uid.

The Nusselt number is de�ned as N = hj~rT j2i, where T (~x; t) is the exact solution
for the temperature pro�le. How thick is the boundary layer? One way to approach this
question is the method of marginal stability. The idea here is that the thickness is such
that the Rayleigh number is just equal to the critical Rayleigh number. Thus,

Rc = Rboundary =

g�

�
�T

2

�
�3

��
=

1

2
R
�
�

h

�3
:

Therefore,

�

h
=

�
2Rc

R

�1=3
/ R�1=3:

This kind of argument can be made rigorous. Choose a temperature pro�le, � (z), then
there is a theorem,
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Theorem. If � (z) is marginally stable (the lowest eigenvalue is zero) on average (time
average, when recast as a quadratic form), then N equals the heat transport computed

from � (i.e.,
R
h

0
� 0(z)2 dz).

Corollary. If � (z) is marginally or more stable, then N is less than or equal to the heat
transport computed from � .

One can use this corollary and the variational calculus to determine N .
What we �nd for each R > Rc is that there exists a pro�le such that the curve in the

�{k plane just touches the � = 0 at one distinct value of k, which is marginally stable. We
could just keep the modes that lie within the curve. As we crank up R, the speaker said, it
turns out that you get two distinct modes that touch the line of marginal stability (� = 0).
For a very high R, you get many such tangent points which lead to highly degenerate,
multiple scales of wave numbers.

Presentation by Shi-Yi Chen

Title: Passive Scalar Turbulence and Anomalous Di�usion

The work reported was done in collaboration with Nian Zheng Cao and Robert H.
Kraichnan. Shi-Yi said that the theoretical study of passive scalar turbulence is signi�cant
because (i) turbulent advection of various quantities is of great importance in a variety of
uid ows, including the migration of pollution in ground water, atmospheric and ocean

pollutant dispersion, chemical mixing processes, and combustion processes; (ii) improved
modeling of stochastic di�usion is important both for applications to �elds like those named
and for the insight it can provide, in partnership with basic theory, into fundamental
dynamics of turbulent processes; and (iii) from the point of view of dynamical systems
theory, stochastic di�usion is a prime example of a complicated, distributed system in a
state of strong statistical disequilibrium. The methods developed in recent years for the
treatment of dynamical systems with small numbers of degrees of freedom have not been
e�ective for turbulence problems. This is a fundamental theoretical challenge.

Next we were treated to a picture of the wake of a grounded tanker. People would
like to know where and how fast the leaking oil goes. After that we saw a picture of the
simulation structure on many di�erent scales. Initially, there was a Gaussian distribution
of temperatures. The advection and di�usion were said to be about equal, and there was
ow taking place underneath the visible surface. Colored noise, stocastic Gaussian, and a
fractal dimension of 1.36 were mentioned. Also shown was a picture of di�use interstellar
clouds, which is a real compressive di�usion problem. The fractal dimension was estimated
to be about 1.32{1.325.

Chen now gave the equation of motion for a passive scalar temperature T as

�
@

@t
+ ~u(~x; t) � ~r

�
T (~x; t) = �2r2T (~x; t) + f(~x; t);

where ~u is the solenoidal velocity �eld, � is the molecular di�usivity, and f represents the
forcing term. We are interested in the structure functions. Let �T (~x; ~x0; t) � T (~x0; t) �
T (~x; t). For the case of interest, the velocity �eld uctuates randomly in time with a
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correlation time which is very short compared with the convective and di�usive time scales.
We de�ne the 2nth order structure function as

S2n(r) =


�T (~x; ~x0; t)2n

�
; where r = j~x � ~x0j;

where n is a positive integer and h i denotes an ensemble average. The exact evolution
equations for the structure functions are

@S2n(r)

@t
� 2

rd�1
@

@r

�
rd�1�(r)

@S2n(r)

@r

�
= �J2n(r);

where d is the spatial dimension and �(r) is the two-particle eddy-di�usivity de�ned by

�(r) = 1
2

Z
t

0



�ku(~r; t)�ku(~r; t

0)
�
dt0;

with �ku(~r; t) � [~u(~x; t)� u(~x + ~r; t)] � ~r=r. The velocity �eld is switched on at t = 0, and
T (~x; t = 0) is a Gaussian �eld. We have the de�nition

J2n(r) � 2n


[�T (~r)]2n�1H[�T (~r)]� ;

where

H[�T (~r)] = 
(r2
x +r2

x0)�T (~r)j�T (~r)
�
= � 
r2

x0T
0 �r2

xT jT 0 � T
�
;

and h�j�T (~r)i denotes the ensemble average conditioned on a given value of �T (~r).
The next problem addressed is the common one of closing a hierarchy of equations,

speci�cally those for the J2n. To this end, Chen gave a \re�ned similarity hypothesis,"
i.e.,

�T (~r)
@�T (~r)

@t
� �T (~r)(r2 +r02)�T (~x; ~x0; t):

Then if we forget about the temperature and make a hand-waving argument, (a di�erent
rigorous argument exists)

@�T (~r)2

@t
� �T (~r)2:

If we expand H in �T , we have

H � f1(r)�T + f3(r)(�T )
3 + � � � ; H[�T (~r)] � �T (~r) = f1(r)�T (~r);

which is a truncation to the �rst order in �T . This ansatz agrees very well with simulations.

f1(r) =
h�THi
S2(r)

=
A(r)

S2(r)
;

where A(r) = r2S2(r) �r2S2(r)jr=0. The ansatz now is

H[�T (~r)] = A(r)=S2(r)�T (~r); J2n(r) = 2nS2n(r)A(r)=S2(r):

71



Applying the last equation in the case n = 1 gives J2(r) = 2A(r) which in turn we have
expressed in terms of J2(r). Thus the previously given partial di�erential equation for S2
is closed (still depends of � of course). Once it is solved, then all the other J2n(r) are
explicitly given by the ansatz in terms of S2n which leads to explicit equations for the rest
of the S2n etc. Shi-Yi pointed out that this \linear ansatz" implies the formula

C2n(r) � J2n(r)S2(r)

nJ2(r)S2n(r)
� 1:

The speaker next assumed that there is a scaling range where

�(r) / r�(�) (0 < �(�) < 2); S2n(r) / r�2n ; f1(r) / rz1 ;

and �(r) is considered a given. Using the equation of motion for S2n and power counting,
we can obtain

�2 = 2� �(�); z1 = ��2; and �2n =
1
2

p
4nd�2 + (d� �2)2 � 1

2
(d� �2);

where d is the spatial dimension. When n � 1, �2n �
p
nd�2. This behavior represents

anomalous scaling as regular scaling is expected to yield �2n = n�2.
Chen told us that there were a number of computer simulation results which had been

run on the CM5 on an 81922 grid in physical (not momentum) space. The initial �eld T
was a Gaussian �eld. We saw some plots of C2n, which should be unity. For �2 = 0:5, they
were not so bad, but for �2 = 1:0 there were large departures. It is hard to tell whether the
ansatz is violated or the inertial range is violated. When �2 = 1, the scaling exponent for
J10 was not bad, but for smaller n they were not so good. The comparison of the direct
numerical simulation with the solution of the equations is fairly close. We saw a graph in
which it was clear that the anomalous scaling was a better description for large n of the
scaling exponents than was the regular scaling.

The speaker said that he had plans for future work on di�usion in porous media, where
the small-scale dynamics of the velocity is important and for future work on turbulent
di�usion in compressible uids.
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7. General Methods

Presentation by Bruce J. Berne

Title: Simplectic Methods

(This presentation was made on Jan. 11, 1995, to a CNLS High Performance Com-
puting Workshop. It seems relevant to this initiative and so is included.)

The sort of problems which are being considered in this talk are sti� vibrations such
as are seen in polyatomic uids and path integrals. Here small time steps are required
to follow the sti� part which implies that millions of time steps are necessary to follow
the soft part. This sort of problem also occurs in disparate mass systems* such as e, p,
H di�usion, a dilute system of light particles in a dense system of heavy particles. Also
mentioned were superionic conductors, the Lagrangian methods of Carr-Parinello,�� and
systems with long- and short-range forces.

In molecular dynamics where we have Newton's equations of motion,

mi

d2~ri

dt2
= ~Fi(~r1; : : : ; ~rN );

and so the Liouville theorem applies. These equations are too hard to solve exactly so the
Verlet algorithm has been used (actually the velocity Verlet due to H. Andersen),

~ri(�t) = ~ri(0) +~_ri(0)�t+
�t2

2mi

~Fi(0); and

~_ri(�t) = ~_ri(0) +
�t

2mi

h
~Fi(0) + ~Fi(�t)

i
:

Here energy is not conserved, but it is time reversal invariant and symplectic. (The Jaco-
bian of the phase space transformations referred to in the Liouville theorem is unity.) The
solution using this algorithm moves in an energy shell.

Another way to generate these equations is through a derivation based on the Liouville
operator,

iL = _x
@

@x
+ F

@

@p
= iL1 + iL2;

where we have written one term for each degree of freedom. The propagator is given by�
x(�t)
p(�t)

�
= eiL�t

�
x(0)
p(0)

�
:

Since L1 and L2 do not commute, we resort to the Trotter formula,
y

e(iL1+iL2)t =
h
eiL1t=2peiL2t=peiL1t=2p

ip
+O(t3=p3):

* See, for example, the presentation by Lee Collins, Section 4.
�� See the discussion of Lee Collins in Section 4.
y Higher-order versions have been discovered by M. Suzuki and are very e�ective for

some problems.
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We can think of �t = t=p as a single time step. Since L is Hermitian, eiL is unitary, and
we write, for a single step,�

x(�t)
p(�t)

�
=
h
eiL1t=2peiL2t=peiL1t=2p

i�
x(0)
p(0)

�
;

which we can rewrite by the de�nitions as�
x(�t)
p(�t)

�
= exp

�
�t

2
F
@

@p

�
exp

�
�t _x

@

@x

�
exp

�
�t

2
F
@

@p

��
x(0)
p(0)

�
:

In this form, we have re-expressed the Trotter version of the propagator in terms of shift
operators (by Taylor's theorem). From it we get directly the aforementioned velocity
Verlet algorithm. If we interchange the roles of L1 and L2, then we get the position Verlet
algorithm, which is �

x(�t)
_x(�t)

�
=

�
x(0) + �t

2
[ _x(0) + _x(�t)]

_x(0) + �t
m
F
�
x(0) + �t

2
_x(0)

� � :
Consider the case of light and heavy particles. Let Lx represent the fast degrees of

freedom and Ly the slow degrees of freedom. As above, we can express

ei(Lx+Ly)�t � eiLyt=2peiLxt=peiLyt=2p:

We next break down eiLx�t, by again employing the Trotter formula, so that we get

eiLx�t =

�
exp

�
�t

2
F
@

@p

�
exp

�
�t _x

@

@x

�
exp

�
�t

2
F
@

@p

��n
;

where �t = �t=n, and we have used, iLx = _x @

@x
+Fx

@

@p
; Fx = Fxx+Fxy. The idea here is

take a lot of time steps for the fast degrees of freedom relative to the number taken for the
slow degrees of freedom. This method is not the same, it was said, as holding the heavy
particles �xed while the light ones move. It was emphasized that this method is by its
structure simplectic.

