UNITED STATES NUCLEAR WASTE TECHNICAL REVIEW BOARD

Summer Board Meeting Exploration and Testing Activities Past and Future Climates and Hydrology at Yucca Mountain

> Red Lion Hotel Denver, Colorado July 10, 1996

BOARD MEMBERS PRESENT

Dr. John E. Cantlon, Chairman, NWTRB Mr. John W. Arendt Dr. Garry D. Brewer, Round-Table Moderator Dr. Jared L. Cohon Dr. Edward J. Cording Dr. Donald Langmuir Dr. John McKetta Dr. Jeffrey J. Wong

CONSULTANTS

Dr. Patrick Domenico, Session Chair Dr. Ellis D. Verink Dr. Richard Grundy Dr. Richard Parizek

SENIOR PROFESSIONAL STAFF

Dr. Carl Di Bella Dr. Sherwood Chu Dr. Daniel Fehringer Mr. Russell McFarland Dr. Daniel Metlay Dr. Victor Palciauskas Dr. Leon Reiter

NWTRB STAFF

Dr. William D. Barnard, Executive Director, NWTRB Mr. Michael Carrol, Director of Administration Ms. Nancy Derr, Director of Publications
Ms. Paula Alford, Director of External Affairs
Mr. Frank Randall, Assistant, External Affairs
Ms. Karyn Severson, Congressional Liaison
Ms. Helen Einersen, Executive Assistant
Ms. Linda Hiatt, Management Assistant

<u>I N D E X</u>

PAGE NO.

Reconvene Patrick Domenico	281
Perspective on Paleoclimate Ike Winograd	282
Paleoclimate records: Implications for future climate change	.
RICK Forester, USGS	311
Perspective on Paleohydrology Stanley Davis, University of Arizona	337
Paleohydrology: Age control from uranium series and Carbon-14 dating of calcite and opal in the ESF	255
	300
Paleohydrology: Hydrologic flow paths and rates inferred from the distribution of Chlorine-36 in the ESF	
June Fabryka-Martin	378 389
Perspective on climate modeling: uses and limitation Tom Wigley, NCAR	. s 410
Future climate modeling Starley Thompson, NCAR	429
TSPA insights into the impacts of climate and	
Chlorine-36 Michael Wilson, Sandia National Laboratories	449
Wrap-up of climate and paleohydrology Sheryl Morris, DOE	472
Round-table discussion on climate and hydrology Moderator: Garry Brewer, NWTRB	476
Closing remarks/Adjournment John Cantlon, Chair, NWTRB	530

<u>P R O C E E D I N G S</u>

2 DR. DOMENICO: Good morning. Can we take our seats, 3 please?

1

Welcome to the second day of the summer meeting of the Nuclear Waste Technical Review Board, and we're going to start off today with Ike Winograd, with his presentation on the paleoclimate, particularly, his work at Devils Hole in the Amargosa Desert, and the implications for Yucca Mountain.

9 Rick Forester of USGS will follow with a 10 description and analysis of work being conducted by the 11 project on paleoclimate.

We will then make a switch to paleohydrology, We will then make a switch to paleohydrology, If particularly, the isotope studies in the ESF. Stan Davis We will start that section with his presentation on that issue, followed by Zell Peterman and Jim Paces of the USGS, who will update us on the isotope studies of calcite and opal fracture coatings in the ESF.

June Fabryka-Martin of Los Alamos National Lab will 19 then present the latest results of interpretations of 20 chlorine-36 studies she's conducting in the ESF.

After lunch, we will launch into a discussion of the future climate modeling. Tom Wigley will offer us his perspective on the uses and limitations of climate modeling, followed by Starley Thompson of the National Center for Atmospheric Research, who will update us on modeling studies,
 the studies of future climate at Yucca Mountain.

We will end the session with a presentation by Mike Wilson of Sandia National Lab, who will help us understand the significance of all this information with respect to repository performance, and a wrap-up by Sheryl Morris of the DOE.

8 Following that last presentation, we will have a 9 round-table discussion devoted to climate and hydrology, but 10 you will hear more about that later from Garry Brewer, who 11 will serve as a moderator.

As usual, at the end of the day, there will be time As usual, at the end of the day, there will be time for questions and comments from the audience, so, with that, If I'll turn it over to Ike.

15 MR. WINOGRAD: Good morning.

Being the leadoff speaker in this morning's Paleoclimate session, I want to take a few minutes to Is introduce the Panel to this relatively young field of endeavor. Although earth scientists have pondered the causation of the ice ages for nearly 150 years, such studies have grown exponentially in the past twenty or so years.

22 When I first started working in this field, about a 23 dozen years ago, one of the leading journals, 24 Paleoceanography, did not exist, and two other leading 25 journals in this field were less than a decade old. Today, 1 paleoclimatology is recognized as a major branch of earth
2 science.

Because of the explosive growth of activity in this field, data is pouring in, and major surprises have appeared in a period of a few years. To illustrate the dynamic nature of this field, I begin by citing several major new findings that have come to light just in the past four years.

8 Many of you will recognize this plot as the SPECMAP 9 marine oxygen 18 fluctuations in global ice volume during the 10 past 600,000 years. For those of you who are not familiar 11 with this plot, the major peaks on this time series represent 12 interglaciations, and the deepest troughs, glaciations, with 13 approximately 100,000 years separating each cycle. Let's 14 look at a blowup of the last 200,000 years of this ice-volume 15 record.

For the past 40 years, the picture we have had from This time series and from its predecessors has been of a Relatively rapid deglaciation which occurred within 10,000 years, followed by a slow build-up of ice over tens of thousands of years, culminating in the full glacial climates about 18-20,000 years ago.

However, just four years ago, we learned that the Actual picture for the past 80,000 years is considerably different. Major shifts in temperature, and possibly, also, in ice volume occurred between 80,000 and 10,000 years ago. 1 In this slide, we show the oxygen 18 from one of 2 the two now famous ice cores obtained from Summit, Greenland 3 in the early 1990s. The oxygen 18 in this time series is a 4 proxy for temperature.

5 The thing to note throughout the period 80-10 ka is 6 that the fluctuations in oxygen 18; that is, in temperature, 7 are equal in magnitude to two-thirds of the eventual change 8 that occurred between full glacial and the Holocene values.

9 Similar shifts have since been looked for and found 10 in high resolution marine records from the mid- to high 11 latitudes of the Atlantic Ocean. The smooth buildup in ice 12 volume indicated by SPECMAP, the marine oxygen 18 standard 13 that you saw in the previous slide, gave no indication of 14 these rapid shifts in climate.

Major New Finding No. 2. Work by Kurt Cuffey and Colleagues, published earlier this year in Science, has shown that the full glacial to interglacial temperature shift in Reentral Greenland was 16° C, or twice the previous estimate, an estimate that went back about twenty years.

20 Major New Finding No. 3. The monumental CLIMAP 21 Project study of oceanic temperatures during the last glacial 22 maximum indicated that tropical and subtropical ocean 23 temperatures either did not change, or perhaps were, at most, 24 two degrees cooler than modern temperatures. However, a 25 bunch of new data is suggesting that the oceans in these 1 latitudes may have cooled as much as 5°C.

2 Major New Finding No. 4. Until the last issue of 3 Science, it was accepted that about three-quarters of the 4 oxygen 18 fluctuation in the marine record that you saw 5 represented fluctuations in ice volume, with the remainder 6 representing temperature. Strong evidence just published 7 indicates that almost half of the fluctuation of this time 8 series reflects not ice volume, but water temperature.

9 If time permitted, I could cite still two other 10 major surprises. I cite these new developments not to knock 11 the field of paleoclimatology, which I consider to be one of 12 the most exciting in science, and which I feel privileged to 13 be participating in. Rather, I do so in order to alert you 14 to consider much of what you hear today, including 15 pronouncements by Winograd, as tentative, at best.

16 Knowledge in the field of paleoclimatology is, at 17 the moment, diverging, not converging. In the words of David 18 Rind, a highly-respected climate modeler, "In this business, 19 observations drive theory."

You will be hearing a lot today from me and others about paleoclimate inferences made from various proxy records, including proxies of global ice volume, sea surface temperature, land air temperature, paleo-plant life, water lable elevation, effective moisture, et cetera. A few caveats about such records may be helpful to the Panel.

A proxy is just what the dictionary says: Something serving to replace another thing; a substitute for," but I will add, not an exact copy of the object of interest. Keep in mind that some of the proxies you will hear discussed today may be recording--probably are recording--more than one climate parameter, and that these proxies incorporate, in varying degrees, local, regional, and global climate.

9 For example, as I just mentioned, the global ice 10 volume curve we looked at, SPECMAP, which is obtained from 11 the oxygen 18 of foraminifera, records not only ice volume, 12 but also sea surface temperature, and, at some locations, sea 13 water salinity as well.

Continental paleotemperature records, such as have been obtained from the Greenland and Antarctic ice cores, or from Devils Hole vein calcite, are the summation of cloudbase temperatures, changes in moisture sources, changes in sotopic content of the oceans.

Even if proxy records were unequivocal 20 representatives of a single well-defined aspect of 21 paleoclimate, we need to remember some other important things 22 if we choose to compare two or more proxies.

First, different proxy records, even when obtained from the same test hole or location, typically record related sevents at different times, either because of causal relations

1 between them, or because both are responding sequentially to 2 a third, but as yet unidentified, factor. A good example is 3 ice volume and sea surface temperature at Site 893A in the 4 Santa Barbara Basin, about 420 kilometers from Devils Hole.

5 I show this data because Site 893A is the closest 6 ocean drilling project program site to Yucca Mountain, at 7 least the closest of the modern drilling, because it is an 8 extremely high resolution marine record, having a 9 sedimentation rate of 160 cm/kyr, and because we will 10 demonstrate, in a forthcoming paper, that the temperature 11 variations recorded by oxygen 18 in Devils Hole are nearly 12 synchronous with the sea surface temperature at this site; 13 synchronous both in timing and in magnitude.

The oxygen 18, in red, is an ice volume record, the series are tied to the same chronology, SPECMAP. Please note reaction of the last two deglaciations; that is, the penultimate deglaciation, and the last deglaciation, prior to both of them, sea surface temperature started rising about 10 kyr before the ice sheet started melting. In fact, the sea surface temperatures achieved half to two-thirds of their maximum value before the melting even began. So, which of these two proxies should one use to define the transition the from full glacial to Holocene climates in the Great Basin? To complicate matters further, the same proxy; for 1 example, sea surface temperature, may record related events 2 at different times, depending on latitude, even when all are 3 tied to the same chronology. As you have seen, during 4 deglaciation, sea surface temperature proceeded ice volume 5 off of southern California; and, incidentally, also, in the 6 Southern Ocean and in the equatorial Pacific, but, in the 7 North Atlantic, sea surface temperature lags ice volume by 8 thousands of years, as shown over a decade ago in the 9 monumental CLIMAP Final Report.

Hence, comparing different proxies from different Hence, comparing different proxies from different locations, as is commonly done, is very risky unless both proxies are equally well-dated, and unless the potential for spatial gradients are explicitly assessed.

To conclude these introductory remarks, proxy records are fascinating, but tricky to unravel, even when well-dated. To be certain of a paleoclimatic conclusion rextracted from a proxy record, it is prudent to have at least ne independent line of evidence in support one's favorite notion, especially when dealing with an endeavor receiving the scrutiny given to Yucca Mountain.

Okay. I was invited here today to tell you what we've learned from Devils Hole that might bear on Yucca Mountain as a repository, so let me try.

For decades, geologists have been using tufas and travertines; that is, surficial carbonate rocks of ground water or lake perimeter origin, to infer paleo-lake levels,
 paleo-groundwater discharge points, and the altitude of such
 discharge, paleo-ecological changes, and the timing of such
 changes.

5 In Devils Hole, we had the opportunity to use not 6 only tufas, but also, calcitic veins that record the upward 7 flow of groundwater in fissures that fed the tufas. What do 8 these calcitic tufas and veins look like in Devils Hole? I'm 9 going to take you on a two-minute SCUBA tour of Devils Hole. 10 Here you see what Devils Hole looks like at the 11 surface; not very impressive. It's a conical-shaped, 12 collapsed feature into an open fault zone. Let's take a look 13 at what the fault zone looks like in a northwest/southeast 14 cross-section. This is a scale prepared by Alan Riggs of the 15 fault zone dip, 70 to 80° to the southeast. It's open 16 somewhere below, to a depth below 150 meters, and the opening 17 is to scale. The average opening is just about two meters. 18 Let's look at the fault zone along strike; that is,

19 northeast/southwest. This is an old slide prepared by the 20 Parks Service. We have much more detail, but I like to use 21 this because it's rather simple, but it shows the main 22 features.

The saturated zone is shown in purplish blue. Look 24 at Brown's Room in the upper right-hand quadrant. Brown's 25 Room is a small room, nine meters high, that extends above 1 the water table. It has not yet stoped its way to the 2 surface. Some day, it'll do so. We'll talk about deposits 3 in Brown's Room in a minute.

This is a shot taken by Ray Hoffman of the Survey, 5 Carson City Office. Just below the entrance to Brown's Room, 6 just below the water table, it shows you the typical roof of 7 the opening. The deposits in the upper fifth of the slide, 8 the sub-horizontal deposits, are called folia in the cave 9 literature, in the spelunking literature, and these deposits 10 mark the stands of former water tables.

11 The massive white-color material in the lower four-12 fifths of the slide are the vein calcite that you find, the 13 dense vein calcite that you find lining all open fissures in 14 the regional carbonate aquifer of southern Nevada remind you 15 that the waters in the aquifer are supersaturated with 16 respect to calcite.

This is a shot above water table in Brown's Room. 18 This is Peter Kolesar, a carbonate petrologist, who works 19 very closely with us. He's at Utah State University. The 20 reason Peter is sweating is the relative humidity in Brown's 21 Room is always 100 per cent. This is a beautiful shot of 22 these folia. Again, they extend to the top of Brown's Room, 23 nine meters above water table.

This is taken 40 feet below water table on a breakdown block. It shows the drilling rig that Alan Riggs 1 constructed, using off-the-shelf items. It's an air motor, 2 powered by a compressor at the surface. The air motor drives 3 a core barrel. Everything is held in place by a strut that's 4 anchored to the hanging wall and foot wall.

5 The next slide shows a close-up of the core barrel, 6 and the strut holding the core barrel in place, but, more 7 important, it shows the beautiful nature and the density of 8 the mamillary calcite lining this open fault zone, and the 9 last part of the tour shows the results of three days work by 10 Alan Riggs and colleagues to get this core.

It took, as I said, three days, but most of those 12 three days were spent decompressing, with just a few hours a 13 day drilling. This 36 centimeter long core gave us the half 14 million year record that we'll show in a moment.

Because the Devils Hole veins and tufas appear Because the Devils Hole veins and tufas appear Calcite, they are readily dated, using 230 thorium. I notice that there are a number of geochronologists in the audience, so I will just say, for your benefit, incidentally, using samples that we provided, the Devils Hole chronology has just been replicated by Larry Edwards at University of Minnesota, and M.T. Murrell of LANL, using a different isotope, and they were kind of enough to endorse the Devils Hole chronology in This took place at the spring AGU meeting.

The calcite in the veins lining the walls of Devils The calcite in the veins lining the walls of Devils The calcite in the veins lining the walls of Devils 1 groundwater that deposited the calcite.

The next slide shows the 500,000 year oxygen 18 time series recorded by the veined calcite from the core tretrieved by Alan Riggs and his colleagues. We consider this time series to be principally a proxy of paleotemperature for reasons which I will be glad to recite, if asked to, during the question period. The barely visible dots mark 258 measurements of oxygen 18, while the vertical bars at the top of the slide show the location of the U-series dates, with two sigma error bars attached to them.

I show next an overlay of the Devils Hole and the narine oxygen 18 time series. The linear correlation, (r), not (r²), (r), between these records is .86. No shifting of curves preceded the correlation analysis. Incidentally, I should add, we've now extended the Devils Hole record forward forward another 40,000 years. We've now come forward to 19,000 Tyears. This was an older slide, and it started at 16.

Let's look next at a comparison of the Devils Hole 19 record and the Vostok, Antarctica ice core paleotemperature 20 record. The linear correlation of Devils Hole with the 21 initial Vostok chronology, that of Lorius, et al., 1985, is 22 0.92. The correlation with the more recent EGT chronology, a 23 chronology driven by a desire to be synchronous with the 24 marine record, is 0.85.

25 Please recall that Vostok is 113 degrees latitude

1 south of Devils Hole, so that these correlations, achieved, 2 mind you, without any shifting of the curves; that is, using 3 the time scale as given by each source, this correlation is 4 remarkable. How many linear correlations of natural 5 phenomena are you aware of that exceed 0.8?

6 So, what do these slides tell us? I believe they 7 show unequivocally--and I hope that's the strongest word that 8 you hear me use today--I believe they show unequivocally that 9 the major Pleistocene climate shifts recorded in the global 10 marine ice volume record, and in paleotemperatures at Vostok, 11 occurred as well in the Great Basin, as recorded by the 12 Devils Hole oxygen 18 time series.

Now, clearly, there are differences in timing of Now, clearly, there are differences which some of some key events in these records, differences which some of you know have engendered eight published discussions of our for 1992 paper, and, clearly, no one is claiming that the records the nagnitude of temperature at, say, for example, Vostok and Now, clearly, no one is claiming that the Now, clearly, no one is claiming that the records are telling us that southern Great Basin underwent the same dramatic climate shifts during the mid- to late Pleistocene as have been documented elsewhere on earth.

22 Well and good, but the Devils Hole oxygen 18 record 23 is only a paleotemperature proxy, which tells us little about 24 the subject you are most interested in from a Yucca Mountain 25 perspective; namely, effective moisture, or paleo-effective

1 moisture.

2 Were the full glacial climates of 20 to 30 thousand 3 years ago cold and dry, cold and wet, or mild and wet? All 4 three of these scenarios have appeared in the literature in 5 the past 15-20 years.

6 That they were colder appears to be the case if you 7 believe the Devils Hole oxygen 18 time series. That they 8 were also wetter is seen from the Brown's Room 100,000-year 9 water table hydrograph.

