Multiple scattering and p_T -broadening at RHIC energies

Gábor Papp ^{a,b} Gergely G. Barnaföldi ^c George Fai ^b Péter Lévai ^c Yi Zhang ^b

^aHAS Research Group for Theoretical Physics, Eötvös University, Budapest, Pázmány P. s. 1/A, Budapest, 1117, Hungary

^bCenter for Nuclear Research, Department of Physics, Kent State University, Kent, Ohio 44242, USA

^cResearch Institute for Particle and Nuclear Physics, P.O.B. 49., 1525 Budapest 114., Hungary

Presented by: Gábor Papp

Abstract

In ultrarelativistic heavy-ion collisions, in the 2 GeV $< p_T < 6$ GeV transverse-momentum region, the soft and semi-hard multiple scattering of the incoming nucleons results in the broadening of the expected hadronic (e.g. pion) p_T spectra. Thus, higher transverse-momentum regions are populated than in proton-proton (pp) collisions. In a perturbative QCD based calculation we include the intrinsic transverse momentum (k_T) of the partons in the nucleon (determined from pp collisions), augmented by the extra broadening obtained via a systematic analysis of pA collisions in the energy range $17 < s^{1/2} < 39$ A GeV. The original polynomial spectra are modified, and an exponential spectrum appears in the region 2 GeV $< p_T < 4$ GeV. At present RHIC energies ($\sqrt{s} = 56$, 130 A GeV), the slope of the spectra coincides with that of fluid-dynamical descriptions, but it lacks any thermal origin. We determine and discuss the size of the modifications originating in multiple scattering, which lead to this state of affairs.