Another application of these techniques is for short- and long-range forces. A force
can be decomposed into short- and long-ranged forces by use of a switching function since
F (R) = S(R)F (R)+[1�S(R)]F (R) will do the job if S(0) = 1:0 and drops rapidly to zero
at some appropriate value of R. This procedure saves the recomputation of all the forces
at every time step, which is a very time consuming part of the calculations. A factor of 100
improvement in speed was reported. This procedure has been used in reversible RESPA.
Here, we write

iL = _x
@

@x
+ Fs

@

@p
+ Fl

@

@p
= iLs + Fl

@

@p
:

We can now express the propagator

Glsl(�t) � ei(Fl�t=2)
@
@p eiLstei(Fl�t=2)

@
@p :
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Following the method expounded above, we use the Trotter formula again to re-express
the short-range portion as

eiLs�t =

�
exp

�
�t

2
Fs

@

@p

�
exp

�
�t _x

@

@x

�
exp

�
�t

2
Fs

@

@p

��n
;

where again �t = �t=n. Thus, for sti� degrees of freedom with long-range forces, we get
by combining the above

Gxyx(�t) = G
(x)

lsl
(
�t

2
)G

(y)

lsl
(�t)G

(x)

lsl
(
�t

2
):

This procedure has been applied to a crystalite of bucky balls, with a factor of forty increase
in speed. Here, the need is for the lattice vibrations as well as the small stu� in the bucky
balls.

Under the rubric of path integral methods, the speaker discussed a polymer chain. He
discretized the imaginary time required in his calculations, and here there is a quadratic
potential between the beads which gets sti�er as the number of points increases. The
e�ective Hamiltonian* is given by

He� =

PX
t=1

�
p2t
2m

+
mP

2�2�h2
(xt � xt+1)2 + 1

P
V (xt)

�
:

One problem here is that the system becomes nonergodic as P gets big. The speaker
discussed the use of BGK dynamics here and hybrid Monte Carlo was also mentioned.

Presentation by Clint Scoval

Title: Simplectic Methods

In discussing large problems, parsimony is important as one does not wish to deal with
too many variables. Furthermore, if a system has certain symmetry properties, it is highly
desirable that they be conserved in any numerical simulation procedure. This presentation
is concerned with Hamiltonian systems. Such a system is de�ned by (1) a Hamiltonian,
H = H(~p; ~q), (2) the symplectic structure W =

P
dqi ^ dpi, and (3) Hamilton's equations

of motion
_~q = ~r~pH; and _~p = �~r~qH:

The symbol ^ denotes the wedge product.�� By symplectic is meant that the volume
in phase space is conserved. This property is a consequence of Liouville's theorem for

* This problem seems to bear some formal resemblance to that discussed by Fred Cooper
in Section 4, although they are clearly distinct problems.
�� One of the problems addressed by the multiscale initiative is that often di�erent

people are discussing intrinsically the same problem in di�erent language which totally
sties communication. An example may be the wedge product, about which some of us
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Hamiltonian systems. According to a theorem of Darboux, all Hamiltonians systems have
the structure (2) just noted.

The important properties of such a system are that (i) the Hamiltonian is independent
of time and so it is a constant, and (ii) the ow map of Hamilton's equations of motion
is a canonical transformation (i.e., symplectic). More explicitly, if Q;P are the time
translations of q; p in the two-dimensional case dQ ^ dP = dq ^ dp or the Jacobian,

@fQ;Pg
@fq; pg =

@Q

@q

@P

@p
� @Q

@p

@P

@q
= 1;

which corresponds to area preservation, or
P
dqi ^ dpi is constant in higher dimensions

which corresponds to volume preservation, and has a di�erent class of bifurcations.

are perhaps inadequately informed. The wedge product will de�ne a Grassman algebra �.
Let B(�1; : : : ; �n) be the 2

n basis vectors of a 2n dimensional vector space over the real
numbers, where the �i = 0 or 1. Then any vector in this space can be written as

� =
X
�

a(�1; : : : ; �n)B(�1; : : : ; �n):

The wedge product � ^ � =  is then de�ned by

c(�1; : : : ; �n) =
X

�i+�i=�i (mod 2)

�

�
�1; � � � ; �n
�1; � � � ; �n

�
a(�1; : : : ; �n)b(�1; : : : ; �n);

where

�

�
�1; � � � ; �n
�1; � � � ; �n

�
=

8<
:

0 if �i = �i = 1 for any i;

Qn

i=1(�1)�i(�i+�i+1+���+�n); otherwise:

The wedge product, together with the vector space de�nes the Grassman algebra. This
product has been shown to be both associative and distributive, but not commutative, and
so � is a linear associative algebra. The basis elements satisfy the identities

B(�1; : : : ; �n) ^B(�1; : : : ; �n) = �

�
�1; � � � ; �n
�1; � � � ; �n

�
B(�1 + �1; : : : ; �n + �n);

where the additions �i + �i are again mod 2. Note that since B(0; : : : ; 0) ^ � = �, it acts
as the identity operator in this algebra. If we de�ne,

B(0; : : : ; 0) = 0; and B(0; : : : ; 1; : : : ; 0) = Ei for i = 1; : : : n;

then the Ei and their wedge products

B(�1; : : : ; �n) = ^̂̂
fij�i=1g

Ei
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The speaker reported major stability results as the KAM (Kolmogorov, Arnold,
Moser) theorem which he said implied that phase space is foliated by tori, and the Nekhoro-
shev theorem which he said says that if the energy is invariant if perturbed, then the energy
is an adiabatic invariant. He showed some of his results for the Fermi-Pasta-Ulam sys-
tem integrated by a symplectic method. Aside from a small, high-frequency uctuation,
it maintained the total energy quite accurately with no drift, such as was displayed by a
fourth order Runga-Kutta method.

The most signi�cant result for symplectic methods reported was a theorem due to Ge
Zong:

Theorem. Suppose the Hamiltonian system corresponding to the Hamiltonian H has no

other integrals of the motion besides H. Let �(t) be a symplectic integral, consistent to

�rst order with H's Hamiltonian system, such that �(t) preserves H exactly. Then �(t)
travels along the orbits of H's Hamiltonian system, but possibly with the wrong speed.*

The speaker said that this theorem implies that if the energy is well preserved, it
is a good indication of accuracy (for symplectic methods). Further examples were re-
ported. The usual maps of the H�enon-Heiles problem showed clear curves when a sym-
plectic method was used, but noticeably fuzzy ones otherwise.

Finally, Scovel discussed some simple ways to construct symplectic methods. First,
he discussed local separation algorithms. Consider the case where H(q; p) = 1

2
p2 + V (q)

which can be separated into two simple cases. (Spectral tracking) Consider 1
2
p2. The ow

span the space, where ^̂̂ is like Q but denotes a wedge product. One further operation is
useful. We de�ne

�� =
X
�

a(�1; : : : ; �2)B(1 � �1; : : : 1� �n):

It is now useful to consider the sub-algebra of the Ei, ~A =
Pn

i=1 aiEi. In this algebra,

the usual dot product can be re-expressed as ~A � ~B = (A ^B�)�, when we remember that

the E0 plays the role of unity. In the three-dimensional case, ~A � ~B = (A ^ B)�. The

volume of a parallelepiped whose edges are parallel to ~Ai can be expressed by the wedge
product as

v( ~A1; : : : ; ~A2) =

���� ^̂̂
i=1;r

Ai

���� =qdet(Ai ^A�j )�) =
q
det( ~Ai � ~Aj);

where jAj is the length of the vector in the B(�1; : : : ; �n) representation and the last ex-
pression is the usual one for such a volume (due to Lagrange). This last result brings us
at last, after a lengthy digression, to the aspect of the wedge product which is used in this
presentation. [This explanation of the wedge product is based on G. Berman, Am. Math.
Monthly 68, 112 (1961).]
* Generalizations of this theorem were not discussed, but from the opening remarks, I

presume that it is the general wisdom that if all the constants of the motion are exactly
preserved by a symplectic method, then the system is expected to follow the same orbit
as the original Hamiltonian system.
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map here is

m1(t) :
q 7! Q = q + tp;

p 7! P = p:

Next consider V (q). Here the ow map is

m2(t) :
q 7! Q = q;

p 7! P = p� tV 0(q):

Now each of m1 and m2 is symplectic and so, therefore, is the composition m1 �m2, and
it agrees to �rst order. Following the methods of Suzuki and collaborators, the method

S2(t) = m1(
1

2
t) �m2(t) �m1(

1

2
t)

is second order, and
S4(t) = S2(�t) � S2((1 � 2�)t) � S2(�t)

is fourth order. These increases in the accuracy really cut down the energy error fast. The
speaker described quite a number of known applications for these methods.

The relevance to multiscale problems is that the problem can be broken into sub-
problems corresponding to fast and slow time scales* and by using symplectic integration
on each scale, a much greater overall e�ciency is allowed.

Presentation by Rajiv Kalia

Title: On Combining Di�erent Techniques

Kalia �rst described the nature of the work undertaken and the facilities available to
his group. Of that work, he discussed generally the morphology and fracture of porous
materials, structural transformations in SiO2 glass at high pressures, thermal transport in
Si3N4 glass, and some work in progress. First he discussed methods for molecular dynamics
on a parallel MIMD (multiple instruction, multiple data) machine. He justi�ed the need
for large-scale computation by pointing out that in porous materials there are structural
correlations of the order 10{100 �A which require a molecular dynamics box of ten times
that size, or a million to a billion particles. They are currently at the million particle level.
Mention was also made of Nanophase ceramics. In this case for a realistic simulation, at
least 1,000 clusters of about 1,000 atoms each are required. Furthermore, in problems
with long-range Coulomb and three-body interactions, large computing resources are also
required. Of the order of 104 to 106 time steps are needed.