Please turn to the top illustration on the sixth page of my handout. Sorry, I don't have a slide of that. May we have the lights possible just for a minute? If not, I I'll go on.

Anyway, this figure from Barney Szabo and colleagues, published in Quaternary Research a couple years ago, 1994. Recall the brachi-fungi looking calcite deposits that I showed in our instant SCUBA tour of Devils Hole. Recall the water table folia in the cave literature, are formed at the water table as the CO₂ out gasses from the upwelling groundwater, and they mark the stand of both modern and paleo-water tables in Brown's Room.

Szabo, et al., collected folia from levels up to nine meters above the modern water table, and they dated them using 230Th. They also used, incidentally, the calcite veins and flowstones, two other types of deposits, although these

1 two only indicate whether the water table was above or below 2 the level at which they were collected.

We see that the highest water table in this 115 kyr record occurred between 45,000 and 19,000 years ago. Since 5 19,000, the water table declined steadily to its modern value. So, clearly, this record, when used in conjunction with the oxygen 18 record obtained from the vein calcite, supports the cold and wet scenario for the latest Wisconsinan glaciation. Let's compare this record with another well-10 dated Great Basin proxy record of effective moisture.

Here I have plotted only the last 40 kyr of the Room hydrograph, along with the Lake Bonneville record, in order to illustrate a point I made at the start of when of similar phenomena--in this case, effective moisture-need not be coincidental, even when both records are welldated, as these are. Much more could be said about these two records, if time allowed, and Rick, maybe later on, you and I or can discuss these.

Okay. Does the water table rise of nine meters in Does the water table rise of nine meters in Prown's Room during the past full glacial time have any transference value to Yucca Mountain? And, why is this rise so much smaller than other values reported in the literature? Values as high as 90 meters were recently published by Jay So Quade and Marty Mifflin in the GSA bulletin.

A short answer is that the nine meter rise in Brown's Room is not transferable to Yucca Mountain because it occurs in a different aquifer, and is also in a different groundwater basin than Yucca Mountain. But, perhaps there is a more instructive lesson for Yucca Mountain from this modest nine meter late Pleistocene to modern water table shift.

As we heard yesterday, and as has been well-8 documented, not only at Yucca Mountain, but throughout the 9 Great Basin, the complex structural and stratigraphic setting 10 of this region results in an amazing distribution of modern 11 water table depths. Depths to water table ranging from a few 12 tens of meters to hundreds of meters below the surface occur 13 within one to two kilometers of each other, even beneath a 14 single bajada.

15 These modern differences in depth to water table 16 reflect the structural disposition of aquifers and aquitards, 17 facies changes, and the presence or absence of 18 topographically low outlets for the aquifers. Paleo-water 19 levels were, of course, also subject to the same tectonic, 20 stratigraphic, and topographic controls as modern water 21 levels, at least over a period of a few hundred thousand 22 years.

If, as is likely, recharge increased during the last glacial period, then a highly transmissive aquifer with to outlet, for example, the regional

1 carbonate aquifer at Ash Meadows, would be expected to show 2 only a modest rise in water level, and such is the case in 3 the Brown's Room of Devils Hole.

In contrast, a sub-basin underlain by a thick aquitard might record a water table rise of tens of meters in response to the same climatically induced increase in recharge. My point is that for a proxy water table determination to be transferable to Yucca Mountain, it must not only be in the same basin and the same aquifer, but the aquifer must be in the same structural setting as the Topopah Spring formation beneath Yucca Mountain. If these conditions are not met, the paleo-water level proxy, however well-dated, may not represent water table change beneath Yucca Mountain.

This, for me, is the chief lesson to be learned from the modest nine meter glacial to Holocene water table hift, beautifully recorded in Szabo's 100,000-year

17 hydrograph.

I turn next to another use to which the Devils Hole 19 time series might be put in furtherance of assessment of 20 Yucca Mountain as a repository. How long were the previous 21 four interglaciations; and, consequently, how much longer 22 might we expect Holocene climate to last?

Now, this can be approached by modeling, as we'll hear this afternoon. If you're a field-oriented person, as I am, you tend to look at the past, look at the record and see 1 what the evidence we have tells us that we may use.

2 Discussion of such a topic must begin with a few comments on 3 what is your definition of an interglaciation?

4 You've seen this slide of the marine ice-volume 5 before. Let's focus on two current definitions of the last 6 interglaciation. The warm period between the dashed vertical 7 lines is the preferred definition of some, perhaps many 8 landlubber Quaternary geologists. This interval, which they 9 refer to as the Sangamon, had a duration of approximately 56 10 kyr on the SPECMAP time scale.

In contrast, paleoceanographers define the last interglaciation as the 13 kyr interval bracketing the highest marine isotope substage the field of the approximate mid-points of the rising and falling limbs define the duration of the interglaciation under either of these definitions.

Now, we will use the paleoceanographers' definition Now, we will use the paleoceanographers' definition today because it leads to a very conservative analysis; i.e., a minimum value for the likely duration of past and of the current interglacial climates, but keep in mind that the alternate definition for a much longer interglaciation is not without some supporting evidence, which I do not have time to aget into today.

You should also be advised that the 13 kyr duration 25 assigned to the last glaciation by the paleoceanographers is 1 not based on radiometric dating, but rather on theoretical 2 assumptions regarding the relationship of 20 and 40 kyr 3 cycles in the marine record to precession and obliquity-4 controlled cycles in insolation. On the next slide, we apply 5 this sensu stricto definition of an interglaciation to the 6 Devils Hole oxygen 18 time series.

7 I show on this slide, with a blue overlay, the last 8 four interglaciations at Devils Hole. They range in duration 9 from 18,000 to 26,000 years, averaging 22,000 years, or 10 nearly twice as long as in the SPECMAP marine record. The 11 Vostok ice core also indicates that the last interglaciation 12 was on the order of 20,000; in fact, it was the Vostok 13 workers who first pointed out that, on continental records, 14 the interglacial seemed to be twice as long as in the marine 15 record.

Is there any other evidence regarding the duration If of past interglaciations? Data for the high stand of the 18 last interglacial sea level are especially interesting, and 19 when I say high stand, talking about when sea level was at or 20 above modern levels.

The red bars give the duration of the last reglacial high stand in six separate studies published in the past five years. For the benefit of the geochronologists in the audience, I must mention that all the U-series measurements in these studies were made with Tim's mass-spec 1 methodology, and they met the strict criteria that the 2 initial uranium ratio be equal to that of sea water, and I'm 3 sure some of you recognize Barney Szabo and Dan's work and 4 Ken's work, and others.

5 The top bar you may not have seen represents a 6 synthesis of all the data by Claire Stirling. This appeared 7 in the December, '95 issue of Earth and Planetary Science 8 Letters. Her work indicates the duration of 12-13 kyr, but 9 in using such data, please recall that the high stand data 10 tell us nothing about the time that it took to reach and 11 recede from these high stands, and when you consider such 12 data, based on the sea level curve of Richard Fairbanks for 13 the last 20,000 years, you cannot escape the conclusion that 14 the sea level data, if you apply the same definition of an 15 interglaciation, the mid-point of the rise and the decline, 16 that the sea level data also support an interglaciation on 17 the order of last interglaciation of at least 20 kyr.

Now, clearly, in this exercise, we have been now, clearly, in this exercise, we have been of comparing different proxy records, which you will recall I cautioned against at the start of my talk. Specifically, because they are different proxies, they are likely to occur and do occur at different times. Nevertheless, each of them, and the exception of the Marine O-18 records, suggests that the past interglaciations were of 20 kyr duration. Let's add still a further complication.

Because the paleoceanographic definition places the the interglacial boundaries at the mid-point of the rise and of the decline, it, perforce, includes climates considerably cooler than represented by the peak values. However, if we are interested in the duration of modern peak warm periods, then we need other information.

7 The marine oxygen 18 records shown on this slide 8 suggest that these peaks lasted only a few kiloyears, two to 9 three kiloyears. The Devils Hole record, in contrast, 10 indicates peak durations on the order of 10 to 16 kyr, as 11 seen on the next few slides, which are simply expanded scale 12 plots of three of the past four interglaciations.

Ignore the top time series. It's the Carbon-13 If record from Devils Hole, which I have not even mentioned today, because it would take me a minimum of an hour to try to make some sense of it.

The O-18 record we've been talking about is in the 18 lower part, and the yellow overlay simply brackets that part 19 of the record where the O-18 varied less than \pm .15 per mil; 20 essentially, no variation.

This is, in paleoceanographic terminology, substage 22 11.3, which for you is four interglaciations ago; again, 23 16,000 year period of relative quiet. Going back three 24 interglacials ago, which they term substage 9.3, we see a 25 quiet period of ten kiloyears, and now coming to substage 1 5.5, which is another terminology for 5e, that is the last 2 interglaciation. We have 10 kiloyears.

3 Temperature data from Antarctica, deduced from the 4 oxygen 18 data from six cores, shows an 11 kyr long Holocene 5 peak as seen on the next slide, supporting the Devils Hole 6 findings of a 10 kyr or longer warm period. I could show you 7 an identical record from Greenland.

8 Speaking of Greenland, at the last AGU, Richard 9 Alley of Penn State showed some interesting data that 10 suggested that around 8200 years ago, there was a temperature 11 shift of perhaps two to three degrees Centigrade, so the 12 Holocene was not without variations, but compared to other 13 things, it was very quiet.

I have tried in the past few minutes to summarize a Is lengthy manuscript on the duration of the past four interglaciations as a guide to the future. The bottom line of that paper is that the present interglacial may be over, a or could last another 10 kyr, dependent on which proxy record one wishes to use, and when you believe the Holocene began, another matter which is also proxy-dependent, as you saw in one of my first slides, the one comparing global ice volume and sea surface temperature off of southern California.

Alternatively, if one's concern is solely with the Alternatively, if one's concern is solely with the duration of current peak Holocene warmth, it may be over, or could last another 5 kyr, and, needless to say, none

1 of the proxy data I've shown you take into account possible
2 anthropogenic alteration of climate.

3 Does the impending end of the Holocene-type 4 climates, whether in one or in ten kiloyears, mean that we 5 will enter an ice age? Not necessarily so. As mentioned at 6 the start of my talk, new evidence just published in Science, 7 indicates that almost--actually, that's not fair. The 8 authors published a shorter version in Paleoceanography about 9 two years.

Okay, anyway, the new evidence indicates that almost half of the marine O-18 signal is temperature, not ice volume, as believed for the past 23 years. This new finding, in turn, greatly helps to explain why sea level remained above modern levels 115,000 years ago, as shown in several swell-defined sea level records by Barney and others; remember, the Hawaii problem they pointed out?

At that time, 115,000 years ago, sea level was above modern, but the marine curve, ice volume curve indicated that sea level was 50-60 meters below modern; that is, that there was a considerable build-up of ice volume. Apparently, the marine O-18 curve at that time was recording a drop in temperature rather than a build-up in ice volume.

Additionally, there is strong evidence that twothirds of the last ice sheet build-up may have occurred, may have occurred in the closing 15-20 kyr of the "100,000 year

1 cycle."

The bottom line is that the marine O-18 record should not be routinely read as ice volume. At the same time, we need to know what past climates were like during the first, let's say, 10 to 40 kyr after the end of the previous interglaciations.

7 Okay. Some conclusions of this rather rambling8 presentation.

9 I. Due to the large number of startling findings 10 in the field of paleoclimatology in the past four years, it 11 appears prudent to have at least two independent lines of 12 evidence in support of any paleoclimatic notion that one 13 favors, especially in endeavors receiving the scrutiny given 14 always to Yucca Mountain.

15 II. The global glacial-interglacial cycles of the 16 Pleistocene clearly occurred in the southern Great Basin. 17 The last glacial maximum was cold and wet, not a surprise to 18 most of you.

19 III. Extrapolation--and this may be trivial, but I 20 think it's worth repeating. Extrapolation of proxy water 21 table altitudes to Yucca Mountain from distant sites is 22 risky, even if the levels are well-dated, and the record is 23 from the same groundwater basin. Needed are paleo-water 24 table data in the same structural block as the Topopah Spring 25 formation at Yucca Mountain.

IV. An examination of a large data base indicates 2 that the past four interglaciations lasted on the order of 20 3 kyr. Based on these records, the present interglacial is 4 unlikely to persist for more than 10 kyr into the future, and 5 perhaps for much less time, barring major anthropogenic 6 effects on climate.

7 V. The end of the present interglacial need not 8 necessarily mean rapid growth of high latitude ice sheets, 9 but, rather, cold climates in the Great Basin. Considerable 10 more knowledge is needed on the paleoclimatology of the 11 transitional periods between the peak interglacials and the 12 cooler stadials that followed them.

Last, and perhaps most important, during major Last, and perhaps most important, during major Last, and perhaps most important, during major climatic transitions; i.e., glacial to interglacial, field transitions; i.e., glacial to interglacial, because they prove records are commonly offset from one another because they are marching to different drummers. The offset for can be as much as 10 kyr; hence, the common assumption that rates are in one's favorite continental proxy are in lock step with the global marine ice volume record may not be correct.

21 Thank you for your patience.

22 DR. DOMENICO: Thank you, Ike.

Any questions from Board members? Don Langmuir,24 Board.

25 DR. LANGMUIR: Ike, you've shown us, from Devils Hole,

1 how we could use the carbonate precipitates, and I'm sure 2 folks in this program have been looking for carbonate 3 precipitates in voids and fractures below the repository 4 horizon to the groundwater table, but I've never heard 5 anything about it.

6 Are you aware of any such work, and does it tell us 7 anything at all, if it exists, about paleo-water tables at 8 Yucca Mountain?

9 MR. WINOGRAD: There's been a lot done, and two 10 gentlemen here, Zell peterman and Jim Paces, I believe, are 11 going to be talking about this this afternoon.

DR. LANGMUIR: Are they talking about paleo-water 13 tables, or are they talking about infiltration waters coming 14 downward in the ESF? Zell?

MR. PETERMAN: We'll be talking about infiltration. There are carbonate veins in the saturated zone. There's a zone around the water table, give or take maybe 100 meters, where calcite's pretty sparse. We've done a few analyses, just isotopic analyses. I don't think--well, I'll take that back. There are a few uranium series ages, maybe from saturated zone calcites, but it's not a large data set at all, and it's not something we're looking at right now. DR. LANGMUIR: And do we have any sense of what the paleo-water table has been doing at the same time that Ike's Devils Hole data has been accumulating?

1 MR. PETERMAN: There have been arguments based upon 2 mineralogy from the Los Alamos people, the arguments based 3 upon the vitric transition zone in the rock mass from the 4 standpoint that the vitric rock occurs above any zone that 5 was saturated, and this is roughly, I don't know, 80-100 6 meters above the current water table.

7 We made an argument several years ago on the basis 8 of strontium isotopes on some calcites from G-4, that they, 9 isotopically, more resembled saturated zone water strontium 10 than they did the other, the calcites, whose source was 11 infiltrating from the surface.

I think Barbara Carlos wrote a paper several years ago looking at fracture-filling material, and I think she argued that there were some of the fracture mineralogy, something like, I don't remember these figures for sure, so 80-100 meters were more similar to what occurred in the raturated zone, so I think that's what exists at the rock mass itself.

DR. LANGMUIR: Do you guys have confidence that it's an 20 80-100 meter effect that we're dealing with at Yucca 21 Mountain, as opposed to the 9-meter effect at Devils Hole? 22 How certain are we of that?

23 MR. PETERMAN: Well, there is no direct age information 24 on these features at Yucca Mountain itself.

25 DR. LANGMUIR: What would it take to get it?

1 MR. PETERMAN: Several--

2 DR. LANGMUIR: This is the critical issue; right? This 3 is really the critical issue.

4 MR. PETERMAN: It's a critical issue, right. We do--and 5 I think Rick Forester will address these things--there are 6 the Old Spring deposits within a few kilometers or tens of 7 kilometers of Yucca Mountain, and they're, you know, they're 8 some sort of proxies for water discharge in the past, and 9 there's a pretty good chronology emerging for those.

DR. LANGMUIR: I don't think the discharge is the issue.
DR. DOMENICO: Let's refocus on Ike here, because we're
going to hear from Zell this afternoon.

13 DR. LANGMUIR: I appreciate that.

MR. WINOGRAD: These aren't dated; correct? They're not 15 dated.

16 DR. DOMENICO: Anything further for Ike from Board 17 members?

How about our other consultants? Do they have any 19 questions of Ike; and staff? Leon Reiter, staff.

20 DR. REITER: Leon Reiter, staff.

Ike, I notice you did not mention the word Milankovich, and I guess that was carefully planned on your apart, and I guess we will hear later on about an effort to invoke some of the orbital forcing functions in predicting swhat might be in the future. What's your view of that? What do see from Devils
 Hole your view on those things?

3 MR. WINOGRAD: Okay. Let me give a two-minute answer. 4 Is that all right? I can't do it in less than that, but I 5 don't want to take longer.

6 First of all, Milankovich, the word Milankovich is 7 used in two different, very different senses by different 8 groups of people. The physical stratigraphers have a sub-9 field called cyclostratigraphy. The stratigraphers see 10 cycles in their records, 20-40-100,000 year, 400,000 year, 11 two million year, and they see this in sediments way back to 12 the Triassic. There is no doubt that these cycles--well, it 13 appears the cycles are real. They've been challenged at some 14 sections, but not elsewhere. I accept them as real.

15 The cycles are real in the marine bracket. The 16 cycles occur in Devils Hole. We said this in our first 17 publication, and in the second publication. Cycles are real. 18 In fact, John Embry, in his critique of our work, claims 19 that the 20 and 40 and 100,000 year cycle are better 20 developed in Devils Hole than the marine record. Well, okay. 21 Anyway, they're there, so the cycles are there and are real. 22 But, as Olson and Kent of Lamont have pointed out, 23 most recently in the latest issue of PQ, paleoceanography,

24 paleoclimatology, and paleo-something else, but, anyway, they 25 pointed out that they have these cycles in great strength in 1 the Triassic during an ice-free world. So, the presence of 2 the cycles in sediments, whether the continental or marine, 3 or in vein calcite, is not a sufficient condition for 4 northern hemisphere glaciation, so that's one way Milankovich 5 is used, as cycles. They're real.