In the molecular dynamics method, the fundamental equation is just Newton's second

law of motion, mi
d
2
~ri

dt2
= �~riV (f~rjg), and the physical properties are obtained from the

particle trajectories. The interatomic potentials used are of the form

V =
X
i<j

V2(~rij ) +
X

i<j<k

V3(~ri; ~rj ; ~rk);

* As described by Bruce Berne, see previous presentation.
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where

V2 =
Hij

~r�ij
+
ZiZj

r
� �iZ

2
j
+ �jZ

2
i

2r4
; and V3 = Bjikf(~rij ; ~rik) (cos �jik � jik)2 :

With interactions of long-range Coulomb character, there are of the order of N2 interaction
terms. The desire is to reduce the number of these terms. The method employed to carry
out this reduction is the cell multipole method. Also, the three-body potentials here are
restricted to be of the form of separable interactions, i.e.,

vjik(~rij ; ~rik) =
X
�

v(3)� (~rij )v
(3)
� (~rik):

As the interactions are normally symmetric, the approximation here is that only a �nite
number of terms are kept in the sum over �.

The fast multipole method used by the speaker is designed for a system with a rela-
tively uniform density, as distinguished from that for astrophysical problems.* Here the
system is divided in half in each direction to yield 8 smaller boxes, then each new box is
again divided into eighths, and so on down to the e�ective interaction length for the box
size. Now the potential felt by a particle is taken as the sum of the interactions with the
particles in its own and nearest-neighbor boxes (27 boxes) plus the multipole expansion of
the �eld due to particles in the distant boxes. The boxes are combined in a hierarchical
manner so that only O(N) operations�� are required. That is to say, the distant boxes are
grouped into the largest \parent box" that is completely �lled with distant boxes. The
multipole expansion has the form

V pole
A

(~R) =
Z

R
+
��R�

R3
+
Q��R�R�

R5
+ : : : ; ~R = ~r � ~rA;

where summation over repeated indices is implied and ~rA is the reference point (usually the
center) for the distant box A. The multipole expansions of 8 children boxes are combined
to give that for a parent box (next level up in the hierarchy) by the formulas

Z(l�1) =
X
k

Z
(l)

k
; and �(l�1)� =

X
k

(�
(l)

�;k
+ Z

(l)

k
R�;k); : : : :

Finally, again to speed up the computations, the sum over the multipole expansions for the
distant boxes is expanded in a Taylor series about the center of the box under consideration,
C0, as X

A

V
pole
A

(~r � ~rA) = V (0) + V (1)
� r� + V

(2)

��
r�r� + � � � = V T (~r);

where ~r and ~rA are relative to the center of the box C0. To further improve e�ciency,
the Taylor series coe�cients are also grouped by level, as were the multipole expansions

* See the presentations of Mike Warren, Section 5.
�� It seems to me that it is O(N logN).
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above, by simply summing up the coe�cients for the children to give that for the parent
box and then repeating back up the hierarchical chain. The appropriate modi�cation to
take account of periodic boundary conditions was noted briey and is called the reduced
cell multipole method.

The next point of methodology discussed is the multiple-time-step method. Here the
forces on the particles are divided into primary and secondary, and the primary forces are
updated at every time step. The secondary forces and their �rst lmax time derivatives are
updated every lmax time steps. In between updates, a Taylor expansion in the time since
the last update to order lmax is used.

Modern parallel computers require that thought be given to how to distribute the
work among the di�erent central processor units. The volume is divide into p subsystems
of volume 
=p each. The internode communication involves data motion in the surface
layers.* These procedures have been implemented on the 512-node Intel Touchstone Delta
and the 128-node IBM SP1 for 8232p particles, where p is the number of processors. The
speaker found a parallel e�ciency of 92% with 8% communications on the Delta running
at 4.8 sec/time step for 4.2 million SiO2 particles. The speed on the SP1 is 4.8 times faster.

Next, the speaker reported a variety of results. First there was his study of amorphous
silica. He described molecular dynamics simulations of silica glasses under uniform dilation
and the occurrence of \percolating pores" by which is meant a pore of system spanning
size. He �rst discussed the morphology of (nonpercolating) pores. The radius of a pore is
de�ned by

R2 =
1

NS

NSX
i=1

j~ri � ~r0j2 ; and ~r0 =
1

NS

NSX
i=1

~ri;

where the ~ri are the particles on the surface of the pore. If V is the volume of the pore,
then the fractal dimension of the pore, df , is de�ned by the scaling relation R / V 1=df .
The pore interface width or roughness is de�ned by

w2 =
1

NS

NSX
i=1

(j~ri � ~r0j �R)2 ;

and the scaling relation w / V � de�nes the index �. One can also de�ne the average pore
size as

Vav =

P
V
V 2n(V )P

V
V n(V )

;

where n(V ) is the number of pores of volume V . Here we expect the scaling relation
Vav / j���cj� , where �c is the percolation threshold density and  is a critical exponent.
Kalia's simulation studies give the results, (at a density of 1.44 g/cm3) � = 0:31; df = 2:6.
He also estimates that �c = 1:40�0:04 and  = 1:89�0:15. By way of reference,  = 1:8 as
estimated numerically for three-dimensional percolation. With regard to pore percolation,

* See the discussion on domain decomposition in the presentations of Mike Warren,
Section 5, and M. Sahota, Section 2.
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Kalia found for the correlation length, � / j� � �cj�� and the pore size distribution,
n(s) / s�� , that � = 0:9� 0:2, and � = 2:18� 0:13.

He next reported that internal fracture surfaces have a roughness exponent of 0:87�
0:02 for this case. This exponent is computed from g(�) = h[h(y+y0; z+z0)�h(y0; z0)]2i0:5,
where h(y; z) is the surface height and � =

p
y2 + z2. The scaling relation g(�) / ��

de�nes the roughness exponent �. These results conform well with experimental mea-
surements on a number of materials which have suggested a universal value of � � 0:8,
although there are other experiments at variance with this idea.

In his studies, Kalia considered structural phase transformations in amorphous silica
at high pressure. As an indicator of this transition, he pointed out the disappearance of the
�rst sharp di�raction peak in the structure factor S(q), related to the loss of medium range
order. There was also the appearance of a new peak is S(q). The structural transformation
goes from a tetrahedral network (at a normal density of 2.2 g/cm3) to an octahedral
network as the pressure increases.

Finally, he reported some results on thermal transport in Si3N4 glass. He has com-
puted the thermal conductivity and said it is a good thermal insulator at T = 1; 200�C.
This work also relates to the experimental measurements on silica and carbon aerogels
which indicate that � / �1:5. He indicated that work is in progress on nanoclusters of
silica nitrite. Also work is in progress on nanophase materials. I understood these to
be described as sintered solids which are very �ne grained materials with very special
mechanical properties.

Presentation by George Baker:

Title: Quick-Solve, Stable, Implicit Di�erencing Scheme

The problem illustrated in this presentation is the numerical solution of

r2� =
@�

@t
:

Historically, the �rst idea was to write a di�erence approximation of the form

�n+1
~r

= �n~r +�t

 
�n
~r+~�
� 2�n

~r
+ �n

~r�~�

�2

!
:

The superscripts indicate the time step, and the subscripts the lattice point. This method
is called an \explicit" one. The trouble with it is well known. It is only stable when

�t < 2(�x)2;

which considerably limits the size of the time step.
Instead one could center the time derivative and the spatial di�erence in the same

place and write

�n+1
~r
� 1

2
�t

 
�n+1
~r+~�
� 2�n+1

~r
+ �n+1

~r�~�

�2

!
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= �n
~r
+
1

2
�t

 
�n
~r+~�
� 2�n

~r
+ �n

~r�~�

�2

!
:

This method is called implicit because the values of � at the advanced time are not given
explicitly, but only implicitly through the solution of a linear system of equations. It is,
however, unconditionally stable and is the popular Crank-Nicolson method.

Next there was a discussion of implicit di�erencing schemes in one dimension. The
speaker promised to show how they can be extended to higher dimensions for which the
exact (numerically speaking) solution to the di�erence equations could be obtained in a
time proportional to the number of mesh points (for a rectangular lattice).

To analyze stability, the recent method of A. Iserles was used. The discretized numer-
ical equation can be written as (the one-dimensional case is used here for illustration)

�X
j=��

�ju
(n+1)

l�j
=

�X
j=��

�ju
(n)

l�j

for mesh �x = h and time step �t. Let û(�) be the Fourier transform,

û(�) =

1X
l=�1

ule
il�h;

��
h

< � <
�

h

ul =
h

2�

Z �=h

��=h

û(�)eil�h d�:

If we Fourier transform the di�erence equation we get

1X
l=�1

�X
j=��

�je
ij�hu

(k+1)

l�j
ei(l�j)�h =

1X
l=�1

�X
j=��

�je
ij�hu

(k)

l�j
ei(l�j)�h;

or

P (z)û(k+1)(�) = Q(z)û(k)(�);

where

P (z) =

�X
j=��

�je
ij�h; Q(z) =

�X
j=��

�je
ij�h; and z = ei�h:

Therefore,

û(k+1)(�) = r(z)û(k)(�); where r =
Q

P
:

Now if we Fourier transform the original di�erential equation, we get

@

@t
û(�; t) +��2û(�; t):
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Therefore,

û(�; t +�t) = e��
2�tû(�; t):

If we de�ne the Courant number as � = �t=(�x)2, then we need

r(z) � e��
2�t = e��(��x)

2

= e�(ln z)
2

:

If we want an approximation of the order (�x)p = hp, this is equivalent to O((z � 1)p).
Thus we require,

r(z) � e�(ln z)2 = O((z � 1)p);

which are just the equations for Pad�e approximants. The Crank-Nicolson method (dis-
cussed above) gives

r(z; �) =
z + �(z � 1)2=2

z � �(z � 1)2=2
;

which is an approximation of order 3. The little-known Crandall method, derivable by
Pad�e methods, is

r(z; �) =

z +

�
1

12
+
�

2

�
(z � 1)2

z +

�
1

12
� �

2

�
(z � 1)2

and is of order 5, with only the same amount of work to use as for the Crank-Nicolson!
In this formalism, the stability conditions (for A-acceptability�) are that

jr(ei� ; �)j � 1; for 0 � � � 2�;

which is the von Neumann condition, and the condition that r(z; �) has an equal number
of poles inside and outside the unit circle, jzj = 1. An additional stability condition is
required for L-stability �� or sti�-stability. It is

r(z = �1; �) = e��
2
� � 0:

This property is particularly important in this initiative because we are normally not much
interested in the behavior of the microscopic scale and would be happy to see it die quickly
and quitely so we can concentrate on the longer time scales.