I think the way you're asking about, that people don't always distinguish, is Milankovich, the Milankovich hypothesis for the origin of northern hemisphere glaciation, and Milankovich himself, by the way, recognized--he was aware that there were cyclothems in the carboniferous rocks, and he was aware that insolation occurred way before the start of northern hemisphere glaciation, and so, he knew himself that northern hemisphere glaciation, and so, he knew himself that sinsolation was not a sufficient condition, and the cycles were not a sufficient condition, and so he invoked the movement of the pole, of the North Pole.

Our view is that, again, Milankovich knew it Nimself. Salzman has said it more recently. Insolation Nitself is not a sufficient condition for the northern hemisphere glaciation, because it preceded northern hemisphere glaciation. We showed in our 1992 paper that insolation is not a necessary condition for deglaciations.

And one last thing, and that is that in response to And one last thing, and that is that in response to the Devils Hole challenge, and in response to some very detailed sea level dating by Barney and others, and Sterling and Chin and on and on, it was recognized that some

1 modification had to be made in the Milankovich theory, and, 2 indeed, Tom Crowley and T.L. Kim published a paper in Science 3 in 1994--and I have that paper with me if anyone wants the 4 exact reference--they published a paper in which they made a 5 major modification in the formulation of the Milankovich 6 hypothesis, and I won't get into what modifications they 7 made.

8 And this is exactly what should happen in science. 9 If a hypothesis is challenged by some new data, the first 10 thing is, is the data correct? And then, if you replicate 11 the data, then a modification must be made to the hypothesis, 12 and this is exactly what Crowley and Kim did.

13 That would be my two-minute answer; probably took 14 more than two minutes.

DR. DOMENICO: I'm certain there are more questions, but have a round-table later this afternoon, so, I think, in view of the schedule, we should get going.

18 Thank you very much, Ike.

19 MR. WINOGRAD: You're welcome.

20 DR. DOMENICO: The next presentation is by Rick 21 Forester, who will talk about the paleoclimate records, 22 implications for future climate change.

23 Rick?

24 MR. FORESTER: The purpose of our effort in the Yucca 25 Mountain Climate Program is to look at past records in as 1 much detail as we possibly can in order to provide

2 information, at least a basis to discuss what the future may 3 hold.

In today's talk, in 25 minutes, I can't go into all 5 of the detail that we have. What I would like to do is to 6 address three areas: first, climate forcing functions on a 7 millenial time scale; second, climate records for the past 8 400,000 years, the calibration of those millenial time 9 scales; and, thirdly, some information that we have from 10 multiproxies during the last glacial cycle.

As Ike was starting to discuss, climate is a very complex process. There are many, many forcing functions that drive the climate system. Most of those forcing functions are clearly terrestrial. They are things that are working on the land, not in the skies. Indeed, climate forcing functions work on all time scales. Changes in solar variability, volcanic eruptions commonly operate on a short the time scale. On a very long time scale, factors such as out inental drift and tectonism; indeed, tectonism in the Vucca Mountain area transformed Pliocene wet, woodland-type climates into a semi arid desert.

22 On the time scales that we're most interested in--23 and, as Leon brought up, we are looking at the primary 24 forcing function of orbital parameters. The orbital 25 parameters that are import to driving insolation include

1 eccentricity, the fact that the earth's orbit changes from a 2 circle to an ellipse over time, and I'll use that in the rest 3 of the talk. We also have obliquity, where the earth tilts 4 on its axis, which, in the northern hemisphere, increases or 5 decreases the size of the polar circle, and we have 6 crescession, basically, a wobble as the earth rotates, such 7 that it determines the seasonality of the earth's approach to 8 the sun during the elliptical orbit, affects the amount of 9 insolation.

If we simply look at the eccentricity curves, 11 eccentricity spectra for the last 800,000 years, we notice a 12 couple of things. If we look at where we are in the modern 13 world here, and we go back in time, we see that we've got 14 400,000 year eccentricity cycles. The larger values on the 15 curve represent a time in history when the earth's orbit is 16 very elliptical; the smaller values represent a period in 17 time when the earth's orbit is relatively circular.

And, I think one of the things that I've often wondered in terms of all of the CLIMAP studies is when you look at simply eccentricity--and eccentricity plays a major role in procession, in particular, in that in terms of insolation--these subcycles of 100,000 years in duration are quite different from each other. They aren't the same kinds things. Therefore, I wouldn't intuitively expect those subcycles to be identical in the record, and as I'll show in

1 a moment from the Owens Lake record, they appear not to be.

2 The impact of eccentricity and procession on 3 insolation can be seen in this diagram; great deal of 4 variation. Large ranges in variation represent times when we 5 have an elliptical orbit, and small variation represent 6 points in times when we have a relatively circular orbit.

7 This is an insolation curve simply calculated from 8 a million years ago to a million years in the future. If we 9 notice, in particular, from Year 0 forward in time over the 10 next 100,000 years, insolation falls in the relatively small 11 range, and represents a period in earth's history where we're 12 moving from an elliptical orbit into a circular orbit.

13 If we simply compare the time frame in the next 14 100,000 years, 0 to 100,000, the bottom axis, to the time in 15 history when it was most similar, part of that 400,000 year 16 cycle, we see that the insolation curves are relatively 17 similar, but they are not identical.

Well, does any of this matter? Does insolation Well, does any of the Great Has already And Ike has already discussed this, in part, and, indeed, what the Devils Hole is Hole record does, by having precise chronology, by having a superb chronology, is it tell us, as, I think, Ike just said, that these kinds of cycles do exist in the Great Basin.

Ike has noted in great detail in his article in Science that there's a difference in timing between his
1 record and that of SPECMAP, SPECMAP being the oceanographic 2 record shown here on the bottom curve. Indeed, there are 3 differences, and when you consider the climate forcing 4 functions are operating in all time scales, are largely 5 terrestrial, and even that the orbital cycles are not 6 perfectly linear or symmetrical, the differences between 7 SPECMAP, between insolation-driven assumptions, purely 8 insolation-driven assumptions, and that of Devils Hole, are 9 not all that great.

In fact, we can plot the Devils Hole. We can plot In the Devils Hole interglacials on the eccentricity curve, the maximum temperature implications from the interglacials shown in gray, and the transition to glacial periods shown in light 4 gray. In most of those instances, as Ike has said, the Is lengths of the interglacial, plus transitions, run from 20 to 6 30,000 years in duration, and each of those interglacials 17 then fall on a particular part of the eccentricity curve, and 18 can then be related to insolation and the orbital parameters, 19 in general.

As Ike has also said, the Devils Hole record, although it provides us with an excellent chronology, and, quite likely, a temperature record, does not provide us with a moisture record. What we have to do to get effective moisture is go to something in the area at the earth's surface.

1 So, in summary of where we are now, the Devils Hole 2 record shows that southern Nevada responds primarily, but not 3 entirely, to orbital insolation forcing functions on a 4 millenial time scale. Orbital forcing functions may be 5 calculated for the next climate cycle, and offer a general 6 guide to future climate change.

7 The regional effect of future climate changes may 8 be evaluated by a study of the long-term past climate and 9 hydrologic records, which is what I'll talk about next.

Future 400,000 year insolation climate cycles Future 400,000 year insolation climate cycles similar to the past cycles, just as the 800 to 400 cycle was similar to the last, and long-term climate forcing functions, tectonisms and continental drift, will not change significantly in the next 400,000 years.

Further, as Ike indicated in his talk, proxies are for not perfect. By no means are they perfect. In fact, that's why we always try to look at a multitude of proxies, because even in paleoecologic proxies, the most commonly used for plimate, there are great differences between each different kind of organism.

In the case of Owens Lake, which is the primary record that I'll talk about here--but we also have records from Death Valley, from Walker Lake, from Kowich Playa, from Desert Dry Playa, and from the Great Salt Lake, but in terms of Owens Lake, we have to understand how the system operates

1 with respect to climate, and how our proxies might measure 2 that process.

3 At Owens Lake, the primary source of water for the 4 lake is derived from snow and rain at high elevation in the 5 surrounding mountains. Those waters are very dilute.

6 The primary source of salts, and an important 7 secondary source of water is derived from spring discharge at 8 low elevation.

9 During the very wet, cold climates, the dilute 10 river water completely dominates the lake, resulting in a 11 large, deep freshwater lake. During the very dry climates, 12 spring discharge dominates the lake, resulting in a shallow, 13 warm or cool saline lake. Intermediate climates result in 14 lakes with intermediate depths, thermal, and chemical 15 characteristics.

16 The volume, thermal, and chemical characteristics 17 of past lakes may be interpreted from the fossil diatoms and 18 ostracodes, and we also have pollen data from this site, 19 transforming fossil data into chemical data. Climate data 20 derived from those fossils may then be compared with other 21 records in the region, like that of Devils Hole, or 22 insolation criteria.

The first record that I'll show you--and this is a tremendous oversimplification, and, by the way, you should move Stage 11 on your handouts up to where it is shown here.

1 It slipped down into Stage 13 during copying.

The diatom record here is greatly oversimplified. There are 50 or 60 or more species of diatoms, all of which contribute to the climate signal. What we've done here is simply show that we have freshwater diatoms representing relatively large lakes in the planktic category, various kinds of lakes with the benthic category, and the saline diatoms representing, presumably, the dry climate periods.

9 Careful comparison of this record with the 10 insolation diagrams, or insolation forcing functions show 11 that the system is not responding in a perfectly linear way 12 in this area.

The major glacials are shown in circles, numbered 14 2, 4, 6, 8 and 10, representing the last 400,000 years, and 15 the interglacials are shown with triangles and numbered 5, 7, 16 9 and 11.

I could create a similar kind of diagram for the sostracodes, but I decided to do it a little bit differently. The ostracode diagram then would show a stratigraphic profile of fresh and saline taxa.

21 What I did for the ostracodes was to take--and I 22 should back up and say that in this diagram, from about 23 200,000 years up, the blank spaces represent non-occurrence 24 of ostracodes. In those instances, we have to rely entirely 25 on the diatoms for a climate signal. Along about 200,000

1 years, most of the blank space represents portions of the 2 record that are currently being collected.

3 What I simply did was to take the dominant 4 ostracode in the assemblages that we're looking at, and both 5 in terms of the diatom and the ostracode record, we're 6 looking at in the order of a thousand or more samples from 7 this particular site for the last 450,000 years.

8 The modern world, the modern dry kind of climate, a 9 perfectly spring-dominated kind of world is shown in red for 10 limnocythre sappaensis. The very opposite end of the spectra 11 is cytherissa lacustris, which is purple. In that case, 12 cytherissa lacustris is a borial taxon and it represents 13 cold, dilute, very stable, unchanging kinds of lakes. So, 14 between red and purple, we're going from modern style 15 climates to the extremes of the glacial periods.

Now, one of the things we should notice about this Now, one of the things we should notice about this particular diagram--and I think it's important to the program at large--and that is, if we believe that insolation is at least a crudely predictive kind of criteria, and that 400,000 years ago represents something to do with where we are today, then we go back to 400,000 on this diagram and simply read it forward like a bar code reader, and what we find is what Ike has just said. It's an important point, and this particular record does differ greatly from Devils Hole.

25 Devils Hole shows its greatest magnitude of change,

1 what might be the coldest or the wettest, being in that Stage 2 10 period, that Stage 10 period that we, perhaps, are headed 3 into. What this record, and what the diatoms suggest as well 4 is that the next 200,000 years, on this diagram, is filled 5 with largely reds, yellows, greens. It's intermediate-style 6 climates. It is not a severe climate.

But, as we get up to 160,000 years, and, indeed, as 7 8 we come into Stage 6, again, consistent with what Ike was 9 saying, we go through a lot of red, which means modern like. 10 Then we come into the purples and blues. We move to the 11 extreme climates. The last two glacial cycles in this 12 record, which is within 100 miles of Yucca Mountain, shows 13 that Stages 6 and 2 are much colder and much wetter. We 14 don't know how wet yet. We're still trying to put numbers on 15 this relative scheme, but suggest that it's much wetter and 16 colder than what we saw in the earlier two cycles, the 17 earlier 200,000 year cycles, which look to be, in terms of 18 the future, drier, wet, wetter than today, certainly, but not 19 ice-filled worlds.

Now I would like to move from here to a multitude Now I would like to move from here to a multitude and, 20 of proxy records that exist in the last 40,000 years, and, again, let me emphasize, it may be that the last 40,000 years, for insolation reasons, may not be a good analog for what we're moving into in the future, but what the last 40,000 years does tell us, because we have many kinds of

1 proxy records, what it does tell us is a lot about how the 2 hydrologic system in this area changes in response to 3 climate.

Now, one of the first things we have to realize is that in the Pleistocene, in this area, atmospheric circulation is very different from today. A Pleistocene world is not, in any way, shape, or form, like a Holocene world, so when we talk about deviations in precipitation and temperature, we're not talking about operations about a Holocene mean. We're talking about an entirely different mean.

12 In terms of circulation style, the kinds of--and, 13 in that consequence, the positions, in this case, of the 14 polar front, which today have an average position on the 15 Canadian border, in the Pleistocene, had an average position 16 in this area. Indeed, a good deal of Stage 2, they probably 17 were south of this area. The consequence of that is cold, 18 extreme cold, and then a moisture level that is 19 representative of the interaction of that circulation style 20 with the local topography.

This is some of the packrat midden data that is generated, in part, by the Desert Research Institute, but, indeed, the pattern that is here is also replicated in other data sets; most notably, Jeff Spaulding's, and what it represents, in this case--and, again, as with the other data 1 sets, it's a gross oversimplification of what total data we 2 have, but what it represents is an expression of, A, that 3 colder, wetter condition associated with polar fronts being 4 in the region. White fir and limber pine, which, today, live 5 in the area at high elevation, have moved down to lower 6 elevation. They're moving down to around 5,000 feet.

7 We see the end of that period represented 8 dramatically right here, and the appearance of pinyon pine. 9 That represents the retreat of the polar front out of this 10 region and to the north, as we go into a Holocene world.

Limber pine today is a plant that can live in relatively dry kinds of conditions. Common average for limber pine precipitation is something in the order of 16 if inches. More importantly, limber pine is a plant that really likes it cold. A common average for limber pine, mean annual air temperature is 4 or 5°C, and, most importantly, limber pine does not like warm summers. Limber pine does not like summers above about 15°C on an average.

What limber pine coming down to lower elevation suggests is that, at a minimum, temperatures in this area, mean annual air temperatures are getting much colder. I would suggest they're getting 10°C colder, but we're in the process, a number of us are in the process of debating that a order of magnitude. Precipitation is probably increasing at a minimum to bring those trees down to the elevation that

1 they move to, at a minimum, is increasing by 40 or 50 per 2 cent.

If we go to the center of the distribution of the species itself, rather than worrying about what it takes to bring us down from the mountain tops, because, again, circulation has changed. We're not simply looking at a modern world. We're looking at something more on the order of doubling precipitation, and making it very, very cold.

9 White fir, by contrast, represents somewhat warmer 10 conditions. I should back up and say limber pine only 11 intervals, or quite likely intervals when the polar front is 12 largely south of the test site throughout the year. Today, 13 the polar front rarely gets to the test site.

White fir, by contrast, is wetter, and is warmer. Warm is a relative term, and you'd be cool relative to today; Perhaps four or five degrees mean annual air temperature cooler or colder, and an increase in precipitation--again, a minimum number to bring the limber pine down, and this is yist Spaulding's number--he, indeed, has agreed that things are wetter than he thought they were in the early eighties-would be a 75 per cent increase in precipitation.

I would argue that we could easily be in the, again, double or perhaps as high as triple, although I'm beginning--as Jeff is beginning to think it's wetter, I'm beginning to think it's drier, so there is some consensus. What white fir then represents is a period when the polar
 fronts are oscillating through the region, and, quite likely,
 are bringing moisture in from the southwest.

4 They're bringing it in in a quasi monsoon style, 5 and, again, a sense of what that represents, yesterday, Alan 6 mentioned something about the importance of El Ninos--I said 7 monsoon, I meant El Ninos. Alan said something about the 8 importance of El Ninos. What white fir represents are mega 9 El Ninos, in a sense, only on a thousand-year time scale, 10 rather than every six years. So, it represents a huge amount 11 of moisture coming into the region. Huge might be double, 12 triple, something in that particular order.

We are also working on determining whether or not We are also working on determining whether or not the modern day precipitation gradient that Alan described yesterday exists in the Pleistocene at the same magnitude that it exists in the Holocene. If it exists in the same magnitude, then the White fir intervals, in terms of the top of Yucca Mountain, represent something on the order of 14 to 19 16 inches of precipitation.

20 We don't know the sigma one about that mean. 21 Modern day sigma one for climate stations in the area usually 22 suggest a variation of about 50 per cent of the mean, so 23 taking a 50 per cent of the mean, about a doubling gives you 24 a sigma one high value of triple, and a sigma one low value 25 of something comparable to the modern world. In addition, the region and the valley bottoms are filled with marsh deposits. Jay Quade, in particular, has spent a lot of time studying those particular marsh deposits. They simply represent an illustration that climate was wet senough to support surface water in the region.

6 In this particular case, the Corn Creek Flat area, 7 we have several hundred samples through here. In the high-8 level waste papers in 1994, I reported a climate 9 interpretation of 400 to 600 mm, 16 to 24 inches for what I 10 thought at the time was valley bottom climate. I'm now 11 convinced that there is sufficient moisture in the system, 12 and I'm convinced that there's sufficient flow through the 13 system, that, although I still believe the 16 to 24 inches, I 14 believe that has to represent where the precipitation fell, 15 integrating the mountain top.

Further, when we first started studying these Further, when we first started studying these deposits, we thought they represented relatively continuous keeposition. As we began to date the deposits, we discovered that, in fact, they represent very episodic deposition, and, indeed, if we crudely plot the white fir intervals on against these ages, we find that the major sediment packages are representative of the white fir periods; again, supporting the fact that white fir is probably a wetter period. Either the limber pine periods have not had much deposition and were for and colder, or the limber pine period deposition has

1 been largely eroded.

2 And the last section I'd like to mention is the one 3 of the Lathrop Wells Diatomite. This is an outcrop that was 4 thought at one time to be early quaternary or Pliocene, more 5 than a million years in age. We have subsequently dated it 6 using radiocarbon techniques, uranium thorium techniques, and 7 thermoluminescent techniques, and have discovered that, in 8 fact, it represents at least deposition in the last cycle, 9 and, depending on the differences in thermoluminescent versus 10 uranium, may also represent deposition in the penultimate 11 cycle.

12 The kinds of fossils that we see in this deposit, 13 in particular, the diatoms, suggest that we're looking at 14 discharge water that is dominated by a sodium bicarbonate 15 composition, and is high in silica, suggestive of water from 16 a volcanic aquifer. Some of the ostracode assemblages also 17 suggest that we're looking at regional aquifer deposition by 18 virtue of high flow and other chemical characteristics. 19 Other ostracode assemblages, which are not in the same places 20 as the diatoms, suggest that we could be looking at water 21 from a perched system as well.

22 So, the fossil evidence suggests that we're seeing 23 both regional aquifer discharge and, potentially, perched 24 aquifer discharge.

25 If we then look at the change in elevation of the

1 water table, as described by Brian Marshal and Zell Peterman 2 and John Stuckless in '93, Jay Quade and a number of others 3 in '95, and if, in fact, we are seeing the regional aquifer 4 at this site, then we're looking at evidence for the modern 5 water table coming up about 115 meters in order to create the 6 discharge at the Lathrop Wells Diatomite.

7 As Zell said a moment ago, there's evidence within 8 the repository block of a similar rise, but the age of that 9 particular rise is unknown, and, as Ike said, aquifers are 10 very complex. Whether or not we're looking at a single 11 aquifer that also rises in response to a climate change 12 within the mountain, as it apparently did for the Lathrop 13 Wells Diatomite is not known at this time.

14 In conclusion, climate change cycles between dry 15 and wet modes. In southern Nevada, the wet modes have 16 existed about 70 per cent of the time. Those wet modes, in 17 some cases, are extremely wet, but, in most cases, are simply 18 something wetter than today.

A full climate cycle is about 400,000 years long, a full climate insolation cycle, I should say, and contains roughly 100,000 year subcycles, each having glacial and interglacial conditions. Devils Hole shows the subcycles are less than 100,000 early and are greater than 100,000 years later in the 400,000 year cycles.

25 Climate cycles correlate with orbital parameters,

1 which govern insolation; the key multi-millennial climate
2 forcing function.

Past climate-driven hydrologic change serves to
4 estimate change in the future according to the known
5 progression of insolation cycles.

6 Present day dry climate may begin to change towards 7 wet climates in about 1,000 years based on past records. 8 Now, past record is the Owens Lake record in terms of 9 figuring out in insolation terms, where we are today, and 10 when the transition started to occur according to the Devils 11 Hole record; sooner if global warming persists according to 12 some model interpretations.

Notably, one model interpretation argues that the Notably, one model interpretation argues that the formation of north Atlantic deep water could be shut down if we have continued melting of ice and snow at the polar ice caps; and, secondly, a model by Steve Hostetler that suggests rate double CO_2 increase results in both higher evaporation and higher precipitation in the Great Basin.

19 Current interpretation of the Owens Lake data 20 suggests the next wet period may not be as wet as the last 21 and penultimate glacial cycles. In terms of simply the 22 magnitude of the Devils Hole record, this is the opposite 23 kind of sigma that you might conclude from Devils Hole. 24 Finally, during the last glacial period, high

25 effective moisture produced a 100 m rise in the regional

water tables near Yucca Mountain and supported wetlands and
 streams throughout the region. Drainage from the Amargosa
 River, which was apparently a permanent stream through much
 of the last glacial, helped to support a large permanent
 lake, about 90 meters in depth, in Death Valley.

6 During the last glacial cycle, within 100 miles of 7 Yucca Mountain, mean annual precipitation--and when we use 8 the term, "mean annual," in terms of the proxy records, we 9 really should be talking about mean century precipitation--10 likely varied from about 15 to more than 20 inches at some 11 localities between five and six thousand feet, with as yet 12 unknown standard deviation and regional variability.

13 Thank you.

14 DR. DOMENICO: Thank you very much, Rick.

Do we have any questions from Board members? DR. COHON: It seems that one of the most important Observations and conclusions you made, looking at your page Name, is that Devils Hole record shows southern Nevada Observations primarily to orbital forcing functions. I Would really like to understand the basis for that, and page Seven just went by me too fast to catch that.

22 Could you spend a little more time on that? It 23 seemed to me that you were citing the figure on page seven as 24 the primary basis for that conclusion.

25 MR. FORESTER: The SPECMAP originally got started as

1 much to understand climate as it got started to understand 2 the ages of date marine sediments, so SPECMAP, when they 3 found the isotopic variation; that is, the SPECMAP curve 4 shown on the bottom, they made the assumption that is was 5 perfectly driven, and still argue, in some cases, that it was 6 perfectly driven, entirely by insolation criteria.

7 Ike and company came along and actually dated the 8 changes. We have a similar curves that suggests that climate 9 change in the ocean and at Devils Hole are strongly 10 correlated. Ike came along and noted that, in particular, 11 the transition periods assumed by SPECMAP in dash lines are 12 at a different time than that clearly dated from Devils Hole. 13 However, when you look at the basic structure of 14 the Devils Hole record, and if we have perfectly driven--15 SPECMAP is perfectly driven, Devils Hole suggests that it is

16 imperfectly driven by insolation--the differences are then
17 represented by the differences in those dashed versus solid
18 lines, the differences are not all that great.

In other words, although insolation clearly does not drive the entire record, because we have other forcing functions that are involved in climate change, the principal variability of Devils Hole can be correlated, at a minimum, with that of the insolation criteria, because the insolation criteria would argue for perfect driver of SPECMAP, and the two records are relatively close. They are not perfectly

1 close.

2 Is that better?

3 DR. COHON: Yeah. Would you accept the qualification 4 that the orbital driving driver is the primary influence of 5 the long-term, low frequency part of the variability 6 question?

7 MR. FORESTER: Right.

8 DR. COHON: But not necessarily the shorter term?

9 MR. FORESTER: Absolutely not. On the short term, 10 forcing functions are a multitude of things, from oceans to 11 variability to quite a variety of other things, and on the 12 long term, continental drift, mountain building, and so on, 13 are also important, and may well explain why Milankovich-14 style cycles are operating, as Ike said, in the Triassic 15 without making ice sheets. The long term forcing functions 16 on earth are different. The continents have a different 17 configuration.

DR. COHON: So, just extending this, then, but not 19 trying to put too many words in your mouth, you go on to say 20 on page nine that future 400,000 year insolation-climate 21 cycles should be similar to past cycles, and the point you're 22 making there is, again, looking at the long term fluctuations 23 of this sort you just talked about?

24 MR. FORESTER: That's right.

25 DR. COHON: You should expect to see.

1 MR. FORESTER: Similar, and similar is the key word 2 there, not identical; similar.

3 DR. COHON: Right, and it doesn't mean that the next 4 10,000 years should look just like the last 10,000 years.

5 MR. FORESTER: Absolutely.

6 DR. COHON: Okay. Thanks. I just wanted to clarify 7 that.

8 DR. DOMENICO: John Cantlon, Board.

9 DR. CANTLON: For the interest of the repository, this 10 paleoclimate needs to be thought of in terms of what the 11 behavior of the specific site will be, and you talked about 12 increasing moisture and increasing cold, but when one looks 13 at infiltration in a particular site over the repository, the 14 depth of snow, the distribution of snow as opposed to 15 rainfall is one of the important variables.

16 Do you have any feeling of what the snow picture 17 would be like?

18 MR. FORESTER: Yes, and I meant to mention that when I 19 had the midden tree diagram up.

Both of those tree types, and a number of other plants in those records, suggest that an important form of precipitation during that time frame was the snow, and, indeed, that, quite likely--this is Jeff's words, not mine-snow may exist at lower elevations much farther into the season than it does today. Snow pack would be substantially

1 higher than it is today, would be at lower elevation, and 2 might persist all the way into the late spring, early summer 3 season, so the potential for snow and snow infiltration is 4 large during portions of the glacials.

5 DR. CANTLON: And the important variable there is that 6 snow is not uniformly distributed over a topographically 7 variable surface. You have deep drifts that persist well 8 into the summer, putting infiltration into specific sites, so 9 that as one begins to think about the hydrology of the 10 repository, the snow depth may be the most important variable 11 in the out years.

MR. FORESTER: Yeah, and I think that's consistent with MR. FORESTER: Yeah, and I think that's consistent with what Alan said yesterday. It's important to note the kind of the precipitation, the timing of it, and the associated temperature in terms of the infiltration, and, yes, I think, again, when ice volume is maximal, which is not a lot of the time, there is a good potential for high snow pack, here is a good potential for high snow pack, persistent well into the late spring, summer seasons in this area.

The kinds of precip that are likely to occur in the 21 next 100--again, using insolation as a guide--may be far more 22 seasonal, representing summer rain, as well as winter rain, 23 perhaps, rather than snow.

DR. DOMENICO: Any questions further from the Board? From the staff? Ike, go ahead. 1 MR. WINOGRAD: On page nine, again, the same item that 2 you had, Rick, first bullet, Devils Hole responds primarily 3 to orbital forcing, I think one other thing needs to be said.

4 You recall, in John Embry and 19 others Magnum 5 Opus, December, 1993, Paleoceanography, they went through a 6 series of models, and these curves that you have seen, the 7 SPECMAP curve, the Devils Hole curve, the Vostok curve, in 8 that wonderful summation of Embry's retirement project, a 9 wonderful paper that summarizes all the different models that 10 had been proposed to explain these curves, and they can be 11 explained giving a major role to insolation, as one end 12 number. They can be explained, as Barry Salzman did years 13 ago, without insolation at all, or something in between, so 14 you have a choice of models.

15 So, to the degree that SPECMAP can be explained 16 with these various models, so can Devils Hole be explained 17 with the various models, and the role of insolation may be 18 major, may be minor, or may not be present.

MR. FORESTER: And if insolation is not a major goal, 20 then our capacity to try and predict or forecast future 21 conditions is greatly hampered.

22 DR. DOMENICO: Any further comments?

23 DR. PARIZEK: In talking about the El Nino, talking 24 about maybe a 1,000 year mega cycle, because according to 25 Alan Flint yesterday, that was a critical part of his whole

1 recharge data requirements. Can you say a little bit more 2 about the mega El Ninos that the white fir suggests?

3 MR. FORESTER: I used the El Nino to draw attention to 4 what white fir represents in terms of a circulation mode. 5 Quite likely, the circulation in that time frame is directly 6 a result of polar front storm tracks coming in from the 7 southwest. It is not an El Nino, but it would behave, in 8 terms of moisture delivery, in an analogous way to what the 9 El Nino appears to do in today's world for infiltration.

Quite likely, if, indeed, the central Pacific Ocean Quite likely, if, indeed, the central Pacific Ocean It is cooler in the Pleistocenes, there probably aren't El Ninos, or they're very, very mild compared to a warmer world. DR. PARIZEK: But still, more precipitation to have the Afir?

MR. FORESTER: Yes, yes, but it's more related to a 16 precipitation style, not amount. It is associated with the 17 arboreal forests today.

DR. PARIZEK: The other question about the Corn Creek Plat marsh deposits, did I understand you to say that Precipitation is implied to be 400 to 600 millimeters? MR. FORESTER: In a paper in '94, that was the Interpretation I came to, and I thought at the time, because I thought the water was basically still standing on the the valley bottom, that that number applied to the valley bottoms.

I now realize, in further analysis of that data and more data, that, in fact, the water is flowing continuously. The consequence of that, for the mode by which I arrived at precipitation numbers, would demand that four to six hundred millimeters be up on the mountain face, not on the valley bottom, so the valley bottom would be less than 400. Four hundred for the valley bottom in Corn Creek is about four times modern, so mean annual precip, or mean century precip at Corn Creek and the valley bottom would be less than four times in that time frame; likely double.

11 DR. PARIZEK: If you have a shallow water table, you 12 could also have swamp deposits independent of the rainfall, 13 but you need rainfall to get a swamp deposit to come from 14 runoff from the mountains?

MR. FORESTER: No. The way I interpret the climate is 16 not dependent on the relative rise of the table, but, rather, 17 the chemical and thermal characteristics of that water.

18 DR. DOMENICO: Are there any further questions from 19 staff members?

The schedule calls for a break at this time, and 21 let's take a thirteen-minute break and be back at ten minutes 22 after ten.

23 (Whereupon, a brief recess was taken.)
24 DR. DOMENICO: It's time to continue these climatic
25 discussions. Can we reconvene, please?

Our next presentation will be from Stan Davis,
 2 giving us some perspective on paleohydrology.

3 Stanley?

4 MR. DAVIS: I'll give about half a minute yet for people 5 to sit down.

6 For those of you that have picked up the 7 duplication of the overheads that I prepared, I want to shift 8 the blame for the postage stamp-size reproductions onto the 9 new Denver International Airport. I was faced with the 10 problem of trying to hand-carry my heavy luggage, and to 11 avoid the highly-publicized baggage shredder, so, taking a 12 clue from corporate America, I resorted to down-sizing, so 13 that's what you have.

In preparation for my talk, I was given only three small reports; one by Paces, and one that came from the USGS, and I don't know who the authors were. These two were on vanium and its use, and then the third was one by June Rabryka-Martin and others concerning the use of primarily Phlorine-36, so my remarks that are related to the Yucca Mountain site are related to these three reports, and I will make, also, some very general remarks.

A common trap that we fall into in considering the A common trap that we fall into in considering the ause of radionuclides in hydrogeologic studies is to delude delude auselves into thinking that we can date water. With the seception of the use of tritium, this is impossible. We are

1 studying radionuclides, not the water, and we can only say 2 something about the history of the water if we know the 3 relationship between the history of the radionuclides and the 4 history of the water.

5 Fortunately, the authors of the reports that I 6 looked at, didn't fall into this trap, but it's one that's 7 very prevalent.

8 First, I want to touch briefly on uranium and 9 thorium, and I'll move over to the overhead. This is an 10 outline, briefly, of what I'm going to talk about. I'll just 11 barely touch on uranium, because we're going to have some 12 presentations, I'm sure, that will cover in great detail some 13 of the aspects of uranium. I'll spend most of my time on 14 chlorine-36.

However, I wanted to put up a very simplistic However, I wanted to put up a very simplistic diagram concerning the use of uranium as a dating technique, and I'll point out one thing. Again, the authors, Paces and the other authors of papers I read did not do what I'm going by to talk about. They did not make certain assumptions, but I want to make sure that these assumptions are identified.

In a very simple-minded manner, this is what we're dealing with in uranium dating. One would be to look at the disequilibrium between 234 and 238 in the active zone soil and below in the oxidizing region. We have a tendency to selectively expel uranium-234 from the minerals, and so you 1 initially have some ratio of activity. These are activity
2 ratios and not mass ratios.

3 So, the activity ratios, to begin with, are at some 4 high value due to alpha recoil and a number of other reasons, 5 and this initial value may vary quite a bit. It's quite a 6 problem to determine some reasonable initial value, but, 7 then, once the mineral is precipitated, you consider it as a 8 closed system, and, eventually, after a few hundred thousand 9 to maybe two or three million years, you approach very 10 closely an activity ratio of one.

On the other hand, if you start out and precipitate mineral, the thorium has such a low solubility, that you assume that thorium is virtually absent, and you are simply precipitating uranium, and you start out with a very low sactivity ratio of thorium and uranium, both being--of the thorium being the second moderately long-lived decay product, then, after awhile, it'll approach one, so we can use this scurve, or the deviation from this ratio as a variable related of the age, or the date at which the mineral was deposited, or opaline, in the case of opaline deposits.

Now, the thing that I wanted to mention here was Now, the thing that I wanted to mention here was the fact that we don't really know anything about the distance of travel of water that may be associated with this deposition, nor do we know anything about the travel time from looking at the mineral itself. 1 Now, the studies that have been made--and I would 2 add that they're most impressive studies, scientifically, as 3 well as in a practical vein--that these studies that were 4 made included a lot more than just analyzing the uranium and 5 thorium, so what we can say is far more than what I've just 6 said. You have the age or the date at which the mineral has 7 been formed, but from the mineral itself, you don't know 8 where the water came from, you don't know how fast it came. 9 You can't say much about the hydrologic system from that 10 alone.

11 Of course, from other studies, from the shiny 12 surfaces on the minerals, and so forth, very valid and 13 reasonable conclusions can be drawn concerning some of these 14 more important things.

I wanted to go on and spend most of my time on 16 chlorine-36, and just very briefly touch on the origin of 17 chlorine-36.

We have four major mechanisms by which the 19 chlorine-36 is produced in the atmosphere. It's primarily 20 spallation of argon-40 by primary and secondary cosmic 21 particles. In the land surface, right at the surface, within 22 a few centimeters of the surface, we have several processes 23 that go on; activation of chlorine-35, a negative neuron on 24 calcium-40, and a neutron on potassium-39.

25 Then, in the deep subsurface, if we have an ore

1 deposit where there's a concentration of neutrons due to 2 alpha n reactions, then the primary reaction is activation of 3 chlorine-35 by thermal neutrons. It's very efficient. The 4 cross-section here is quite large, and so, we have this as 5 the primary production mechanism in the deep subsurface.

6 Now, one question is, what is the, or what would be 7 the expected background on chlorine-36 if there were no 8 anthropogenic sources? It's a very complex question. It's 9 one that I'm involved in right now. We're making 10 measurements and trying to work out some of the variables 11 involved.