Iserles has proven that all schemes based on diagonal Pad�e approximants are A-stable
for every � 2 clf� 2 C : Re(�) > 0g. Thus Crandall's method is an A-stable (but not
L-stable) one.

� A-acceptability means that no Fourier component grows in time.
�� L-stability includes A-stability and in addition requires that the high-frequency com-

ponents decay more and more rapidly with increasing frequency. Note that this behavior
is expected from the solution given for the Fourier transform of the di�erential equation.
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I have found the following new scheme which satis�es r(�1; �) = 0:

r(z; �) =
1 + a(z � 1) + b(z � 1)2 + c(z � 1)3

1 + a(z � 1) + d(z � 1)2
;

where

a = 1 +
�� 1

3

1 + 4�
; b =

1

12
+
�

2
+

�� 1
3

1 + 4�
; c =

�(�� 1
3
)

1 + 4�
; and d = b � �;

which is order 4, and both A- and L-stable, (at least for 0 � � <1). It is unsymmetrical
as it involves 3 spatial points at the advanced time and 4 at the current time. As it only
involves the inversion of tridiagonal matrices, it is no more work than the Crank-Nicolson
method, and (a) it is more accurate, order 4 versus order 3, and (b) L-stable, which Crank-
Nicolson is not. Compared to the Crandrall scheme, it is (a) less accurate, order 4 versus
order 5, but it is L-stable.�

The key to the quick-solve methods is the Baker-Oliphant idea of a factorizable di�er-
ence scheme. I will treat the Crandall scheme here. For one dimension we have explicitly

X
i0

��
1

12
� �

2

�
(�i;i0+1 + �i;i0�1) +

�
5

6
+ �

�
�i;i0

�
un+1
i0

=
X
i0

��
1

12
+
�

2

�
(�i;i0+1 + �i;i0�1) +

�
5

6
� �

�
�i;i0

�
uni0 +O((�x)6);

where un
i
is an exact solution of @2u=@x2 = @u=@t.

For 2 dimensions, we have

X
i0;j0

��
1

12
� �

2

�
(�i;i0+1 + �i;i0�1) +

�
5

6
+ �

�
�i;i0

�

�
��

1

12
� �

2

�
(�j;j0+1 + �j;j0�1) +

�
5

6
+ �

�
�j;j0

�
un+1
i0;j0

=
X
i0;j0

��
1

12
+
�

2

�
(�i;i0+1 + �i;i0�1) +

�
5

6
� �

�
�i;i0

�

�
��

1

12
+
�

2

�
(�j;j0+1 + �j;j0�1) +

�
5

6
� �

�
�j;j0

�
uni0;j0 +O((�x)2);

where again un
i;j

is an exact solution of the partial di�erential equation, and we have taken

�y = O(�x) and �t = �(�x)2. This is a 9-point di�erence scheme.

� This scheme has some practical drawbacks. Subsequently the speaker has devised
better schemes based on the idea of the quadratic (Pad�e) approximant, at least for spatial
dimension less than �ve.
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The same product method works for d = 3; : : : and the equations

B
i;j;k

l;m;n
��+1
i;j;k

= A
i;j;k

l;m;n
��
i;j;k

factor as

B̂i

l
�Bj

m
~Bk

n�
�+1
i;j;k

= A
i;j;k

l;m;n
��i;j;k;

where B̂, �B, and ~B are each tridiagonal matrices and can be solved by the usual factor-
ization method followed by forward and back substitution:

0
BB@
a1 a2 0 : : :

c2 a2 b2 : : :

0 c3 a3 : : :
...

...
...

. . .

1
CCA =

0
BB@
�1 0 0 : : :

2 �2 0 : : :

0 3 �3 : : :
...

...
...

. . .

1
CCA
0
BB@
1 �1 0 : : :

0 1 �2 : : :

0 0 1 : : :
...

...
...

. . .

1
CCA

The number of operations in this solution method is of the order of the number of
mesh points used, in any number of dimensions.

I have programmed this procedure for the D = 2 case. It runs as advertized. One
sample run was on a 700 � 700 mesh which has approximately 0:5 � 106 mesh points. It
was advanced 300 time steps. For � � 1166, the dominant mode decays by a factor of
10�1=49 per time step. It ran just �ne, but with � this large, the time scale is distorted.
It takes about 8 microseconds per cycle point on a SPARC 20 (or a Pentium 90 PC).

There are various generalizations which are straightforward to implement. Adding
a constant times � and a source term is simple. Generalization involving a nonconstant
factor, nonlinearity, a variable di�usion constant, etc., usually require the addition of a
small iteration loop at each time step. The cases the speaker had tried required about 15
iterations initially, but this number decreased to about one or two at large times.

Presentation by Gregory Beylkin (Applied Mathematics, University of Colorado)

Title: A Multiresolution Strategy for Reduction of PDEs and Eigenvalue Problems

The work reported here was done jointly with Nicholas Coult. The speaker said that
in the homogenization problem, the coe�cients of the partial di�erential equations (PDEs)
change across many scales, and the inuence of the �ne scales on a coarse scale is nonlinear.
The approaches in classical homogenization theory have been formal asymptotics using
small parameters and weak limits. Here multiresolution homogenization will be discussed.
Instead of the classical requirement of a small parameter or a weak limit, the present
approach studies the transition between two adjacent scales. For this method to work well
there must be a \preservation of form" and fast algorithms. The only requirement on the
\form of the equations" is that it is such that it may be used recursively.*

* This idea is at the heart of the renormalization group approach, where the smallest
scales are successively eliminated and the equations governing the larger scales are modi�ed
appropriately.
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Beylkin next began a formal description of his multiresolution analysis. Consider a
chain of subspaces,

: : : � V2 � V1 � V0 � V�1 � V�2 : : : ;
\
j

Vj = f0g and
[
j

Vj = L2(Rd):

In addition he de�ned the \detail" subspaces by

Vj�1 = Vj �Wj i:e:; Wj = Vj�1 n Vj :

The next important concept which he introduced is the nonstandard representation of
operators. To this end, consider the projection operators, Pj which projects onto Vj and
Qj which projects onto Wj . If we are given the operator S, we can de�ne from it the
operators

Sj = PjSPj ;

ASj = Qj+1SQj+1; BSj = Qj+1SPj+1; CSj = PSjSQj+1; and TSj = Pj+1SPj+1:

Note that TSj = Sj+1. If we use the identities

S0 � Sn =
nX

j=1

(Sj�1 � Sj); and Pj�1 = Pj +Qj ;

then we have

S0 � Sn =
n�1X
j=0

(Aj +Bj + Cj):

Next suppose that Sj~x = ~f , then we can express this equation as�
ASj BSj

CSj TSj

��
~dx
~sx

�
=

�
~df
~sf

�
:

The name ~s is for the smoothed part, and the name ~d is for the detailed part. The variables
~dx may be formally eliminated so that the above equation becomes

RSj~sx = ~sf � CSjA�1Sj ~df ; RSj �
�
TSj �CS�jA�1Sj BSj

�
:

In the case the Sj are �nite matrices, RSj is also a matrix with
1
4
times as many elements

as Sj had, so the number of unknowns is reduced and the form is preserved.�

� To make more transparent what is going on here, consider the 8� 8 matrix

Sj =

2
66664
�2 1 0 0 : : :

1 �2 1 0 : : :

0 1 �2 1 : : :

0 0 1 �2 : : :
...

...
...

...
. . .

3
77775 :
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The speaker then reported some general results that he and his coworkers have ob-
tained. First, there was theorem on the preservation of spectral bounds:
Theorem 1. Let Sj be a self-adjoint positive-de�nite operator on Vj ,

mk~xk2 � (Sj~x; ~x) �Mk~xk2; 8~x 2 Vj ;

where 0 < m �M � 1. Then

RSj = R
y

Sj
; and mk~xk2 � (RSj~x; ~x) �Mk~xk2; 8~x 2 Vj+1:

Next Beylkin discussed the case of a matrix version of the nonstandard representation.
Suppose that Aj ; Bj ; Cj ; T are represented by the matrices, �j ; �j ; j; � j with the matrix
elements,

�
j

k;k0
=

Z Z
K(x; y) j;k (x) j;k0 (y) dx dy;

�
j

k;k0
=

Z Z
K(x; y) j;k(x)�j;k0 (y) dx dy;


j

k;k0
=

Z Z
K(x; y)�j;k(x) j;k0 (y) dx dy; and

�
j

k;k0
=

Z Z
K(x; y)�j;k(x)�j;k0 (y) dx dy;

where the  's span Wj and the �'s span Vj, K(x; y) is the kernel of Tj�1 and satis�es the
conditions

jK(x; y)j � 1

jx� yj ;
��@M
x
K(x; y)

�� + ��@M
y
K(x; y)

�� � C0

jx � yj1+M ;

The nonzero diagonals wrap around, so that the matrix is a circulant. If we transform ~x

into the Haar basis, d1 = (x1 � x2)=
p
2; s1 = (x1 + x2)=

p
2; d2 = (x3 � x4)=

p
2; s2 =

(x3 + x4)=
p
2; : : :, then the above 2n� 2n matrix transforms into the n� n matrix

RSj =

2
64
�48

17
�1

2
� 3

17
�1

2

�1
2
�48

17
�1

2
� 3

17

� 3
17

�1
2
�48

17
�1

2

�1
2
� 3

17
�1

2
�48

17

3
75 ;

which illustrates for n = 4 that the circulant form is preserved, but not the number of
nonzero diagonals.

The �rst matrix is the standard di�erence representation of �x2 d
2

dx2
with periodic

boundary conditions. The reduced matrix represents � 37
17
+�x2(1

2
d
2

dx2
+ 12

17

n
d
2

dx2

o
2
), wheren

d
2

dx2

o
2
is the di�erence operator over an interval of 2�x instead of �x.
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as well as a \weak cancellation condition,"

����
Z
I�I

K(x; y) dx dy

���� � CjIj;

for all dyadic intervals I. With these preliminaries, he gives a theorem on the rate of decay
of the representation for the nonstandard form.
Theorem 2. If the wavelet* basis hasM nonvanishing moments, then for anyK satisfying

the above named conditions, the matrices �j ; �j ; j ; � j satisfy

j�j
k;k0
j+ j�j

k;k0
j+ jj

k;k0
j � CM

(1 + jk � k0j)M+1

for all integers k; k0.

The next theorem tells us that this estimate for the rate of decay is also satis�ed by
the matrix representing the reduced operator, R.
Theorem 3. Let us assume that the operator T and the wavelet basis satisfy the conditions

of Theorem 2. Let Rj be the reduced operator on some scale j, where the reduction started

on some scale n, n � j for n; j 2 Z, and let ARj
; BRj

; CRj
be its blocks. Then the bi-in�nite

matrices �r;j ; �r;j and r;j representing these blocks satisfy

j�r;j
k;k0
j+ j�r;j

k;k0
j+ jr;j

k;k0
j � CM

(1 + jk � k0j)M+1

for all integers k; k0.

These theorems demonstrate the importance of using high-order wavelets in the re-
duction procedure. They show that the nonstandard form for a wide class of operators
has fast o�-diagonal decay and that the rate of decay is controlled by the number of
vanishing moments of the wavelet basis. These theorems also show that the reduction
procedure preserves the rate of decay on all scales and therefore results in sparse matrices
for computational purposes.

At this point, Beylkin said that the LU-decomposition, i.e., the factoring of the matrix
into a low-left triangular and an upper-right triangular matrix provides a fast algorithm

* For those people who are not familiar with wavelets: Like the Fourier transform, the
discrete wavelet transform is a linear operation which changes the basis vectors in the
vector space. There are, of course, extensions to in�nite dimensional spaces. The wavelet
transforms are invertible and orthogonal. What makes a wavelet basis interesting is that
individual wavelet functions are quite localized in space and have a characteristic scale.
The whole set of wavelets runs through the whole range of scales. Their advantage is that
the large class of computations which take advantage of sparsity become computationally
fast in an appropriate wavelet basis. A wavelet transformationmaps a vector into a smooth
part and a detailed part. The transformation has the property that a constant, a linear
term, and so on, up to the \order" of the wavelet transformation contribute zero to the
detailed part.
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for the reduction process. By fast he means of O(N) or O(N lnN) for an N �N matrix.
The reason this order is obtained was said to be because of the sparsity of the original
matrix of this character. Presumably, there are only of order N non-negligible elements
by the above theorems. When the matrix is factored in this way, it is a straightforward
identity that the product of the lower-right block of L times the lower-right block of U
is just the reduced matrix, R, we have seen before. He also remarked at this point that
the multigrid method, dear to the hearts of some in the audience, is an iterative method
and that wavelets give a direct method. He also claimed that the wavelet methods work
in higher dimensions.

Turning to the eigenvalue problem, Beylkin showed how his methods were applicable
for the positive de�nite, self-adjoint case. He considered�

ASj BSj

B
y

Sj
TSj

��
~d

~s

�
= �

�
~d

~s

�
:

By use of the reduction process, we can rewrite this equation as

TSj~s = �~s +B
y

Sj
G(�)BSj~s;

where

G(�) =
�
ASj � �I

��1
; G(�) �G(0) = �G(�)G(0); and G(0) = A�1

Sj
:

Thus, using the de�nition of RSj we obtain

RSj~s = �~s + �B
y

Sj
A�1
Sj
G(�)BSj~s; and

RSj~s = �
�
I +B

y

Sj
A�2
Sj
BSj

�
~s+ �2B

y

Sj
A�2
Sj
G(�)BSj~s:

These results suggest three approximations to the eigenvalue equations,

TSj~s = �T~s; RSj~s = �R~s; and L�1
Sj
RSj (L

y

Sj
)�1~z = �Y ~z;

where LSj is a lower-left triangular matrix obtained by Cholesky decomposition as

I +B
y

Sj
A�2
Sj
BSj = LSjL

y

Sj
; and ~z = L

y

Sj
~s:

The last result is for what he calls a modi�ed reduced operator. It preserves better accuracy
for the smaller eigenvalues. Beylkin now relates a theorem which quanti�es the errors in
these approximations.
Theorem 4. Given an eigenvector x of Sj such that Sjx = �x; kxk2 = 1; d = Qj+1x,

and kdk22 � 1
2
, there exist real �T ; �R; �Y as de�ned above, such that

j�T � �j � CdkBSjk2kdk2; j�R � �j � CdkBSjk2kdk2
 

�

m
j

A

!
;

j�Y � �j � CdkBSjk2kdk2
 

�

m
j

A

!2

;
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where

Cd =
3� kdk22p
1� kdk22

; and kxk2mj

A
� (ASj

x; x)

de�nes m
j

A
.

It was explained that the splitting of the eigenvalue spectrum induced by the reduc-
tion process leaves the large eigenvalues with ASj and the small ones with RSj so that,

for low-lying states of Sj, the ratio �=mj

A
is quite small and thus the second and third

approximations show progressively greater improvement.
The speaker then showed some examples of the results of these procedures on an

original 1; 024� 1; 024 matrix representation of the operator

d

dx
(2 + cos�nx)

d

dx
:

For a single reduction procedure using wavelets with 12 vanishing moments, the three
approximate results became more accurate than his computational accuracy limit of about
10�12 for the �rst 64, 100, and 130 eigenvalues respectively. For the results after four
reductions (leaving just a 64�64 matrix) the same accuracy with �R was obtained for the
�rst 14 eigenvalues. The importance of using higher-order wavelets was also demonstrated
by showing how muchmore poorly the fourth and eighth order versions did. Further results
using random coe�cients were shown. Here, while there is a similar pattern, the obtained
accuracy is not so great, as might have been expected. These methods e�ectively obtain
a fast algorithm for computing small eigenvalues of elliptic operators in O(N) operations,
which N is the size of the discretization on the �nest scale.

Finally, the speaker showed us a diagram of how sparse a waveletized matrix gets for
the kernel 1= tan(�i � �j ). One point of the bounds on the size of the matrix elements is
that it eliminates having to compute the elements where they are known, a priori, to be
insigni�cant. Timing tables were given for several examples. They showed, particularly
for N >

�
O(100), very signi�cant speedups compared to the standard direct methods.

Presentation by David Kinderlehrer (Carnegie Mellon University)

Title: Variational Methods for Understanding Meso- and Microstructure in Nonlinear
Solids

In this lecture, the speaker used the term microstructure for what we have been
customarily calling mesostructure, and mesostructure for what we basically have regarded
as macroscopic structure. Please bear these notational di�erences in mind as in these notes
I will use his terminology. His approach is to start with equations which describe what we
have been calling macroscopic behavior and to try to incorporate features into them which
relate to microscopic features of the system in order to attempt to produce a description
of mesoscopic behavior.

To start with, we saw a slide intended to illustrate what was meant by microstructure.
It showed what appeared to be a crystaline solid �lled with many grains having one or
another of several distinct orientations. He then propounded the question \what can we
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know about microstructure?" with the unstated but implied limitation on the level of
detailed calculations that can be included in his frame of reference. He was interested in
devising a consistent framework which can suggest limitations on the microstructures for
speci�c materials and can accommodate interactions among length scales. In particular, he
was thinking of reversible phase transitions, such as a crystal which can be oriented with its
long axis back and forth or side to side equally well, and a concomitant dramatic response to
small loads. He said the issue was to describe the average picture while capturing essential
energetic and kinematic properties. He showed pictures on a slide which illustrated an
extremely lumpy energy surface in \con�guration space." In his view, reversible phase
transitions were movements between di�erent energy minima of equal energy.

He next spent a little time on a phenomenological theory based on lattice considera-
tions. Here the language employed is that of continuum mechanics. The stored energy is

denoted by W (
$

F ; �), where
$

F=
 �r~y is the deformation gradient and y is the deformation

of the original space 
, and � is the temperature. He expresses frame indi�erence and

symmetry by the relation W (Q
$

F P; �) = W (F; �), where Q refers to a rotation of the
Cartesian coordinate frame and P 2 P is a member of the symmetry group of the crystal
and refers to invariance under such a transformation. In this theory, the energy surface

in the nine-dimensional
$

F space changes as a function of temperature going, for example,
from a single minimum for a con�guration corresponding to a simple cubic lattice to an
energy surface corresponding to multiple minima at low temperatures. The potential well
structure is such that the existence of a transformation strain U1 implies the existence of
a set of strains, fUig, given by PTU1P for all P 2 P, and in turn to the potential wells

SO(3)Ui. So W (
$

F ; �) = minW = 0 exactly on [SO(3)Ui which leads to a very rough and
nonconvex energy surface. So far, the speaker said, there is still missing in his picture,
surface energy (on grain boundaries, for example), more details for the �ner structure of
the Bravais lattice, polarizations, magnetizations, shifts, etc.

To make progress in this framework, the speaker next introduced a variational frame-
work, and his notion of weak convergence (which seems to be that the sequence tends to
a limit cycle rather than to an individual limit). If yk is a \minimizing sequence," then
using a device of Y. L. Young from control theory for representing measures for the local
spatial averages of the minimizing sequence, he obtains a family of probability measures,
� = (�x)x2
 which are the density distribution of values of the deformation gradient. When
one determines the minima of the energy density W according to the crystallography of
the material, then it leads to a variational condition for the minimizing sequence, e.g.,

 �r~yk ! �r~y;Z



W (
 �r~yk) dx! inf

A

Z



W (
 �r~�) dx = j
jminW:

Now we also haveZ



Z
M

W (
$

� ) d�x(
$

� ) = j
jminW ) support(�) � fW = minWg;
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which is a variational condition and says in the speaker's words that \the only set that
can be charged by this measure lives in the bottom of the potential wells."

Some quantities are continuous with respect to this weak convergence, so there are
equations between the limit of a function and the function of the limit. For example,

 �r~y =
Z
M

$

� d�x(
$

� ); adj
 �r~y =

Z
M

adj
$

� d�x(
$

� ); det
 �r~y =

Z
M

det
$

� d�x(
$

� );

as well as some relations involving the minors of these determinants. These results together
with the variational conditions were reported to give extremely strong restrictions on the
deformations which can participate in a microstructure.

At the end of the lecture, the speaker presented some examples in orthorombic CuAlNi
and terfenol-D. The twinning relation of the crystalographic theory of martensite was
discussed.

Presentation by Misha Shashkov

Title: High-Quality, Finite-Di�erence Schemes for PDE's

The motivation for this approach is that a great many of the equations of practical
mathematical physics can be expressed in terms of the di�erential operators, div; ~grad; ~curl.
These operators have certain invariance properties whose preservation is important so that
the solutions of the equations preserve various physically relevant properties. Among these
might be conservation of energy and momentum, symmetries of the solution, and non-
divergence of particular �elds.� The plan is to develop a theory of the discrete analog
of vector analysis. The discrete versions of the �rst order operators will be denoted as
DIV; ~GRAD; ~CURL. The sort of applications that are envisioned are to the heat equation,
magnetic �elds, Langivin gas, gas dynamics in Eulerian form, Lagrangian uid dynamics,
and porous media ow.