12 This is a very rough preliminary map, and the 13 points here are two types; one, the open circles would be 14 shallow, or fairly shallow groundwater where the chloride 15 content is extremely low, and where there is no large amount 16 of tritium, indicating recent recharge, but there is still a 17 fair amount of carbon-14, indicating that we are in, say, a 18 period less than 10,000 years old as far as the recharge of 19 the water's concerned.

20 Using those criteria, you eliminate most of the 21 chlorine-36 determinations that have been made throughout the 22 country, and you're left with just a scattering of data 23 points here.

The thing that's of most interest here, we wanted to check June Fabryka-Martin's assumption of about 500 as

1 being the ratio between chlorine-36, the numbers of atoms of 2 chlorine-36, the total number of atoms of chlorine, and she 3 used, as I understand, 500 x 10^{-15} as being the ratio here.

Well, the data that I have--these are soil column data, these are groundwater data--they seem to fit quite well with this assumption, so, say, three or four hundred years ago, we would expect, from atmospheric precipitation, we would expect this ratio of around 500 x 10⁻¹⁵.

9 One reason why we want to look at only the very low 10 chloride content waters is that very commonly, we have 11 sources other than precipitation, where we are dealing with a 12 mixture of some kind. We're not dealing with only 13 precipitation. This is why I bring out the very important 14 fact that we're looking at the history of chlorine-36. We're 15 not looking at the history of water, and we have to relate 16 the two eventually, or we should, in order to draw useful 17 conclusions, but we have this basic problem.

18 These are unpublished data given to me by the USGS, 19 and these are data from northeastern Arizona, roughly at the 20 same latitude as the Nevada test site.

You can see the data points from groundwater here follow almost a perfect mixing line, with a few scattered points out here. What we're plotting is the amount of chlorine-36 related to the total stable chlorine x 10⁻¹⁵ on the horizontal scale, and on the vertical scale, we have 1 plotted the total chloride. So, to get some idea of what the 2 rainfall would be, or the snowfall in the area, you have to 3 look at these values down here, not these other values that 4 have chlorine from other sources; namely, here, it would 5 probably be Mesozoic salt beds that affect the regional 6 amount of chloride in the groundwater.

7 Now, to sort this out, we can use bromide. 8 Bromide, geochemically, is almost, not quite, identical to 9 chloride in its chemical behavior, and it so happens that 10 precipitation, in general, has a fairly low chloride to 11 bromide ratio. This is a mass ratio now, and we have values 12 that generally range between about 50 and 150, in that range 13 for normal precipitation, and if we go into an area where 14 there are other sources of chloride, very commonly we get 15 values that are considerably higher, and up in the range of 16 several thousand as the ratio between these two elements and 17 the water.

So, this dotted line here that I have is a 19 hypothetical mixing curve. The red lines or red crosses are 20 the values, median values of several score--in each case, 21 each point represents about 15 separate analyses grouped 22 together, so we have here a fairly good fit, suggesting that, 23 indeed, in this place in Kansas, we have this mixture 24 problem, and if we're going to look at chlorine-36, which 25 they haven't done as yet, in that area, we have to go down

1 here in a very low value of chloride, which is the horizontal
2 scale.

3 Unfortunately, in some areas, we have sources that 4 are mixed in that are almost at the same level as 5 precipitation, and here, our Milk River values are a case in 6 point, so this method of sorting things out is not always as 7 useful as we've indicated on these two curves. The one for 8 Tucson here indicates a concentration by evaporation first, 9 and then a mixing effect later, and, here, the cutoff is 10 about 40 mg/L. Here, the cutoff for the precipitation source 11 is somewhere below 10 mg/L.

I want to now turn to what might be expected in Warious anomaly sources. Oh, I would add that in the Yucca Mountain, as I understand it, bromide was added in copious mounts so that the ratio was vastly altered, so that water introduced into the operations then could be identified and reparated from the water existing in the rocks.

These are just some samples, and these are values That are from soil column tests, and all I'm saying here is that we have a sufficient input from bomb fallout, which started in the very late 1950s, actually, late part of 1952, and extended on through about 1960.

This fallout residing in the soil gave rise to these pretty high ratios. Now, I was just talking to June Fabryka-Martin before the talk here, and she says that some 1 of the values here are far above the soil values, some of the 2 values in the rocks along the fractures.

One interesting thing that we'll come back to is 4 that in the stratosphere, we have, in some cases, relatively 5 high values for chlorine-36, and, of course, it gets into the 6 troposphere seasonally, in various amounts, and so, we do 7 have a source of chlorine-36 that's variable with 8 precipitation.

9 I've stuck in a couple of values from--this is some 10 of June Fabryka-Martin's work in Australia, and this is 11 simply the ratios found in the solid ore itself, indicating 12 the importance of ore deposits, in some cases, as a source of 13 chlorine-36.

Lastly, I show just two values for the activation for potassium, calcium, and chlorine in surficial rock materials, indicating that you can get up to fairly high values if these objects are at the land surface and receive a continuing bombardment of secondary cosmic ray particles, and you can then generate moderately high values.

Now, I want to next go to the data that were newsented from the studies in the tunnel at Yucca Mountain, interpret to show that the largest number, of course, as stated in the reports, are fairly low values, most probably representing some background value.

25 However, there are some values that are very high

1 in comparison, and do suggest very strongly that we have bomb
2 pulse materials that have reached the level of excavation
3 along fracture and a permeable zone. These colors are almost
4 meaningless. This indicates that there may be some question
5 here in these two, but I don't think there's any question
6 that we have a very strong anomaly here, and these are more
7 or less normal values that one might expect.

8 Now, I want to go into a little bit of philosophy, 9 and it's something that is sorely lacking in a lot of the 10 work that's done in relation to evaluating potential sites 11 for waste deposits. This is the famous Ockham's razor. The 12 idea is that you just don't introduce a lot of complexity 13 unless you have to. That's one way to say it.

A doctor once told me, in diagnosing something, https://www.something.action.com/something.action.com/something/ https://www.somethics.action.com/something/something.action.com/

21 With that, then, we're going to violate what I've 22 just said, and we'll go to some fantasies. The question is, 23 of course, where do these anomalies arise? Are they really 24 from bomb fallout or what? And I've pondered these 25 questions. They're related to the kinds of research that I'm 1 doing, and I don't think that I've reached any really 2 successful conclusion in my own mind.

3 However, in terms of probabilities and importance, 4 I think the testing of atomic explosives is really the cause 5 of most of the large anomalies that are being measured.

6 We do have past fluctuations of cosmic ray 7 production. These are documented in a number of ways. 8 They're documented in relation to Carbon-14, and the picture 9 is emerging that perhaps there was the pre-anthropogenic 10 chlorine-36 in precipitation back more than 10,000 years ago 11 may have been more than double what it is today, so we have 12 this as a real possibility.

In situ natural production, I showed the values for 14 ore deposits. We don't know, as far as I know, there are no 15 ore deposits in the vicinity of Yucca Mountain. It might pay 16 to scan very carefully some of the gamma logs just to double 17 check, particularly if we have zones that are more than a 18 meter thick. We might possibly find some zones that have 19 sufficient uranium and thorium to produce fairly large 20 anomalies, but, then, I think we're getting off into Fantasy 21 World already.

Dissolution of surface rocks. I'll come back to There is sufficient chlorine-36 being produced in the upper sort of skin of the earth to account for some of the anomalies, but one has to go through a very imaginative set

1 of assumptions in order to reach any values of interest.

2 Variation in total chloride deposition. This can 3 be very important, and I showed you the data from 4 northeastern Arizona, indicating that, in that case, the 5 amount of dead chloride mixing in greatly altered the ratios 6 that we had.

7 This I will come back to, No. 6, variations of 8 chlorine-36 in the troposphere, as measured mainly by samples 9 of rainfall.

Atomic reactor sources, I don't think this is 11 important. It has been measured near the Idaho facilities, 12 also, Savannah River, anomalously high amounts of chlorine-36 13 being present. However, if we get this as an origin for the 14 anomalies that are measured in the subsurface, this is 15 practically the same in terms of travel time as we would have 16 with bomb fallout.

17 Contamination of the sample. In our early work, we 18 had some samples from Australia, from the Lucas Laboratory, 19 and we thought we had found the world's greatest ore deposit 20 for uranium. It was actually some contamination, but this is 21 handled through normal procedures and analytical problems, 22 and so forth.

Gas transport. Now we're getting off into real 4 fantasy, but gas transport might be possible. There are 5 volatile types of chemicals, such as carbon tetrachloride, 1 that contain chlorine, and if they're activated, then you 2 could have chlorine-36 in the gaseous form. Where this comes 3 from, I'll leave it to your imagination, but, anyway, gas 4 transport, physically possible, unlikely.

5 And the last item, we have, in the literature, a 6 suggestion by a Japanese scientist that we could find the 7 anomalies related to prehistoric super nova when we add very 8 large impact of cosmic ray particles activating chlorine, and 9 this has not been followed up. I don't think it's taken 10 seriously by anybody, including myself.

11 So, here we have a list of possible origins, ideas. 12 The anomalies that we find may be related to some of these 13 factors, but I think the one on the top is the important one.

I want to just put on just a wild estimate that I I want to just put on just a wild estimate that I Is made with some assumptions. These assumptions, all of them 16 would tend to produce more chlorine-36, I believe, than 17 actually would take place. We assume that the rock has 100 18 mg/kg chloride. That's the content. The chloride in the 19 rock has been activated. It's right at the surface, and the 20 ratio is 10⁻¹¹, which is higher than any of the published 21 ratios that I could find, but not a great deal higher.

The available water is very large, so that we have to assume some sort of surface runoff, and the water going down may be in a low depression. The inwash cancels erosion. That's a tricky one. That's simply to mean that we are not 1 reducing the land level. We're not taking the surface off. 2 We're inwashing stuff as we take it out by dissolution, and 3 then we assume that the dissolution produces water with 100 4 mg/L total dissolved solids from the initial value of 5 rainfall, which would be close to zero.

And then, lastly, we assume that the precipitation has .5 mg/L of chloride, and that the ratio is the value that June Fabryka-Martin has assumed.

9 The results. We get a fair amount of chlorine-36 10 going down, and perhaps about a third of what would come down 11 from the rainfall itself. These values are off some way. I 12 couldn't adjust them. I couldn't juggle them enough to come 13 into a closer agreement with a possible fallout of 10⁵ atoms 14 of chlorine-36 per centimeter per year. I don't know whether 15 this value is any good or not. Somebody can correct me 16 afterwards on that.

But, the sum total of this is that if you really But, the sum total of this is that if you really strain yourself and go after things that aren't very probable, then you might possibly get a slight anomaly. I don't think that dissolution of surface rocks would answer our question. There may be people that are more nimble with figures than I.

Okay. This is simply a diagram indicating what may A happen. We have data on precipitation. The data on precipitation are ambiguous. There's a lot of instrumental
1 scatter because of the low concentration of chloride, and 2 there is a suggestion, however, that the chlorine-36 has a 3 seasonal pattern, and we do know that there's about a tenfold 4 difference in between the amount of chlorine-36 in the 5 rainfall, according to various times of the year and times of 6 storm, and so forth.

7 And, if one looks at the tritium values, where we 8 get a definite cyclical effect due to the exchange between 9 the stratosphere and the troposphere, and assume that 10 something is happening with chlorine-36, then we might say 11 this is a seasonal variation, with maybe a peak in the late 12 spring here, or something like that.

Now, what does this possibly mean? It means that Now, what does this possibly mean? It means that we may get an infiltration into the subsurface that is not related directly to the average composition of precipitation, and that may vary from place to place. This would be due to --the simplest would be to think in terms of a more colder lead the simplest would be to think in terms of a more colder lead the simplest would be to think in terms of a more colder lead the simplest would be to think in terms of the from melting snow would simply take that water out from the coregion.

It would not become recharged, so that we can selectively recharge at certain times of the year, depending upon storm intensity and a number of other variables, so that we're not putting in the average here. We're putting in maybe the peak value or the trough value, and so there is 1 this microhydrology in the surface that might affect the 2 chlorine-36 in the subsurface.

3 Now, some surfaces, such as a nice talus slope, 4 might capture everything, so here we would get the average; 5 here, we would not. So, that's a variable that needs to be 6 assessed, at least kept in mind.

7 Well, what I've tried to do is to give you a 8 glimpse of the variables involved in using chlorine-36. I 9 certainly don't think that I've really answered too many 10 questions, but at least, I hope, it's food for thought.

11 Thank you.

12 DR. DOMENICO: Thank you, Stanley.

Any questions from Board members? Don Langmuir. DR. LANGMUIR: Stan, I was thinking about Al Yang's observation that you have higher chlorides in the unsat zone than you find in the sat zone, and wondering whether that-maybe June has to speak to this, maybe this waits until June's presentation, but the age dates in the unsat zone that J've seen have been tens of thousands of years, and I didn't recall anything that you could call bomb pulse in the unsat zone collected from surface borings, from the surface sampling.

Is there any connection there? MR. DAVIS: Don, I have to dodge the question because I Son't have information specifically for the Yucca Mountain

1 area. I'll answer it in a very general way, however.

The profiles that I've helped do, and that my students have done in other areas will show an accumulation of chloride in soil; now, not in rock settings, but in soils, so you have an accumulation of chloride that indicates that there's very little through infiltration in the arid, say, the alluvial fan materials, except in the channels, of scourse.

9 But, by taking some reasonable amount of chloride 10 per year and doing some calculation, you can pretty much show 11 that these chloride accumulations represent thousands of 12 years, and the bomb pulse doesn't go down very far, maybe one 13 or two meters. You can pick the bomb pulse out and then, 14 below that, in some cases, at least, you have a fairly 15 constant value.

16 DR. LANGMUIR: I have another unrelated question. You 17 raised the possibility of carbon tetrachloride, and I was 18 just chatting with my colleague about it being used to clean 19 old TBMs, perhaps, machinery at depth. Is it possible that 20 you could get contamination from carbon tetrachloride, 21 specifically, in the ESF, I wonder from--this may be not for 22 you, but for those in the program that are familiar with the 23 construction industry, and Garry's pointing at Ed; whether Ed 24 Cording would have a thought on whether there's carbon tet as 25 a possible contaminant in the tunnel. DR. CORDING: I don't know of it being down in the tunnel. Rick's not here. I'm not sure they'd be cleaning it with that, but I really don't know what they have there. I wouldn't think they'd have it, but...

5 MR. DAVIS: All I'm suggesting is that there might 6 possibly be a volatile compound that would have chlorine-36 7 in it that would arise from activities at the Nevada test 8 site.

9 Now, I've been associated one way or another with 10 the Nevada test site for, since the Year One, almost, and I 11 have not run across anything that would give substance to 12 this suggestion. It's just one of those wild things that I 13 hope that I dismissed in my comments.

DR. LANGMUIR: And chlorofluorocarbons, CFCs would also,perhaps, be another way to do this, wouldn't they?

MR. DAVIS: If they're present in a high neutron flux rarea and get into the atmosphere, yes, but I don't know of any--I don't know enough about some of the operations that go on to say whether this is even a remote possibility. It might just be the zebra in Wyoming. I don't know.

21 DR. DOMENICO: I think the time constraints on us tell 22 us that we should move on. Thanks very much, Stan. We'll 23 get some more questions back at the open table.

We're now going to hear on the paleohydrology, 25 especially, dating the calcite and opal deposits in the ESF 1 by Zell Peterman and James Paces, USGS.

2 MR. PETERMAN: Before they put the Alpine miner 3 underground, it was covered with a lot of muck from its 4 previous usage, and they cleaned it with wire brushes and 5 compressed air. As far as I know, there were no solvents. I 6 think they're pretty careful about what they put in the ESF, 7 at least that's my impression.

8 The key words here--well, let me say, first, Jim 9 Paces, my colleague, and I flipped a coin and he lost, so I 10 get to make the presentation and he gets to answer the 11 questions.

12 The key words in the title, of course, are 13 paleohydrology, age control, and ESF, and, as Dennis Williams 14 mentioned yesterday, a large part of this study would not 15 have been possible using samples from boreholes, because the 16 fragile accumulations of calcite and opal in the ground mass 17 were destroyed by the--when they were encountered by 18 drilling. They just didn't survive.

We did invest some time on dating occurrences from We did invest some time on dating occurrences from We did invest some time on dating occurrences from the value of the value of the state of the value of the valu

We've heard repeatedly at the meeting the last day And a half that one of the remaining key technical issues at Yucca Mountain is to try to understand how much water moves

1 through the repository block, and, basically, the work we're 2 doing is directed towards that. We're trying to provide a 3 time framework, and isotopic understanding of the deposition 4 of these minerals that occur in fractures and cavities in the 5 repository block.

6 Pat, I think that geologic axiom you're search for 7 is the present is the key to the past, but I like yours 8 better, the past is the key to the future, and I think that's 9 more appropriate for the type of work we're doing. The only, 10 really, chance we have, we can understand the present day 11 system, and it's absolutely essential that we do, but it's 12 only a snapshot in time. We're never going to be able to 13 observe the future, and all we can do is look at the past 14 records and try to understand how those may relate to the 15 future.

16 This is just a definition of paleohydrology I 17 liked, and, of course, I agree with Chapman and McEwen's 18 statement at the bottom there, that you have to understand 19 the paleohydrology and the paleoclimate--the two are 20 inextricably linked--in order to come up with any credible 21 performance assessment.

In the rock mass at Yucca Mountain, there are paleohydrological records, and elsewhere, too, not only in the rock mass. The ones we're worrying about are the number one, it says here, low temperature mineral deposits, mainly

1 calcite and opal, in fractures and cavities. Other types of 2 paleohydrological records, you've heard about ancient spring 3 deposits from Mike and Rick this morning, and, of course, the 4 lake and playas, alteration zones in the rock mass that may 5 relate to past alteration.

6 That last one is just a conceptual thing that I 7 stuck in there, and I'm not aware of any perched water that's 8 in the repository block that relates to past high water 9 stands, but, of course, it's a possibility.

10 The dating program that I'll describe had been 11 going on at a fairly modest level, and in November, this last 12 November, Yucca Mountain Project decided to accelerate the 13 dating, and it was a two-pronged effort. Los Alamos was 14 instructed to increase its chlorine-36 dating in the ESF, and 15 we were instructed to increase our uranium series, Carbon-14 16 and isotopic studies in the ESF.