The basis of the analysis in the construction of the discrete version of vector and
tensor analysis is the idea of the preservation of certain identities. Various types of grids
are considered in 2 and 3 dimensions, namely, logically rectangular grids, triangular and
Voronoi grids, and rectangular grids with local re�nement. Use is made of the notions of
the discrete analogs of line integral, potential vector, ux of a vector through a surface, and
the circulation of a vector along a contour.�� The procedure is to introduce a de�nition of,
say, ~GRAD which is called the \prime operator", and from it to construct, by insisting that
Gauss' theorem holds, DIV. In a similar manner, by insisting that Stokes' theorem holds,
one may construct ~CURL. There is a problem when one tries to compose the �rst order
operators in a straightforward way to get, say, ~graddiv. For example, the natural range
of DIV is cell-centered values and the natural domain of ~GRAD is nodal values. Thus one

� For other important preservation property considerations, see the �rst two presenta-
tions in this section.
�� This approach bears some relation to Courant's approach to calculus. Courant takes

the integral as fundamental and the derivative as a deduced concept.
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cannot in a natural way compose these two operations. In addition, the operators satisfy,
for example, the identity,Z

V

�div ~W dV +

Z
V

~W � ~grad�dV =

I
@V

�~n � ~W dS;

which is a version of integration by parts, and where V is an arbitrary volume, � and
~W are arbitrary scalar and vector functions, @V is the surface of V , and ~n is its normal
vector. The discrete analog of this identity and the discrete analog of other such integral
identities are used to derive discrete versions of the second order operators. All of these
operators, as well as the nonprime, �rst-order operators are called derived operators.�

An illustration in one dimension was given of how the de�nition of DIV when substi-
tuted into the above identity leads to a de�nition of ~GRAD:

X
pi;j(DIV ~W )i;j +

X
i;j

( ~W � ~GRAD p)i;jVi;j =
X

boundary

pi;j( ~W � ~n)i;jSi;j:

The �rst term on the left-hand side can be re-expressed as

X
pi+ 1

2

 
ui+1 � ui
hi+ 1

2

!
hi+1

2
=
X

(pi+ 1
2
ui+1 � pi+ 1

2
ui) =X

(pi� 1
2
� pi+1

2
)ui + boundary terms;

so the representation for ~GRAD p is taken to be pi� 1
2
� pi+ 1

2
. The need to know how to

approximate the divergence of tensors was mentioned.
The application to Lagrangian uid dynamics was discussed. It was reported that

conservative �nite-di�erence schemes will be constructed that will be free from nonphysical
grid distortions of cells such as "hourglassing," \herringbone," and \geometrical error,"
which can lead to the overlapping of grid cells or to decreasing accuracy. Examples of the
computer results for the \bubble problem" were shown.�� The use of arti�cial viscosity
was mentioned. Various other applications were also discussed.

� There are yet other di�culties. The speaker points out that one cannot de�ne
~CURL so that the orthogonal decomposition of vector �elds ~A = ~GRAD� + ~CURL ~B,

DIV ~CURL � 0, and ~CURL ~GRAD � 0 all hold simultaneously. Thus the de�nition of the
derived operators is not unique, but it depends on which of the identities hold and which
do not.
�� The famous bubble problem is described in a previous footnote. Does it really become

a torus? The reported results stopped short of torus time.
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8. Applications

First Presentation by Bryan Travis

In environmental science, there are a number of scales. There is the macroscopic scale,
which is measured in kilometers. There is interest in di�usion and permeability over scales
of this size. For example, there are spills of various organic pollutants, such as oil or a
solvent like CCl4. It is of interest how fast these spills permeate the ground. The ground
itself has many layers, and the penetration of the aquifer is of particular interest. There
appear to be two mesoscopic scales in this problem. One scale is the pore size (�m's) in
soil-like materials, and the other scale is an unusually large one, i.e., the laboratory scale
(cm's). In addition of course, there is the microscopic scale, which is approximated here
by ow equations, so there was no explicit reference to this scale. In this area, there is
interest in the structure over a wide range of scales, frommicrometers to tens of kilometers.
The data sampling is usually sparse, and the workers in this area have not been able to
give analytic solutions to their model equations. As we saw in the ocean model problems*
subgrid dynamics is important here as well. In addition, the problems of non-Fickian (notp
t) di�usion and scale-dependent dispersion occur.

The governing equations concern the ow or movement of water, air, etc., in bulk
materials. There is the case of saturated (the space between the grains is �lled with water)
material where the governing equation is

~r � �k(�x)~r�p = _s;

where k is the permeability, p is the pressure, the overbar denotes a local average, and the
overdot is the time derivative. Extreme examples of the various types of media considered
might be sand and fractured granite. In the case of \unsaturated" systems, we denote the
fractional degree of saturation by � and the equations are

@(���)

@t
� ~r �

�
k(��)

�

�
(~r�pc(��) + ~g) = _s;

where now k is the relative permeability and pc is the capillary pressure. The transport
equations for following species are

@(��� �C)

@t
+ ~r � ~u �C = ~r �D� ~r �C +R( �C);

where D� is the dispersion and C is the solubility.
The quantities involved, �k; ��; �p; D� etc., can be obtained from theoretical models and

laboratory or �eld experiments. There are various approaches to the problem of modeling
porous media. One approach is to treat it like a bundle of tubes. Another approach is to
consider it in terms of a representative elementary volume. Yet another is to study the
correlation functions between velocity and uctuations. Then again there is dual porosity,

* See the discussion by M. Hyman, Section 3.

94



dual permeability (for fractures), and �nally there is explicit modeling using, for example,
the lattice Boltzmann method run on the CM5. Various slides were shown illustrating the
behavior of some of these quantities. The capillary pressure used in the above equations
was displayed in crushed tu� and increases as the degree of water saturation decreases.
The argument given was that when there is no capillary pressure then there is complete
saturation as there are no capillary surfaces. The opposite limit of zero saturation was not
discussed. Consequently, the permeability of water increases with increasing saturation,
while that of air decreases. Dispersivity increases with scale for reasons which were not
made clear to me. Most of the current theories assume a \simple" system. However,
environmental concerns, such as oil recovery, agriculture, etc., involve (i) multiphase ow,
(ii) thermal e�ects, (iii) chemistry, (iv) bacterial action, and (v) physical e�ects such as
colloids, ocs, porosity and permeability alterations, etc.

A key feature here from the multiscale competency point of view is that each of these

phenomena acts primarily at some particular length and time scale, but its e�ects couple

into the other scales. It is a question of general interest how these types of e�ects propagate

to the other scales.

An interesting discussion was given of the mid-ocean ridge hydrothermal systems.
These are of considerable environmental interest for several reasons. First and foremost,
it was said that one-quarter of the earth's energy comes up through the mid-ocean ridges!
In addition, there is the inuence on the geochemistry of the sea oor and deposition of
minerals on and beneath the sea oor. The computations reported were in the magma
and its earthen overlayer. As the magma rises, it mixes with the silicate material of the
sea oor, and there develop little plumes of porosity. This e�ect is a result of the silica
chemistry, which makes a signi�cant di�erence as was illustrated in a slide.

Finally, we heard a brief discussion of stochastic modeling in hydrology. The concern
is the prediction of ground water and contaminant ow with at best highly imperfect
knowledge of the spatial distribution of the hydraulic conductivity. The goal of these
e�orts was described as the deduction of the hydraulic head or the concentration covariance
from the estimated hydraulic conductivity covariance. Monte Carlo and perturbation
methods have been used. In 1984 Cushman proposed that the covariance structure of
heterogeneities depends on the scale of observation. Results on forward transport solutions
at just two scales were shown. An attempt to compare the results of computations with
experiments was reported. An actual oil-saturated sandstone was thin-sliced and put in
a glass sandwich. The geometry of the pore space was taken directly from a digitized
photomicrograph. Computations were made on this geometry and compared with the
introduction of a slug of water into the system.

Second Presentation by Bryan Travis

This talk began with a brief review of the speaker's earlier August 19, 1994, talk for
the bene�t of those present who had missed that talk.�

Travis said that his group works on the numerical modeling of ow and transport
in complex media, enhanced oil recovery, and the cleanup of subsurface contamination.

� See the immediately preceding presentation for this background information.
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Unsolved or partially solved problems in the area of porous media are the following: (i)
structure at all scales, (ii) stochastic models, and how to integrate them, (iii) multi-phase
constitutive relations, (iv) complex processes involving chemical, biological and/or phys-
ical (e.g., occulation) features, (v) faster, more accurate solutions for ADR (advection-
di�usion-reaction) equations and nonlinear di�erential equations with multiple time scales
and variable coe�cients, (vi) inverse problems (i.e., given the ow, what is the structure?),
(vii) optimization of resource use in the presence of uncertainty, and (viii) what are the

fundamental governing equations|Darcy's law (~u = �(k=�)~rP ) vs other approaches, e.g.,
that of W. Gray.

In the complex process problems there can be feedback, from other features, which
a�ects the porousity structure, thereby causing considerable complication. In the numerical
simulation of an oil reservoir, a �nite element method is used. Each cell is 1 to 10 meters
in size, roughly, and tens of thousands of cells are used. Even so, the size of the some
relevant aspects of the structure is smaller than the grid size.*

The various scales in this problem are the pore size (�m), the laboratory size (cm)
and the �eld size (km). Flow here refers to the movement of water, air, and sometimes oil
through the bulk material. The transport equations are

@(��� �C)

@t
+ ~r � ~u �C = ~r �D� ~r �C +R( �C);

where the overbar denotes a local average, t is time, ~u is the velocity �eld, D� is the
dispersion, and C is the solubility. There was considerable discussion about D� which
enters the equation as if it were a di�usion term. It was explained that in the language of
this specialty, di�usion refers to molecular di�usion, and that the dispersion is a turbulent
di�usion by the pores and grains, and that this dispersive process is just modeled by a
di�usion-like term. There have been a lot of laboratory studies of dispersion. Djj will
denote the observed dispersion, and Dd will denote the molecular di�usion. Further, we
de�ne the Pecklet number, Pe = ud=Dd. We saw a log-log plot of Djj=Dd vs Pe. The
results were apparently well �t by

Djj

Dd

� APe + 1;

were A is a constant, for nice materials. For heterogeneous materials, one requires a
\di�usion tensor."