It wasn't just something that, you know, just 18 randomly happened. The idea was that we knew we had the 19 physical records of deposition, the calcite and fracture 20 filling; whereas, the chlorine-36 people could extract the 21 pore salts, which represented the pore waters in the rock 22 mass, and so, a part of this dual approach was if there were 23 zones where there was fluid flow but no physical deposition, 24 then that would be picked up, or possibly picked up by the 25 chlorine-36 work, so these were mutually-supportive

1 approaches.

The objectives of both studies, I think, one major objective, of course, is to come up with some sort of estimate or some sort of bound, independent bound on the amount of water passing through the block.

6 Now, yesterday, we heard--I sort of kept track of 7 the estimates. If we take Ed Kwicklis's minimum estimate and 8 Alan Flint's maximum, you know, we had six orders of 9 magnitude range in percolation and infiltration. I am 100 10 per cent confident that we can hit that target. I think we 11 can do better.

Our primary data gathering objective is to produce Our primary data gathering objective is to produce a credible time framework of deposition, and in terms of the calcite and opal, to relate their ages and isotopic sattributes to what may be happening at the surface of the for repository block.

The materials that we have to work with, as I said, are calcite and opal. Calcite's simply calcium carbonate, galcium and carbon both being major constituents, major ions, bicarbonate, major anions and cations, and in any of the waters, and then opal, which is a hydrated silicon dioxide, more or less, amorphous mineral.

These minerals are common at Yucca Mountain. They were deposited from water in the unsaturated zone. The important thing is that they contain information about their

1 times of deposition. They contain uranium; therefore, we can 2 do uranium series dating. They may contain Carbon-14. We 3 can do Carbon-14 dating, and they contain isotope 4 systematics, which give us information about the waters from 5 which they were deposited.

And then, finally, the mass of calcite and opal per vunit volume of host rock is in some way related to the past water flux. It's just going to be somewhat difficult to determine that connection. The depositional rate is equal to the flux rate times some complex function. We don't fully know what that complex function is yet.

I'm going to give the conclusions right up front, and then if I run out of time, I can shut down and still we will have talked about these. I guess these should really be preliminary conclusions, because the study is only partially through.

We have been meeting and collecting with the Los Alamos group ever since the work started, and I think, collectively, we've come up with this concept; the chlorine-20 36, U-series, and Carbon-14 actually, in a very large scale, indicate a dual permeability system at a large scale, and that basically is the paths. There fast pathways where we see bomb pulse chlorine-36. These appear to be, at least in a some areas, related in maybe a complex way with fault zones, and then there's sort of everything else, and that's where our information comes to bear, and in this everything else,
 we see a very slow deposition, and we would say very low
 percolation.

We get uranium ages, the youngest is 37,000 to greater than the range of the method. Carbon-14 ages, 16,000 to greater than the limit of the method, and in these zones, June sees her background chlorine-36/chloride ratios. So those are really two very critical conclusions.

9 There are some lesser order conclusions which we 10 think are important in terms of understanding the style or 11 mode of percolation. One of these is that we never see any 12 evidence that the fractures that were carrying the water were 13 ever filled with water. The deposits are always on the 14 downhill side. Gravity did, indeed, work in the subsurface, 15 and if these fractures and cavities that would have been 16 filled, we would expect deposits, say, around lithophysal 17 cavities and on both sides of fractures, and we don't see 18 that.

19 Information that we have from the dating work says 20 that depositional rates were exceedingly slow, micrometers 21 per thousands of years, indicating to us a low flux.

22 Mineral textures suggest to us that these are low-23 volume water films migrating down fracture surfaces and into 24 cavities, and, finally, tracer isotopes indicate some 25 modification of the infiltrating waters, but still give us a 1 connection with surface conditions.

Now, we've had a number of collecting trips to Now, we've had a number of collecting trips to Yucca Mountain, and, of course, when we collect, we also observe these features, and we think there are some very important physical observations that we've made, and some of these were just embodied in the previous slide on conclusions.

8 You generally see in deposits in fractures or 9 cavities with significant openings. You don't see very many 10 thin, very thin fractures that are full of calcite. You see 11 a lot of thin fractures. A lot of them are high temperature 12 fractures, and they date back to the cooling of the rock, and 13 they have little thin, white veins, but those are high 14 temperature minerals.

Oftentimes, you can trace a single fracture across Oftentimes, you can trace a single fracture across the wall of the ESF, and it will vary in terms of openings. The narrow intervals will have little mineralization, whereas, the wider zones are mineralized, and they occur on the lower sides of the openings. Deposits tend to be thicker and more complex on low angle features, and we never seem to see any high water marks that would indicate standing water these features.

23 So, we figure that these observations tell us 24 something about what was happening. As I have mentioned 25 before, and as Dennis mentioned yesterday, the deposits are

1 very complicated, very delicate, often very delicate.

Now, this particular specimen, this photograph was taken under ultraviolet light, so the opals, which may have 50 to 300 ppm uranium, fluoresce green, and the calcites are 5 not as flamboyant. They fluoresce kind of a soft blue, but 6 this is a very interesting specimen. This specimen was 7 donated to us by Clark County, but it does have a USGS QA 8 pedigree, so that's sort of a private joke, but Englebrecht 9 understands it.

10 These are thin stocks of calcite, with what our 11 people have been calling suckerhead calcite, or these 12 enlargements at the surface, and then there's these little 13 droplets of opal on top of the calcite, and Jim and his 14 group--and if I didn't say so already, this is very much a 15 team effort, and there are about eight people that are 16 heavily involved in the dating work and the isotope tracer 17 work, and I think most of them are here today, and I just 18 don't have time to mention names, but they're all sitting at 19 various places out here.

Anyway, Jim tells me that they've got about five 21 ages now on this particular specimen, and there seems to be 22 about 200,000 years of depositional history embodied in these 23 different parts of these very delicate features, delicate 24 mineral accumulations.

25 As you look at these things in even greater

1 magnification, they only become more complex, and these are 2 SEN photographs of one of those little calcite stalks. This 3 is the scepter head, and then it's sort of lying flat now. 4 It's been broken off. This is calcite. These are SEN 5 photographs. That's a millimeter, 100 micrometers, and so 6 forth calcite. There is a layer of opal here, and then, on 7 top of that opal, there is new calcite growing in these 8 little euhedral crystals.

9 This is the contact between some of this calcite 10 and the opal substrate, and then this is even a greater 11 magnification here, where you see little spheroids of opal 12 residing in these little holes in the calcite, so, 13 exceedingly complicated. We'll never be able to sample at 14 this scale, but, nonetheless, very interesting, and certainly 15 fascinating.

16 Sampling is a problem. We have to microsample. 17 People sample under the microscope using little dental picks, 18 or dental-type drills.

As you saw in that previous slide, there's a 20 submicron growth layering, or a very, very complex growth 21 layering, so our age resolution is limited by the sample size 22 we need.

We can get away with 10-20 mg for Carbon-14 of Calcite. Calcite is very low in uranium, so it takes quite a bit more calcite to get a uranium series age. The opals are

1 much higher in uranium, as I said, 50-300 ppm uranium, and 2 they've pushed the technology down to as small as a tenth of 3 a milligram, so, the smaller sampling equates with greater 4 and better age resolution.

5 We have come to the conclusion, over the months 6 now, looking at a lot of these, dating a lot of these, that 7 even the smallest samples probably integrate over finite 8 intervals of growth history, and, therefore, yield some sort 9 of composite age. We're not dating discrete depositional 10 ages, but we're getting composite ages. Nonetheless, the 11 depositional histories can be established by these composite 12 ages.

Here's another nice specimen. Maybe it's part of Here's another nice specimen. Maybe it's part of The same one. I'm not sure. This is a different occurrence. These are little blades of calcite, up to a centimeter long. One of the few types of occurrence which apparently shows rome growth banding, which is hard to see in here, but there are these very discrete bands, but, apparently, they represent very long intervals of depositional time.

The ages that have been gotten here are the 21 outermost part, and in order to get enough calcite for 22 uranium series, these had to be composited, so a number of 23 blades were broken off, and then these pieces were combined 24 into single samples; 75,000 years on the outer part, the 25 older part of calcite, 254,000. There are opal bubbles in

1 here, or occurrences in here that get 96,000, so, here, this 2 gives you an idea of the growth rates, and that's why we say 3 very slow growth rates. Everything that we've done to try to 4 pull these apart, we have to conclude that the growth rates, 5 the depositional rates are exceedingly slow.

6 These are histograms of the databases that exist 7 right now. The upper one is Carbon-14, the lower one are 8 uranium series ages. There's no difference in age 9 distribution, whether we sample in the lithophysal cavities 10 of the fractures. Of course, the ranges of these methods are 11 dramatically different. This is about the limit of the range 12 of the thorium-230, uranium-234 method, and, of course, 13 Carbon-14 has a much smaller range.

14 Unfortunately, this is one blank that was 15 submitted. It comes out with a finite of 37,000, so, right 16 now, we have to say anything older than 35,000 is probably 17 not significant in the Carbon-14, based upon those blanks.

We see no systematic distribution of numbers so far 19 in the ESF. These are the Carbon-14 ages, so, anything 20 greater than 35,000, we'll just say that's dead carbon. ESF 21 station in meters. These stipple zones are the zones where 22 June has found the elevated chlorine-36. We don't see any 23 spatial variation, a systematic spatial variation or 24 correlation.

25 The same with the uranium series ages. These back

1 here were mainly earlier determinations that were made before
2 the start of the accelerated program. They were mostly from
3 the Tiva Canyon. Our sampling at that time was strongly
4 influenced by what we had found in the drill core. We don't
5 think this trend is real.

6 With the accelerated program, we started somewhere 7 right in here, and so these are basically the new data here. 8 Again, we don't see any correlation with the zones of 9 elevated chlorine-36.

I should mention that when you're looking at the Il fault zone specifically, the actual ruptures, we don't see I2 calcite and silica deposited in those. They tend to be very I3 tight features, so they fit in with our observations that you I4 only find these in open fractures, but we can't date material I5 exactly from the fault planes themselves.

16 One interesting outgrowth that's come out of the 17 uranium series dating, here's calculated initial ratio of 18 234/238 against station, and there is a very good 19 correlation, there is a correlation here, anyway, in the 20 shallow levels of the Tiva Canyon.

The initial ratios are very much like the ratios in the surficial calcite, calcretes, the pedogenic calcites; whereas, you go down section, you're starting to get very large initial ratios, and, basically, these are starting-swell, the other place we see initial ratios is in saturated 1 zone groundwater, which just means the waters are picking up
2 these elevated ratios from the rocks themselves, so this
3 could be an indication of progressive water/rock interaction
4 as we're moving down stratigraphically in the section.

5 We think the stable isotope work is really just 6 starting on some of these, or the radiogenic isotope work, 7 but the tracer isotopes appear to link the subsurface 8 deposits with surface conditions. We also indicate some sort 9 of past temporal variability in these conditions.

10 The next slide I'm going to show you now, I show 11 you age, but it's only relative. These samples have not 12 been--the particular samples used for the isotope tracers, 13 there is not really good absolute age control yet, but we 14 will try to get that eventually, and what I was sort of 15 mumbling about through that slide is this variation here, 16 where we see, you know, some sort of coherent signal between 17 the strontium isotopic composition and the carbon isotopic 18 composition.

I think the last page of your handout, in a series I think the last page of your handout, in a series I somewhat surprised, it also shows oxygen, and we were somewhat surprised, but very encouraged that we would get some sort of relationship like this. It tells us that there is a signal there, and all we have to do now is to be clever enough to figure out what this means with regard to what was happening at the surface when these waters that deposit these 1 minerals acquired these parameters.

And, lastly, of course, one of our objectives is to try to constrain, as I said before, the water flux, and, really, what we plan on doing, we're going to buy many copies of Don Langmuir's new textbook, and he's going to tell us how to do it. Now, remember that "many copies" when you start to ask me questions.

8 It's not going to be easy, but I think we have to 9 make simplifying assumptions, and we have to have a shot at 10 it, and we've just started to try to estimate the abundance 11 of calcite and opal in the ESF. We know for certain that 12 it's spatially inhomogeneously distributed. That would 13 certainly fit in with other observations that the flux is 14 also spatially inhomogeneous.

We have to look at the compositions of water that have been determined by Al Yang and his group, and others. We have to think about, you know, what sort of evaporative k concentration does it take to cause deposition, and we have be deconvolute the ages and come up with an age distribution model, and then, eventually, down here, come up with estimates.

Brian Marshal, just yesterday, did some speciation Brian Marshal, just yesterday, did some speciation and existing water compositions. These are all unsaturated zero water, and, in terms of calcite, they're very close to saturation. Some appear to be oversaturated, and some appear

1 to be undersaturated with regard to calcite. Most of them 2 seem to be close to saturation, but some are undersaturated 3 with regard to silica, and we have to pursue this approach, 4 but that's pretty much what we've done to date.

5 I think that's it.

6 DR. DOMENICO: Thank you very much, Zell.

7 Any questions from the Board? Don?

8 MR. PETERMAN: Just wouldn't leave it alone, would you? 9 DR. LANGMUIR: Just a thought. We've been going back 10 and forth on the possibility of evaporation from Al Yang's 11 work, separate conversations that the matrix is full of 12 water, so the water, if it goes down a fracture zone, doesn't 13 exchange with the matrix.

This suggests to me that evaporation, if it's happening, is very subtle, and is within a per cent or two of saturation, moisture content. It's close to saturation if it's going on. It's a very subtle effect, which made me 18 think about another way to do this.

19 Calcite and silica tend to be mutually exclusive in 20 terms of the pH effect of solubility, as you know, and you 21 get one or you get the other, often. If the pH is 22 increasing, you're going to dissolve the silica, but you're 23 going to precipitate the calcite. You can get this effect by 24 subtle changes in CO₂ pressure at depth. We would shove you 25 back and forth across the calcite silica lines, giving you, 1 maybe, this intimate crystal growth that you've got, and this
2 could happen best where you have the possibility of some
3 breathing, doesn't have to be much, just a complication other
4 than simply evaporation.

5 A change in CO₂ pressure will do the very same 6 thing, and might be more likely in a breathing system that's 7 near saturation.

8 MR. PETERMAN: Well, this is the kind of thinking and 9 information we need to work into this, and our feeling that 10 we need evaporation stems from the observation that we never 11 see--never is, you should never use never in geology. We 12 rarely see filled fractures. They seem to require some head 13 space to get the nice deposits.

DR. LANGMUIR: Well, maybe you need to have a void that contains some fluid from which to make the precipitate. If you don't have enough fluid in one spot, you won't make anything by the breathing. If you've got a little pool--MR. PETERMAN: I think you have to continually recharge these by this very thin film.

20 DR. LANGMUIR: That, too, overflow them and pool them 21 out.

22 MR. PETERMAN: Right.

DR. LANGMUIR: The other thing, other question, 24 unrelated, are you finding your uranium isotope dates are 25 consistent with your Carbon-14, because I noticed you had a 1 factor of two in the apparent ages due to uranium isotopes at 2 least in one example.

3 MR. PETERMAN: No, that's a good question, and that's--4 DR. LANGMUIR: At some point, you've got to bring this 5 to resolution at some point.

6 MR. PETERMAN: Right. That's partly addressed in those 7 supplementary slides. I think what we're thinking is because 8 of this fine scale layering, we can't sample on a layer-by-9 layer scale, so we're integrating over a growth history. So, 10 by that integration, we'll bias our ages a bit.

Like if you had two layers, and one was 100,000 Like if you had two layers, and one was 100,000 years and there was one on top that was zero years, and you sampled them for Carbon-14, but you could only sample them together, the mean would be 50 per cent modern carbon, giving you a 4,000 year age for the collective sample, but the true here age would be 50,000 years, so there is a bias there.

This is something we want to work on. If we could have different half-lives, that gliscordancy is predictable from what we call a continuous deposition model, where you have to sample finite thicknesses. We can bring in different methods, like protactinium and radium, with different half-lives. Theoretically, we would expect very systematic discordances, and that's something we want to try to do next year, but that's a problem. We're never going to be able to sample on 1 that monomolecular scale, or submicron scale.

2 DR. DOMENICO: Zell, I have a question. Can you put on 3 Slide 19, because you went through that one quite rapidly. 4 MR. PETERMAN: Could you tell me which one that is? 5 DR. DOMENICO: Estimating water flux, I think it is. 6 I'd like to take a minute with these, because, like I said, 7 that was too quick for me.

8 Determine abundance of calcite and opal. That's an 9 observation, and I presume that's going forward now? 10 MR. PETERMAN: We started last week or the week before 11 doing some just line surveys, and measuring the intercepts of 12 fracture fillings and cavities. That's the way we'll do it, 13 just like you would point count a slide.

DR. DOMENICO: Let me get to the next point: Determine below f mineral saturation in possible input water. You say that you're undersaturated with respect to silica, and you're respect to--

18 MR. PETERMAN: The available data that--Brian Marshal 19 ran this through PHREEQ-C, to speciate the chemistry, and 20 these are the results. He just did it yesterday. It was 21 only two or three or four samples that appear to be 22 oversaturated in silica. I mean, they're all very close. 23 Everything's close to saturation.

24 DR. DOMENICO: The third bullet, I guess the bullet says 25 that in order to bring it up to saturation, you require a 1 certain amount of evaporation. Why couldn't you be 2 scavenging or dissolving those minerals from the rock in the 3 early pathways and bringing it to saturation that way? 4 MR. PETERMAN: This is, I think, a real possibility. We 5 have some indication. Larry Benson reported in a paper in 6 '86 or '89, or somewhere in there that he had measured 7 actually surface runoff, and even it was saturated in 8 calcite. You know, it's such a calcium-rich environment out 9 there at Yucca Mountain at the surface, I think that first 10 drop of water that hits the ground, it practically becomes 11 saturated at that point. Silica's another matter.