The question was raised as to what were the major phenomena, what was the problem
to be solved. The answer was to clean up contaminates, and to do so one needs to know
where the contaminate plume is going and what its structure is. Heterogeneity is a major
problem. Stochastic modeling is used, and the results from many runs are analyzed. An
example was given of forward transport under a pressure gradient. Fingering was evident
in the ow. This behavior creates a sampling problem as one can be seriously misled if
the test bore lies between the �ngers, and somewhat misled if it hits a �nger.

* We have seen this problem in other contexts. See the presentation of Mac Hyman,
Section 3.
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The various relevant properties seem to vary depending on the scale on which they are
measured.* Pump test wells, slug test wells, core samples, air permeability measurements,
and geologic mapping were mentioned as approaches to this problem. In order to treat
computationally the embedding of multiple scales of heterogeneity, an approach of multi-
level grid re�nement is being used.

Another problem encountered in this work is that of multiple phases. The two-phase
case is not too bad as only about three coe�cients are needed to �t the constitutive
relations to an adequate extent for their purposes. In the case of three phases, around
twenty coe�cients are required. One problem of concern to the speaker's group is an air-
water-gas-oil system. The approach they have used to treat these systems is (1) measure
a few values and interpolate and (2) to interpolate between phases.

The problem of the fundamental governing equations is not as straightforward as one
might think. Consider for example a system composed of water, air, and rock granules.
Because of surface tension, drops of water stick to the surfaces of the rock granules, which,
depending on the previous state of the system and the velocity of ow of the air through
the system, may open or close various passageways to the ow of air. Thus, according to
Bill Gray of Notre Dame, whose approach is based on �rst-principles thermodynamics, the
dynamics depend not only on A, the interfacial area (per unit volume at the local spot),
and the volume fraction of water, but also on how the water is distributed in the pores.
A lattice Boltzmann approach is being tried to compare with Gray's theory. The \Lattice
Boltzmann Permea(bility)meter" is a joint project with Mobil Oil and is the winner of a
1994 R & D 100 award.

An interesting example was described of an approach to clean up TCE (tri-chloro-
ethelene) contamination of an air-water-rock system. It seems that there is a certain
bacterium which metabolizes methane. In the process, it produces mmo; however mmo
also decomposes TCE. The scheme is to introduce the bacterium, and to pump in methane,
which stimulates the production of mmo, and the excess mmo decomposes the TCE.

In order to study this sort of problem numerically, a numerical code for bioremediation
simulations was developed called TRACR3D with Microbial Processes or TRAMP. The
general layout of the transport di�erential equations is

Li(Ci) �@[Ci(�� + �fHi) + �bCsi]

@t
+ ~r � [(~uw +Hi~ug)Ci]

� ~r � [�(�Di

w
+ fHiDi

g
)~rCi]�Bi(C1; C2; : : : ; CN) = 0; (1)

dCsi

dt
=(Ki

dCi � Csi)=Ti; (2)

where Ci is the concentration of species i in the water, Csi is the concentration of species
i sorbed onto the soil grains, � is the porosity, � is the water saturation, f is the air
saturation, Hi is the Henry's law coe�cient, �b is the matrix bulk density, Ki

d
is the

equilibrium sorption coe�cient, ~uw is the water-phase velocity, ~ug is the gas-phase velocity,

* Presumably, this observation reects di�erent material properties (e.g., pores, grains,
cracks, etc.) of the bulk material which have various characteristic sizes. Appropriate
characterization would facilitate a comprehensive theoretical treatment.
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Di

w
is the water-phase di�usivity, Di

g
is the gas-phase di�usivity, Bi is the nonlinear term

describing reactions between species i and the other components, t is the time, and Ti is
the time constant for sorption.

The modus operandi for solving these equations is a follows. First, we approximate
Li by a �nite-di�erence operator, Ldi Then a two-step iterative process is employed at each
time level. First, we split the operator

Ldi = L̂di + ~Ldi ;
where we de�ne

~Ldi =An+1
i

�k

C i �An

i C
n

i �Qn

i +
�t

�


6X
s=1

(uw +Hiug)s ~Cis�As

�
6X

s=1

�(�Di

w + fHiDi

g)s
�As

�xs
( ~Cis � ~Cs) � ��

2
�w(B

n

i +
�k�1

B i)�t;

and

L̂di = An+1
i

Cn+1
i
�An+1

i

�k

C i � ��

2
�w�t(B

n+1
i
�
�k�1

B i):

In these equations, the superscript n refers to the time level n, and n+1 refers to the next
time point, tn+1 = tn +�t. The current time step is denoted by �t, and the overscript,
� k, refers to an intermediate value between time levels n and n + 1. Note that the
overscripted terms cancel in the sum Ld

i
. The area of the s-th face of a grid cell is denoted

by �As, and �
 is the grid cell volume. The notation �xs is the distance between cell
centers on the s-th face of each grid cell, �w is the water density, and

P
s
represents the

summation over the faces of a grid cell. The Qn

i
represents an expression which involves

the di�usion into and out of the soil particles and which only involves quantities evaluated
at the previous time level, tn. It originated with the terms involving Cis. These were
eliminated by use of equation (2) and the resulting terms at time level tn were gather
together and called Qn

i , with the other terms retained in the equations. Finally, we de�ne

Ai = �� + �fHi + �bK
i

d
(1� Ti

�t
(1 � e��t=Ti )):

The solution of equations (1) and (2), as approximated and reformulated, is accomplished
by setting ~Ld

i
and L̂d

i
each to zero. From the knowledge at previous times, ~Ld

i
= 0 is solved

for
�k

C i. This step emphasizes the transport processes in (1). Then L̂d
i
= 0 is solved. This

step emphasizes the reactions between species. In this equation,
�k�1

B i is evaluated using

the
�k�1

C i values. The initial conditions for each time step are
�k�1

C i = Cn

i
. In order to

solve self-consistently for the Cn+1
i

, the term Bn+1
i

must be evaluated at the advance time
tn+1. To accomplish this solution, we expand B to linear order in a Taylor's expansion.
Thus we take

L̂di � An+1
i

Cn+1
i
�An+1

i

�k

C i � ��

2
�w�t

0
@Bk

i �
�k�1

B i +
X
j

@
�k

B i

@Cj
(Cn+1

j
�
�k

C j)

1
A :
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This approximation to the L̂d
i
= 0 is iterated in each cell until the change in the Cn+1

j

falls below a prescribed tolerance, usually of the order of 10�12 to 10�15. Note that the
solution at each step involves the solution of a set of N , simultaneous, linear equations for
the variables Cn+1

j
; j = 1; : : : ;N . Currently, N = 6. Next ~Ld

i
= 0 is resolved with the

converged values just obtained used to compute the values of
�k�1

B i in that equation. This
process is continued until convergence on Eq. (1) is occurs. The procedure then starts
over for the next time step.*

Presentation by Alan Bishop

Title: Nonequilibrium Phase Transitions (and Phases)

The topic of this talk is the subject of a project funded out of the Director's reserve and
will involve a focal group and an interior/exterior seminar series. The other participants
are Fred Cooper, Emil Mottola, Salman Habib, and Wojiceh Zurek. The aim of this
project is a combined experiment-theory -simulation strategy to determine the physical
principles, the underlying structure, and the dynamics of nonequilibrium phase transitions
and phases. A further aim, in tune with our multiscale theme, is \closing the loop"
of the interplay between the microscopic scale, the mesoscopic scale, the macroscopic
scale, and experiments by means of a modeling-validation-prediction method. The phrase
\interdisciplinary synergism and impact" was used to summarize the following impacts:

heavy-ion physics, AOT :
ion beam :
materials science, MST, P :
condensed matter, T, STC :
bioscience :
chemistry, CMS :
ocean dynamics, CNLS, HMFC :
astronomy :
cosmology :

quark-gluon plasma
storage ring/proton radiography
texture, aging, deformation, failure
HTC, surfaces/�lms, complex uids
protein structure/dynamics, biominetics
polymers, reaction di�usion
eddies, vortices
plasmas
early universe

The topics to be focused on were reported to be space (1,2, and 3 dimensions) and
time, with the study encompassing both open and closed systems.

* It is my impression that the spatial dependence of the problem is hidden in Qn

i
so that

this proceedure is an explicit di�erence scheme. If the linear approximation applied to L̂d
i

were applied directly to Ld
i
, then by the solution of the N , simultaneous, linear equations

in each cell for the di�erent species concentrations, we would have a straightforward ex-
plicit di�erence approximation to the problem. The problem which arises is the nonlinear
dependence of B on the C's at the forward time. It is for this reason, and perhaps there
are stability concerns which were not mentioned, that the elaborate iteration scheme was
used. It is often the case that higher-order schemes like adaptive step size, Runge-Kutta for
nonlinear ordinary di�erential equations can provide e�cient procedures. Perhaps those
of us who specialize in such matters can make some useful suggestions here.
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� TOPOLOGICAL :
(esp. \Kosterlitz-Thouless")

� \LANDAU-GINZBURG" :
coarse-grained

� LOW T, QUANTUM :

� \NONEQUILIBRIUM" :

e.g., condensed matter/materials
ux order/ow
surface morphology/growth
fracture/friction
shear bands/deformation zones
solid-solid PTs
annealing/quenching/ripening
nucleation/spinodal
complex uids/multiphase ow
granular ow
mesoscopic
quantum tunneling/PTs
time and opportunity [theory, simu-
lation, experiment (spallation neutrons)]
AFM/STM, ultrafast(picoseconds), HMFC

The speaker then summarized the topics as being described by \nonlinear, quantum
chaos, stochastic, nonadiabatic, glassy, multiscale ... history." In more detail, Alan then
talked about the inter-relation between nonlinear and nonequilibrium. In his view, it is
competing interactions that are important here, e.g., coupled �elds, time scales, spatial
scales, noise, and disorder. All these taken together lead to mesoscopic-scale phenomena
such as textures�, landscapes��, self-assembly, patterns, glassyy, stick-slip, and metastabil-
ity. One idea is to use statistical or average measures of the mesoscale phenomena and to
try to relate them to macroscopic functionalities such as pattern recognition and collective
structures. A problem here is to identifying a structure out of a noisy background.

Bishop then moved on to a discussion of collective coherent structures and internal
noise. He raised the question of how to move from the Kuramoto-Sivashinski equation,

@th = ��@2xh� �@4xh�
�

2
(@xh)

2

to a noise Burgers equation

@th = �e�@
2
xh+

�e�

2
(@xh)

2
+ �(x; t):

He showed a �gure of spatio-temporal chaos produced by KS (Kuramoto-Sivashinski) dy-
namics. Here the cellular patterns are slowly changing in time.