12 DR. DOMENICO: But you still have to get some silica to 13 bring that up to saturation.

MR. PETERMAN: Yes. The problem with, you know, 15 dissolution and redeposition, I think probably happens. In 16 these growth surfaces, these outer surfaces, you saw many of 17 them are very pristine. You don't see evidence of corrosion.

In some of the lithophysal cavities at the bottom 19 of the deposits, there is some indication that there may have 20 been dissolution, and I think you sort of have to 21 conceptualize the thing from the bottom to the top. I think 22 it would be unreasonable to think we have a drop of water 23 that comes in at the top, and we've got a calcite fracture 24 down here, or a fracture down here, and that drop goes all 25 the way down here before it precipitates. That's not a 1 reasonable model. It has to be a dynamic system. There has 2 to be some solution and redeposition.

I would hope that, on the average, if we could cut planes through the rock mass and sample effectively those different planes, that that would somehow, I think that some sort of a dynamic equilibrium would tend to average out. We're still getting good age records of what's moving through the rock mass. That's my feeling. It's a conceptual feeling more than anything else at the moment.

10 DR. DOMENICO: That fourth bullet, the word "model" 11 confuses me. I imagine, by observations, you can establish 12 the age distribution of calcite and opal in the deposits. 13 That's an observation and a measurement. What model are we 14 talking about here? Establish age distribution model.

MR. PETERMAN: I think we have to understand a little MR. PETERMAN: I think we have to understand a little bit better this built-in bias that these very fine scale range pose in terms of the isotopic ages. As I say, you know, we're hoping to address that by bringing in some other other chronometers. That's one thing that we have to sort out a little better than we do now.

I think we have to spend more time--right now, all of our sampling, most of our sampling has been on the youngest materials present, because we started out feeling that those were the most important. We have not spent a lot of time going deeper into the deposits to try to understand 1 the whole growth history, and we think probably some of the 2 old opals, we may even be able to go in and do conventional 3 uranium lead dating. I think that's what we meant.

4 DR. DOMENICO: Based on that, correct me if I'm wrong, 5 but I think it would be possible for you to calculate some 6 pseudo reaction rate coefficient like the volume reacted per 7 unit volume per unit time, when you combine that with your 8 age dating. I don't know what that would mean, but it might 9 mean something in terms of transport modeling if you're 10 looking for, like I say, I would call it pseudo, but it would 11 be different for both the calcite and the opal, but I would 12 think that, at that point, you should be able to get to that. 13 Now, to calculate the flux required to deposit 14 minerals, how do you do that?

MR. PETERMAN: Well, in a very simple-minded way. We'll assume that the water is saturated. We'll determine the growth rate of the deposit. I mean, we've done some of these back-of-the-envelope calculations. We can do it for a fracture, say.

You've got so much material. You know the rate of 21 accumulation. How much water does it take, reasonable water, 22 like the waters that have been analyzed, how much water would 23 it take to deposit that amount of material? I think that's 24 what we're looking at.

25 There are all sorts of complications, like Don has

1 alluded to, and other ways we can look at this, but that's 2 where we're headed. As I say, we're going to have to make a 3 lot of simplifying assumptions, but, you know, that's no sin 4 in geochemistry and hydrology. It's done all the time, but 5 that's where we want to go.

Now, the numbers that we've looked at, they're certainly in that six orders of magnitude range that we saw yesterday, so we're not totally out of the ball park. How we might--I think that you bring up another important question.

What does a distributed flux mean to the repository 11 block? It may not mean much of anything. If these two, two 12 of these gross dual permeability domains are really true, you 13 really have to try to map out these things in two dimensions, 14 three dimensions, and also with regard to time, and, of 15 course, the modelers are going to produce the maps. They're 16 going to cut slices through the block, and they're going to 17 show us where they think the maximum and minimum flux may be, 18 but we've got to provide some hard data to keep them honest; 19 otherwise, they start to believe their models. That's very 20 dangerous.

21 DR. DOMENICO: Would you accept this as a possibility, 22 that the reason you don't find calcite and opal in those 23 structural features where you do find the chlorine-36 is 24 because the water was moving too fast?

25 MR. PETERMAN: Too fast for deposition? I don't think

1 we could dismiss that possibility. The other thing is we 2 don't see those open fractures right there in the sheers 3 themselves. They tend to be pretty tight, pretty close 4 features, and so, if our idea that you need a little head 5 space for evaporative concentration is true, you don't have 6 that head space in these fracture zones, yeah, that's true. 7 Of course, that's why we did this dual approach;

8 date the physical record and do chlorine-36 for exactly that 9 reason.

10 DR. LANGMUIR: Pat, could I add a complication to the 11 whole thing, just quickly?

12 DR. DOMENICO: No; just no.

DR. LANGMUIR: It just occurred to me, Zell--I'm sure it has occurred to you both before--what you may well be looking to at, as we've just said, you're coming down through here and, almost certainly, you're precipitating silica and carbonate, and redissolving it and reprecipitating it.

You're not looking--you're looking at a bounding 19 oldest age. It may well be a heck of a lot younger, for the 20 water itself going down through the system may be far 21 younger. You're looking at the time it took for those 22 isotopes in whatever mineral they were in to get down there, 23 and it's probably been a series of stops and starts and stops 24 and starts, so this isn't really an infiltration rate you're 25 looking at, it's a migration rate for these isotopes in the 1 minerals.

2 MR. PETERMAN: No, you're right. It doesn't tell us 3 anything about the travel time.

4 DR. LANGMUIR: And the chlorine-36 is a better 5 indication, where you find it, of the age of that water, 6 because it's better conserved in the fluids; whereas, 7 reacting elements don't tell you that, because they don't 8 stay in solution all the way down.

9 MR. PETERMAN: That's right. We're looking solely at 10 the depositional records.

DR. LANGMUIR: You've got to find some other tracers. 11 DR. DOMENICO: I'm going to have to move us, because 12 13 these are good points that we should remember for the round-14 table this afternoon, to bring this up again, and I think our 15 last presentation of the morning is the hydrologic flow paths 16 and rates inferred from the distribution of chlorine-36. 17 That's June Fabryka-Martin and Andrew Wolfsberg, I believe. 18 MS. FABRYKA-MARTIN: I'm June Fabryka-Martin. I'm the 19 principal investigator of the water movement test, which also 20 is more commonly known as the chlorine-36 study, and, also, 21 my co-presenter today is Andy Wolfsberg, also from Los 22 Alamos, a hydrologist who works with me very closely, 23 particularly on the ESF work we've been doing.

What I'm going to be talking to you about for the 25 next few minutes is our work in the ESF, which, as Zell 1 described, started mid-November, and I'll be talking about 2 what the objectives of that study are, our approach in 3 collecting the samples or selecting sampling sites, present 4 the data and our preliminary interpretation of those data, 5 talk about the implications for our understanding of the 6 unsaturated zone's hydrologic system.

7 Andy then will compare our interpretation with 8 transport calculations to show how consistent that 9 interpretation is with what we know about hydrologic 10 parameters, and, finally, we'll end with some conclusions.

In November, the objectives of the study in the ESF 12 that we came up with was, first of all, to evaluate the 13 extent to which the nonwelded unit, Paintbrush nonwelded 14 unit, is an effective barrier to vertical flow; secondly, to 15 provide bounding estimates for the travel time of water in 16 the matrix of the Topopah Spring welded unit at the 17 repository horizon; and, finally, to evaluate the frequency 18 and distribution of any preferential flow paths that we might 19 find.

20 We're not completed with achieving these objectives 21 yet. This is just a status report I'll give you today. I 22 would estimate we're about half through, at least for this 23 phase.

24 Stan talked a little bit about sources of chlorine-25 36 in the hydrologic cycle, and I'll just reiterate some of 1 these points. The two signals that we're most interested in 2 are the anthropogenic sources of chlorine-36 from the global 3 fallout resulting from nuclear weapons testing in the late 4 fifties and early sixties. Also, there may be a component 5 from local NTS activities, although I haven't seen any strong 6 sign of that for chlorine-36.

7 That will give us signals. The peak for a global 8 fallout may have been up as high as 200,000 x 10⁻¹⁵. Compare 9 that against the background, present day background of 500, 10 so it's a really massive signal when it's present, and this 11 will be dominant, of course, in young waters.

12 The other major type of chlorine-36 we're 13 interested in is just that which is produced naturally in the 14 atmosphere, just like Carbon-14, just like tritium, like your 15 interactions with cosmic rays with atmospheric gases, and 16 even though the present day ratio might be 500 x 10^{-15} , we do 17 have evidence from packrat middens that it may have been as 18 high as 1500 over the past half-million years, and this will 19 be the dominant source in pre-bomb waters.

But, in interpreting the results, we have to also But, in interpreting the results, we have to also be aware of other sources of chlorine-36 in the hydrologic cycle. Specifically, as Stan talked about, there is production from cosmogenic reactions on rocks and minerals hear the surface, and one that many of you have already heard been discussing among yourselves, I'm sure, is the

1 production on calcite, and whether or not that calcite then 2 releases the chlorine-36 to be carried down to the water.

3 This is going to be a variable input function. 4 It's going to depend on the exposure age of the mineral, how 5 deep it is, what the elemental composition is, how much 6 chloride is present that can dilute the signal, and my 7 feeling--although some may argue with me--is it's probably 8 negligible relative to those atmospheric sources.

9 And, secondly, in deep rocks, there is a continuous 10 production of chlorine-36 just because there's a neutron flux 11 everywhere due to the presence of uranium and thorium and 12 their decay products. At Yucca Mountain, the calculated 13 ratio will be on the order of 20 to 30, far below either of 14 the atmospheric sources, and this is generally negligible in 15 the Yucca Mountain system.

Now, our approach for the ESF study is we use three rampling criteria. First of all, systematic sampling every neters, boom, we would collect a sample, and we've got about 24 so far, of which we've analyzed 13.

The second category, most of our samples were what 21 we call feature-based sampling, and these were ones that were 22 generally selected in close coordination with the USGS, and 23 we were looking at things like fractures, things that looked 24 like they might potentially be fast paths, so fractures and 25 faults. We also, on purpose, were trying to find places

1 where we expected to see old chlorine-36, and we weren't
2 successful at that, but we looked, and that's why it also
3 includes lithophysal cavities, for example.

And then the third category of samples within the 5 PTn we sampled at subunit contacts to see if those contacts, 6 or changes in porosity, for example, or changes in hydraulic 7 permeability could be contributing to, say, lateral diversion 8 of flow in the PTn.

9 And you can see how we've collected about, oh, 153 10 samples so far, and five or six field trips--about every 11 month, we go out--of which we've analyzed about a third, and 12 another third of those are waiting at Purdue, waiting to be 13 analyzed now. We expect to have results by the end of the 14 month, or early August.

Now, the results. What I've plotted here is the here is the chlorine-36 to chloride ratio x 10⁻¹⁵ as a function of distance from the north portal, station zero, so the stations are every 100 meters, so 10 would be 1,000 meters into the SF, and then, also, I've used two different plotting symbols here.

The systematic samples, the one that are every 200 22 meters are plotted with the solid black squares. The 23 feature-based samples are plotted with the shaded squares, 24 and I want you to pull out two observations from these data. 25 First of all, one thing that probably jumps out at 1 everybody right away is that there's two distinct populations 2 here. We have these fairly sizable spikes going, the ratio 3 is almost as high as $4,000 \ge 10^{-15}$, and these we're 4 interpreting as bomb pulse chlorine-36.

5 Then the second thing to pull out from it is how 6 few of the samples fall below the present day meteoric ratio 7 of 500. The second population is a band where most of them 8 fall between 500 to 1,000, or certainly 500 to 1500 9 encompasses all of them. Those I'm not going to talk about 10 in much detail today, except to say that this is consistent 11 with a variable input function that we've been able to 12 reconstruct to some extent by looking at packrat middens for 13 the past 30,000 years.

14 It's the bomb pulse signals that sparks the most 15 interest and debate and discussion, and so those are what 16 I'll focus on for the rest of the talk.

What I have here is, using Warren Day's preliminary Number of surface faults, the dashed lines. Also, on here I have the bedrock alluvial contacts, also taken from his map, and overlaid on top of that, the ESF, with the stations marked every five stations, and the red circles represent places where we saw the elevated chlorine-36 and the chloride that we're interpreting as being bomb pulse.

24 What you should notice from here is that two of the 25 locations, the Bow Ridge Fault and Drillhole Wash Fault, the 1 high signals seem to be clearly related, or, at least, this
2 is very suggestive that they're related to the--the high
3 signals are related to the fault themselves, but the other
4 three, the relationship is not at all that clear.

5 But, a more relevant way of looking at the data is 6 --and I'll skip over to here so you can see both at once--7 is to look at those same fault features mapped at the depth 8 of the ESF itself, and this is taken from a preliminary map 9 provided by Steve Beason, and, again, plotted the data, well, 10 from the north portal at station zero, going through our 11 current location of sample results, up to station 40, and 12 showing the places where we see the bomb pulse chlorine-36 13 with the red squares.

And, here again, it just reiterates the point I And, here again, it just reiterates the point I made with the previous slide, that there seems to be a clear relationship between the fault structure and the bomb pulse rignals for the Bow Ridge Fault and the Drillhole Wash Fault, but the relationship of these features to pathways is not quite as clear, and so, our conclusion, or our tentative working hypothesis right now is that if these are related to fault features, it's not a very direct relationship.

We think what's happening is that probably the We think what's happening is that probably the We think what's happening is that probably the signals may be important in getting the signal, the bomb pulse at signal down through the PTn, but after that, it just takes the closest pathway it can find, because most of these are

1 not in faults at all; actually, in the ESF, but, rather, in 2 cooling joints and features like that.

3 Now, the bomb pulse interpretation is clearly 4 significant, enough that it's important to get independent 5 lines of evidence for that interpretation because of the 6 implications, so these are the approaches we're taking to 7 corroborate that signal.

8 First of all, we're evaluating sources of 9 contamination. A lot of our samples do have construction 10 water present in them. You can see it easily because of that 11 bromide tracer that's added. However, the effect of that 12 construction water is not to increase the chlorine-36 to 13 chloride ratio, but, rather, actually, to decrease it, so 14 when I correct for the presence of that construction water, 15 that correction actually kicks the ratio up, because it's J-16 13 water. It has a ratio of 500 x 10⁻¹³.

And, in addition, to check for lab contamination, And, in addition, to check for lab contamination, Note that goes along with every batch of samples. We've never had any trouble with the blanks for the samples I've reported.

21 Secondly, we're evaluating surface calcite as an 22 additional source. We're taking two tacks there; first of 23 all, just doing theoretical calculations to try to bound the 24 contribution of chlorine-36 from this source; and then, 25 secondly, our GS colleagues helped us select sampling sites 1 for calcites from a variety of locations, and we're in the 2 process of analyzing those so that we can see what that ratio 3 really is.

4 Thirdly, we're trying to reconstruct the past 5 chlorine-36 to chloride signal in the atmosphere to see how 6 high it could have been in the past, and based on the packrat 7 midden data that we have so far, our highest ratio is 1300. 8 I don't think we're going to get anywhere near 4,000, so I 9 think we'll be able to rule this out as an alternative 10 hypothesis for those high signals.

We're looking hard at field relations of the we're looking hard at field relations of the samples, and the mineralogic features of the sampling locations, particularly those with the elevated chlorine-36 to chloride ratios to see if there's other evidence for water flow and movement, and it's early days to draw any conclusions from this as yet.

We're working closely with Alan Flint to see what Reversion there is between the net infiltration estimates he's come up with, and where the high signals occur.

And, finally, we're also looking for other bomb 21 pulse nuclides, and I'll show you next some results for 22 tritium, cesium, plutonium, technetium-99 and iodine-129.

First, the tritium results. Both these sets of A data for the bomb pulse nuclide results, you shouldn't view to as the final word. It was just really just scoping
1 studies to see whether it was feasible to continue. Now, 2 with the tritium results, these are all GS results and just 3 in the interest of saving time, we agreed that I should 4 present them.

5 The first group of samples are from the ESF main 6 tunnel, collected by Alan Flint and Joe Hevesi, and what 7 you'll notice right away from here is that the tritium is all 8 below detection. These are all picked from locations that 9 had the high chlorine-36 to chloride ratios. However, Gary 10 Patterson has radial boreholes in Alcove 3 that are in the 11 Tiva Canyon welded unit, and you can see that four of those 12 five samples had measurable tritium levels.

And so, there's many different hypotheses you can And so, there's many different hypotheses you can is come up with to explain this, but the one that we're thinking is most likely is that these collected from the tunnel walls have been diluted by J-13 water, the construction water, to rsuch an extent it's just diluted out any bomb pulse tritium hat may have been present, and so, what we're doing for the next round is drilling into the walls five to ten feet, to be collecting samples, then, further back in away from the construction water influence.

Then for the other bomb pulse nuclides, I selected a suite of samples on purpose to try to maximize the possibility of seeing technetium, cesium, and plutonium if it swere all present, so this is just sort of like a proof of principle. It's not supposed to be an unambiguous indication
 of whether or not the chlorine-36 is bomb pulse or not.

And so, I picked the Bow Ridge Fault at Station 2, 4 and there is a sample from Borehole N55 that had extremely 5 high chlorine-36 to chloride ratio. We saw technetium-99 in 6 both of those samples, which I think is pretty strong 7 evidence that there is, indeed, bomb pulse chlorine-36 at 8 those locations as well.

9 We did not see cesium-137 or plutonium in those 10 deeper samples, but we did see it in the surface soils, and 11 these distributions, of course, are consistent with how we 12 expect the geochemical behavior of these isotopes to be, 13 meaning that we expect cesium and plutonium to be hung up in 14 the upper surface and not be mobile, and technetium-99, on 15 the other hand, as an anion, we would expect it to be mobile, 16 just like chlorine-36. So, we're going to be continuing 17 processing of additional samples now from the ESF for 18 technetium-99.

19 The other isotope we're looking at, iodine-129, 20 we've sent samples off to Purdue University for analysis, and 21 I hope to have results back on that in the next couple of 22 months.