Next, the speaker turned to a discussion of \mound" morphology or, more formally,
the modeling and simulation of surface growth. Included in this topic are (i) rough-
ing/smoothing/melting transitions (molecular beam epitaxy), (ii) deposition/emission (par-
ticle ux) and surface di�usion, (iii) kinetic/thermodynamic/thermodynamic stability, (iv)

� See the presentation by Pieter Swart in Section 4.
�� See the presentation by Hans Frauenfelder in Section 4.
y See the presentation by David Sherrington in Section 3.
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reaction-di�usion, e.g., biomineralization, (v) Langevin/kinetic dynamics, and (vi) solid-
on-solid etc. The work of Villain, Plischke and Zangwill was alluded to. An important
governing equation is, for example,

@h

@t
= �r2h+ �(~rh)2 � �r2

�
r2h

�
+ �r2

h
(~rh)2

i
+ : : :+ F+ �;

where h refers to the height, and � � 0. Special cases are the Edwards-Wilkinson equation,
� = � = � = 0 and the KPZ equation, � = � = 0. It seems that pyramids, mounds, hillocks
etc. occur. Some pictures of actual occurrences on iron and some results produced by MBE
(molecular beam epitaxy) were shown. Multiple space/time scales enter into this problem.
The work of H. E. Stanley on noisy reduced models was mentioned here. The occurrence
of disorder in the step height was also mentioned. The example of the random phase sine-
Gordon model was cited, as well as the problems of the random-�eld XY model, pinned
charge-density waves, spin glasses, and vortex pinning in superconductors. In this area,
attention was focused on the Hamiltonian,

H =
1

2

X
hi;ji

(ki � kj)2 � V0
X
i

cos
�
ki � k0i

�
+ dynamics; forcing terms : : : ;

where hi; ji means nearest neighbor pairs, and the k0
i
are quenched random variables. It is

of interest to investigate the ergodic and nonergodic regions in temperature and potential
strength, V0, space.

At this juncture, the attention of the audience was drawn to the work of C. M.
Zaremba et al. on the topic of the critical transitions in the biofabrication of abalone shells
and at pearls. A couple of nice schematic diagrams were shown to illustrate the structure
of abalone shells and abalone at pearls. It seems that, by changing the protein which
nucleates the growth, it is possible to change the growth patterns.

A further illustration was given by a side-by-side comparison of the experimental
results of Kwok et al. and the computer simulation of Dominguez et al. of the voltage-
current characteristics (at three temperatures) over the region where a melting transition
with internal �elds occurred. The two results were qualitatively very similar. It was
explained that the linear regime is because the ux lines order among themselves and ow
together.

As a �nal illustration, we saw pictures of twin and tweed textures in perovskite oxides.
The ordering of changes is the underlying driving force.

In summary Bishop said that the basic topic of this e�ort is \what is the nonlinear,
nonequilibrium, statistical mechanical principles of mesoscopic self-organization?"* He

* Certainly, this theme is one that has been repeatly considered in this ongoing series
of multiscale seminars. It is particularly germane to the class of topics where there is one
spatially dispersed mesoscopic scale. Strictly speaking, for the examples of twin and tweed
textures, one must add an additional step or steps as there is more than one mesoscopic
scale. It appears that each one drives the next one, just as the microscopic-scale behavior
drives the �rst mesoscopic-scale behavior.
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points out that the answer to this question is relevant far beyond what one might suppose,
as it has potential applications in biology, oceanography and cosmology. The proposal is
to approach these problems by combining our detailed knowledge of both materials science
and solid state physics to illuminate the answer to this question.

Presentation by David Sharp

Title: Multiscale Science for Science Based Stockpile Stewardship

Dave Sharp began his talk by making a few remarks on how to present scienti�c
ideas to administrators. He recommend not using technical jargon (unless you know your
audience is specialized in that area) and to keep the overhead transparencies clear and not
have too many points on each one. His topic was to describe a multiscale project which has
been funded for 5 years at a million dollars per year. He and Len Margolin are co-principal
investigators for this project. Since not everyone in our seminar group may be familiar
with all the members of the project and their special areas of expertise, here follows his
list and brief description of the team members.

Fluids
D. H. Sharp, theoretical and numerical uid dynamics, multiphase ows, turbu-

lence modeling, and applied mathematics
F. H. Harlow, theoretical and numerical uid dynamics, multiphase ows, and

turbulence modeling
T. T. Clarke, theoretical and numerical uid dynamics, turbulence modeling,

and direct numerical simulation
C. S. Cran�ll, numerical uid dynamics, multiphase ows, turbulence modeling,

weapons physics, and code development
T. C. Wallstrom, numerical uid dynamics, and applied mathematics

Materials
L. G. Margolin, uid dynamics, multiphase ows, constitutive modeling, weapons

physics, and code development
B. L. Holian, solid dynamics and fracture mechanics, and molecular dynamics

models
P. S. Lomdahl, solid dynamics and fracture mechanics, and molecular dynamics

models
J. E. Hammerberg, solid dynamics, molecular dynamics models, and nuclear

weapons physics
D. Tonks, solid dynamics, damage theory, and fracture mechanics

Dave said that the problem under consideration was the application of multiscale
science to \mix" processes in nuclear weapons. Mix is a process in which distinct substances
are combined into some aggregate material. Examples of mix are cream in co�ee, and
vegetable soup. In the case of cream in co�ee, the mixture is at the molecular level. In the
case of vegetable soup this is not the case, as lumps of vegetable remain in the soup. In our
context here at Los Alamos, the mix results from shock compression of metal shells, which
causes ejecta, spall, and hydrodynamic instabilities. We saw a nice slide from a Pegasus
experiment by Danny Sorenson et al. of a tin cylinder imploding. Various ejecta were seen,
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and a dependence on the preparation on the surface was pointed out. This feature is one
which can change with the aging of the stockpile of nuclear weapons and has an important
e�ect on the performance of nuclear weapons. Speci�cally, mix a�ects the thermonuclear
burn, and hence the weapon's performance. A predictive science of weapons performance
is not possible without a handle on the mix problem.

The amount of mix depends on the physical state of the weapon. The relevant factors
are the following: (i) the degree of roughness of the metal surfaces, (ii) the metallurgical
state (volume texture, etc.), and (iii) large-scale features such as the condition of joints
and welds, etc. These factors may change as a result of aging or remanufacture. The
speaker said that it is these issues which make this project relevant to a central part of
the science-based stockpile stewardship mission. That mission is, namely, to assess safety,
reliability, and performance of nuclear weapons in the absence of full-scale testing.

Sharp said that there are two objectives of this project. The scienti�c objective is
to create and to validate predictive models for uid and materials mix, based on micro-
physical descriptions of key processes. The technology objective is to transfer key features
of improved models to design and assessment codes. Here the output should meet the
needs of the downstream user! Success is expected based on (i) past successes of the team
in the subject area of this project, (ii) new ideas and new methods (multiscale science),
and (iii) some shift of emphasis from deterministic prediction to stochastic prediction of
outcomes (i.e., yields, etc.) and their uncertainties.

Next the speaker discussed the Richtmyer-Meshkov instability. This phenomenon
describes the following situation. A shock wave collides with a material interface and is
refracted. The reected wave may be either a shock or a rarefaction depending on the
uid parameters and the shock strength. The instability consists of the growth in time of
perturbations at the material interface. In the case illustrated, the net result was a spike
with a cap of mushroomlike cross section of a heavy gas being injected into the lighter
gas. A key question is \what is the growth rate of this instability?" There has recently
been a breakthrough in this regard. Agreement has been achieved between experiment
and theoretical computations for the �rst time. This work used multiscale analysis of the
motion of the interface in combination with the use of modern computer algorithms, such
as front tracking and adaptive mesh re�nement,� which can utilize this information.

Another important point here is \what is multiscale science?" This term is meant
to refer to the analysis of problems whose solution is determined by the interaction of
physical processes that occur on widely di�erent scales of length and time. The main
di�culty is that feasible computations do not allow the smallest-scale (microscopic) and the
largest-scale (macroscopic) processes to be simultaneously resolved in a single calculation.
A multiscale science solution starts with a detailed (frequently statistical) model of the
small-scale processes. The next step�� is a coarse-graining step to represent correctly and
adequately the inuence of the small-scale processes on the large-scale processes.

To tie things together, Sharp explained that mix is a multiscale problem. On the
macroscopic scale, there are phenomenological models of complex materials and uid phe-
nomena. Examples are (i) multiphase and turbulent uid ow and (ii) elasto-plastic ow

� See the presentations in Section 2.
�� This step, in this area, is very widely sought after. It is, so to speak, the holy grail.

103



of real materials. On the microscopic scale, there are (i) the small-scale uid structures
like droplets, jets and vortices and (ii) texture, porosity, grain size distributions, voids, and
microfracture in metals.

The research program for this project is built around the dramatic, recent progress in
multiscale science. In the theoretical region, there are the renormalization group ideas�,
there is progress on homogenization�� and on closure relations. In the area of computer
simulation, there are the front tracking methods, AMR and molecular dynamics. These
are now capable of making the more re�ned computations necessary to validate the mod-
els. In the area of statistical physics, models are developed (or under development) for
microphysics, microfractures, voids, the brittle-ductile transition, and small-scale uid
structures. Sharp said he has been developing a statistical mechanics of coherent struc-
tures like bubbles, grains, etc. First, identify the coherent structures; second, look at
the interactions (bubble mergers); third, look at an ensemble of these, governed by two-
bubble interactions; and fourth, develop the constituent equations. In this way, he hopes
to develop useful statistical physics models.

The speaker told us that the expected bene�ts and impact of this project would
be that a predictive theory of mix would allow us (i) to identify factors associated with
aging and with the remanufacture that a�ect weapons performance, (ii) to estimate the
importance of these factors quantitatively, and (iii) to use variance reduction methods in
the remanufacturing of weapons that are less sensitive to the uncertainties in the identi�ed
factors. He further stated that this capability will provide a scienti�c basis for allocating
future science-based stockpile stewardship resources so as to produce a maximum reduction
in the uncertainties concerning weapons performance.y

Finally, Sharp drew our attention to the added value attributable to LDRD. Specif-
ically, by the development of multiscale science essential for the science-based stockpile
stewardship program, this LDRD project could lead the way toward (i) improved methods
for risk assessment and risk management based on more reliable probabilistic estimates of
the performance of complex technologies and (ii) enhanced capabilities in other important
areas of basic and applied science within the Laboratory mission, such as environmental
remediation, design of advanced materials, and climate modeling.

� See the presentation of George Baker in Section 5.
�� See the presentation of Mac Hyman, Section 3.
y Presumably only in the areas impacted by mix e�ects.
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