Finally, the implications of these elevated chlorine-36 results for our understanding of the UZ bydrology, first of all, that bimodal distribution of the

1 ratios demonstrates that there's isolated fast paths from the 2 surface to the ESF. I think it's pretty conclusive.

3 Secondly, the penetration of recent water into the 4 Topopah Spring welded unit is indicated by the bomb pulse 5 chlorine-36 in the fractures. However, it's important to 6 realize that these bomb pulse signals by themselves say 7 nothing about the flux. In fact, the flux is likely to be 8 small or negligible, but you can't quantify it based on this 9 result alone.

10 Thirdly, the fast paths that carry water into the 11 TSw may be associated in some way with major fault zones that 12 can cut through the PTn.

And, finally, transport calculations that Andy will And, finally, transport calculations that Andy will the beat about following me, indicate that the arrival of the bomb pulse chlorine-36 at the ESF is consistent with the increased fracture permeability in the Paintbrush nonwelded runit that one would expect to be associated with faults.

18 And, with that, I'll turn it over to Andy to show19 that.

20 DR. DOMENICO: Let's hold the questions until the 21 completion of the presentation.

22 MS. FABRYKA-MARTIN: Right.

23 MR. WOLFSBERG: When I heard that Ed had 30 view graphs 24 yesterday and Alan had 40, I thought I'd shoot for about 50 25 view graphs, but June and Jill asked me to keep it to five, 1 so I'll keep the number down so there'll be lots of questions
2 for June.

3 What I'm going to be talking about is the chlorine-4 36 transport simulations in support of the interpretations of 5 the data that June's just presented. The objective of the 6 study is to develop a quantitative conceptual model of the 7 movement of chlorine-36 from the surface down to the ESF. 8 That'll help us go through our evaluation and analysis of 9 what do these signals mean, and what are the flow paths and 10 mixing and mechanisms associated with the measurements that 11 she collects.

12 The methodology that we're using involves one-13 dimensional and three-dimensional transport simulations. The 14 1-D simulations are used to really focus on what the 15 mechanistic processes are, what the fracture matrix 16 interactions are, the difference from location to location, 17 and I'll be talking in a few minutes about the impact of the 18 thickness of the PTn and the spatially variable infiltration 19 effects, both spatially, variable, and transient, as Alan was 20 talking about yesterday.

Then we have three-dimensional transport mulations, which I won't be able to get into today, but they extend what we do with the 1-D simulations to examine the lateral flow effects at material boundaries, the full effect of the spatially variable infiltration, and the effect 1 of the full fault system.

2 Now, June mentioned that there's indication of a 3 variable chlorine-36 production rate through time, and we're 4 using this as our input signal to the model. It's based on 5 some theoretical development associating the production of 6 chlorine-36 with the geomagnetic flux variations through 7 history. It's somewhat substantiated through packrat midden 8 samples and some work that Scott Tyler has done, but this is, 9 as Stan mentioned, it's emerging research. We're using, 10 effectively, one realization of a calculation of what the 11 chlorine-36 production signal through over the last, well, I 12 could go out to two million years.

But, what I want to point out, that you'll be 14 seeing in the simulations, is that here we are at present 15 with the present ratio of 500 x 10^{-15} , and when we go back 16 50,000 years, we may be dealing with a higher chlorine-36 17 production rate, as high as close to 1500.

18 To start the study off, what we did is we did a 19 three-dimensional calculation where we used that input 20 function, and we looked at where the bomb pulse deposited 21 itself. This is a three-dimensional simulation. We don't 22 have faults in this model, so there's no fault zone 23 properties, and this reddish-orange color that you see is at 24 the Tiva Canyon/PTn interface, so this sort of confirmed our 25 initial hunch that the stuff moved quickly through the Tiva 1 Canyon, and moved into the matrix of the PTn, and deposited 2 itself there.

3 Throughout a huge portion of time, we end up with a 4 signal between 500 and 1500, which is consistent with the 5 other non-bomb pulse signals that June has been measuring in 6 the tunnel.

7 Now, the approach that we then went to is, okay, 8 what does it take to get this stuff through the PTn, down to 9 where June was measuring for bomb pulse in the tunnel, and 10 that's when we moved to the one-dimensional column studies.

From our three-dimensional hydrostratigraphic model, we numerically took a bunch of boreholes. We're going to be focusing on this one right here. It's a location where found bomb pulse chlorine-36, and we're going to be looking at the migration just vertically through a 1-D column there.

This is at Station 35. We're dealing with 21-some odd units of the system, all with hydrologic properties that are being developed by the various participants in the project, and we're going to be looking at the effect of property variations and the infiltration rate effects on what 22 does it take to get bomb pulse down to the ESF.

What I've plotted here is a typical solution that we would calculate on a column like this. One of the things that we're very interested in is the pressure difference

1 between the matrix and the fractures, because, depending on 2 which is greater, we're either driving fluid from the 3 fractures into the matrix, a process called imbibition, or we 4 may be bringing fluid back out of the matrix into the 5 fractures. That would be more consistent in yielding flowing 6 fractures.

7 We're very interested in what happens here in the 8 PTn. What does it take to get fluid to move through the PTn 9 quickly? That's the bounding ladder, and that's the rate 10 limiting determinant on whether we get bomb pulse to the ESF. 11 What we've plotted here is a solution for the 12 chloride concentration in both the matrix and the fracture in 13 one of these simulations, and, as with that 3-D simulation I 14 just showed, we see the bomb pulse basically depositing 15 itself in the initial matrix of the PTn as it encounters 16 that.

As you move down the system in this particular As simulation, the fractures of the PTn could not sustain flow 19 through the entire thickness, and, therefore, the fractures 20 effectively dry out and we don't have a continuous 21 concentration profile through the PTn in the fractures.

Once we get into the TSw, the matrix acts as a source to the fractures, and we basically get input function from the matrix into the fractures, leading to a signal in the fractures there.

1 What I'm going to show now is this numerical 2 experiment that we performed in looking at what does it take 3 to get the fluid to flow rapidly through the PTn. This is by 4 no stretch a Latin hypercube, but I think this is revealing, 5 and indicates that the measurements are consistent with our 6 conceptual thinking and what's occurring.

7 Away from a fault zone, we have a set of base case 8 hydrologic properties. That's thinking of matrix and 9 fracture properties throughout the system, and what we do is 10 we're looking at infiltration rate versus property 11 modification, so with the base case properties, we ran a 12 variety of infiltration rates to see if we could actually 13 penetrate the PTn and get the bomb pulse in less than 50 14 years down to the ESF. At .0 to 15 mm/yr, it didn't happen.

So, then, what we did is we started modifying just the PTn properties as may be consistent with the faulted rone, fracture density and fracture aperture, both of which lead to an increased fracture permeability, something which may be consistent with the pneumatic testing that's being performed now. I believe there's indications that in fault rones, the effect of permeability, and, therefore, the effect of air permeability and, therefore, the fracture permeability of the PTn may be substantially higher.

24 So, what we did is, we looked at increasing either 25 the density or the fracture aperture, and what the effect of 1 fracture permeability relative to the base case conditions 2 were, and whether that led to bomb pulse arrivals at the ESF 3 or not, and I'm just going to run through this real quickly.

What we see is that it's not uniformly consistent. When you increase the density, you have fractures that are closer together and, therefore, that increases the potential 7 to bring fluid out of the fractures back into the matrix, but when you increase the permeability through an aperture increase, we start to see, under reasonable infiltration in rates along the lines of what we've been hearing from Ed and Alan, a potential to bring the bomb pulse all the way down to the ESF.

13 So, this table basically goes through a set of 14 examinations of what if there were some alteration to the 15 PTn, could we get the bomb pulse to the ESF?

So, as June said, the implications of the chlorine-So, as June said, the implications of the chlorinetransport simulations indicate that the arrival of bomb la pulse chlorine-36 at the ESF is consistent with the increased practure permeability in the PTn, as may be associated with faults, and, with that, I think I'll stop. There's a variety of other things I could talk about, but I think it would be appropriate to have June come back up for questions.

23 DR. DOMENICO: Thank you very much, Andrew.

We can open up to the Board for questions either 25 for June or Andy. Don? DR. LANGMUIR: We've talked about this before, but I-both of you, I guess, but the back-of-the-envelope approach to this thing, I would have thought that what we would try to do, perhaps, for chlorine-36 to back out infiltration, at least where you find it, is to maybe do an in-depth crossesction profile of chlorine-36 across a zone.

7 And then, assuming Al Yang's average unsat zone 8 water, get the volumes that you'd associate with those 9 concentrations of chlorine-36 ratioed to the chloride, and 10 that would then give you a volume of water that would make 11 the trip.

Does that sound like a way to go back? Is that something that you might do? This doesn't address the issue 4 of how to get it there, but, rather, how much water might be 15 making the trip.

16 MR. WOLFSBERG: Well, yeah, and then we need to know, 17 basically, the effect of the surface area with one of these 18 zones.

DR. LANGMUIR: Well, you presumably have a certain Chloride content in the given volume of rock that you sample from one of those zones, and then you've got the chloride the chlorine-36 ratio to that.

23 MR. WOLFSBERG: Well, in terms of the actual chloride 24 ratio--

25 DR. LANGMUIR: Trying to back out a mass balance of

1 quantities.

2 MR. WOLFSBERG: You have to leach that out of the rock; 3 right? It has to do with the actual volume, the volume 4 associated with the high chlorine-36/chloride ratio, but, 5 see, to actually get that, they have to actually leach the 6 chlorine-36 off the rock.

7 DR. LANGMUIR: Isn't that basically how you get your 8 sample?

9 MS. FABRYKA-MARTIN: We don't measure pore water 10 concentration, so we don't know what the chloride 11 concentration is of the sample, of the pore water chloride 12 concentration in the samples. All we do is take rock--it can 13 be perfectly dry--and leach it.

DR. LANGMUIR: Don't you have, from Al Yang, for sexample, the fraction of moisture content in a volume of rock average for the different horizons?

MS. FABRYKA-MARTIN: Sure. There are moisture profiles.
DR. LANGMUIR: There's wide uncertainty, obviously, in
all of this, but...

20 MS. FABRYKA-MARTIN: Right. There are moisture 21 profiles.

22 DR. LANGMUIR: But as a way to go backwards to 23 infiltration rate.

MS. FABRYKA-MARTIN: By chloride mass balance?DR. LANGMUIR: Yeah, chloride mass balance, and to the

1 inferred volume of water that contributed your chloride for
 2 the dating.

3 MS. FABRYKA-MARTIN: It's worth pursuing, sure.

4 DR. LANGMUIR: And then if you've got a fairly in-depth 5 look at the chlorine-36, the width of the zone in which you 6 get those bomb pulse ages.

7 MS. FABRYKA-MARTIN: Right. The way I view what we've 8 done so far is like a phase one, where we're essentially 9 doing a screening of the entire tunnel. Then, once the 10 flurry of the fiscal year ends, we'll sit down with our GS 11 colleagues and others and come up with some working 12 hypotheses, and go back in the tunnel and do more intensive 13 study at selected zones and actually test hypotheses, and one 14 of those will be what is the width of the zone that's 15 affected by those bomb pulses? What is the nature of those 16 pathways?

MR. WOLFSBERG: See, one of the problems is they collect 18 a sample in one of these feature-based samples, but it's not 19 necessarily clear what the surface represented, or the 20 surface was. I mean, you go through the Tiva Canyon, you may 21 have a wider or a narrower zone through the PTn that you have 22 move this, and so that's what we're working towards, is 23 basically bounding what the column volume is that this flux 24 is occurring through.

25 DR. CORDING: Cording; Board.

1 It seems that putting some dry drillholes out and 2 doing some of that type of sampling across features, and then 3 tying this in with the ambient degree of saturation and that 4 moisture content, and, then, ultimately, maybe in the same 5 locations, doing some more passive monitoring of flow 6 conditions, so some of the things that Alan Flint's been 7 talking about, and perhaps Lawrence Berkeley has been talking 8 about, those sorts of things, putting it all together would 9 seem to be a real benefit to getting towards this sort of 10 thing, getting some of that other type of information can 11 support getting at, perhaps, some of the flux rates, even 12 tying it back to the chlorine-36.

MS. FABRYKA-MARTIN: I agree with you. I think both the A GS and I are very excited about increasing our level of working together, because that's helped us make great strides forward in our understanding of the data, and we do have plans to do that for next fiscal year.

DR. LANGMUIR: And putting the plastic sheets on the 19 walls, right, Pat, just for a second, to finish this. Alan's 20 talking about putting plastic sheets up to collect the 21 moisture, and then you really have, perhaps, the real 22 moisture contents that have the chlorine-36 data in them. 23 You don't have to infer much.

MS. FABRYKA-MARTIN: Right. You also have a better--an 25 opportunity to get more valid tritium results, I think, as

1 well.

2 DR. DOMENICO: June, I'm looking at this distribution 3 versus the station, and like, for example, at Station 35, 4 there's six hits for high bomb pulse. What does that mean? 5 It's on the same station, but is that all from the same 6 structural feature? These are duplicates, or it's a display, 7 or what is it?

8 MS. FABRYKA-MARTIN: Oh, no. No.

9 DR. DOMENICO: Because they're all at the same station. 10 I have no spatial concept of what's going on.

11 MS. FABRYKA-MARTIN: Well, actually, the--

DR. DOMENICO: And the same thing with Station 20 or so. You can see five or six hits. How about that sampling, are they far apart, or what?

MS. FABRYKA-MARTIN: Yes, they are. Around Station 35, l6 each one of those tick marks on the bottom axis represents 17 100 meters, and so, the width of the signals that we saw 18 around Station 35 is about 100 meters wide.

19 DR. DOMENICO: So these may be different structurally?

20 MS. FABRYKA-MARTIN: These are all individual features.

21 DR. DOMENICO: Structural features.

22 MS. FABRYKA-MARTIN: Yes, and I think in this case, 23 they're mostly cooling joints. They're not faults.

24 DR. DOMENICO: And another thing you mentioned that you 25 didn't want to talk about was a so-called variable input

1 function. Can you explain what that means? And then you can 2 answer me, you've ruled those out as bomb pulses; is that 3 fair, or not?

4 MS. FABRYKA-MARTIN: Yes. The chlorine-36 to chloride 5 ratio in the input signal, the atmospheric signal, has varied 6 over time, and it's varied as a result of two different types 7 of processes: One, the production rate of chlorine-36 in the 8 atmosphere itself has varied in response to changes in the 9 earth's geomagnetic field, and that's represented by the 10 black line down here. This is a reconstruction of what the 11 ratio would be just in response to the geomagnetic field 12 strength alone, and that's what Andy used as the input for 13 his modeling.

But then, also, independently, the ratio has varied because of changes in the chloride deposition rate. That one's harder to get a handle on because it must be a fairly complicated function of different climate factors, storm tracks, contributions from recycling of salts from dry lake beds, and so forth, and I've tried to show that by the dashed lines.

If the chloride deposition were, say, 60 per cent 22 of what it is today, that's what that upper dashed line 23 represents, and in confirmation of this hypothesis, the black 24 squares are packrat midden results that we've obtained over 25 the past few months. 1 DR. DOMENICO: I thank you.

My last question is have you used what we heard by Zell, where the opal does not occur where you find the chlorine-36? Has that sort of guided you a little bit, or could that guide you a little bit in some sampling procedures, instead of going every 100 meters like you have been doing?

8 MS. FABRYKA-MARTIN: You mean purposely go for fractures 9 that don't have signs of filling, or a secondary 10 mineralization?

11 DR. DOMENICO: Yeah.

12 MS. FABRYKA-MARTIN: That makes sense to me, sure.

DR. DOMENICO: Because it seems like with a random--it's 14 not random. You do it every 100 meters, I guess, for the 15 background--

16 MS. FABRYKA-MARTIN: 200, every 200 meters.

17 DR. DOMENICO: --but none of those seem to be showing up 18 with anything.

19 MS. FABRYKA-MARTIN: Right.

DR. DOMENICO: So, seeing as you've more or less decided these are probably individual fracture pathways, it would seem like--

23 MS. FABRYKA-MARTIN: Right. There is a difference in 24 the way those two types of samples are collected. I was just 25 thinking as you were talking. With the systematic samples, 1 we have the Test Coordination Office mine us out a niche, so 2 if there's a fracture cutting through there, we may not see 3 the bomb pulse anyway, because we've mined out a one cubic 4 foot. So, maybe we should revise the systematic sampling and 5 not only do a bulk sample, but, actually, the nearest 6 fracture to that particular station.

7 DR. DOMENICO: That would seem a lot more reasonable.

8 MS. FABRYKA-MARTIN: That makes sense.

9 DR. DOMENICO: Are there any other questions? Don? 10 DR. LANGMUIR: One related to the variable input 11 function data that you've got there, which, I presume, 12 includes all of the data that's been obtained so far from 13 surface-based testing down from the surface.

14 MS. FABRYKA-MARTIN: Right.

DR. LANGMUIR: Do you still believe the dates? In other 16 words, are the corrections so significant, perhaps, that we 17 can't have great confidence in the dates from that surface-18 based testing?

19 MS. FABRYKA-MARTIN: Which dates?

20 DR. LANGMUIR: We're talking about dates that ranged in 21 the chlorine-36 scheme from maybe 30-40,000 up. How 22 confident are you in the--what's the uncertainty in those? 23 MS. FABRYKA-MARTIN: Oh, I see. Okay, the samples I 24 said I didn't want to talk about?

DR. LANGMUIR: Yeah, yeah, the ones you didn't talk

1 about, which got us all excited because they were related, 2 but not the same as the Carbon-14. We invented wonderful 3 concepts of gases moving to make the 14 younger and the 4 uranium, or the chlorine-36 being in the fluid. How are we 5 on those dates now, given where you are in terms of 6 understanding this?

7 MS. FABRYKA-MARTIN: I say we can't do better than 8 bounding it, say, within an order of magnitude, at best. The 9 original intent, remember, was the assumption that the input 10 ratio was more or less constant at 500, and then we went into 11 the ESF in full confidence that we'd find a whole slew of 12 signals below that and just simply estimate ages based on 13 radioactive decay.

And, as you can see, most of those ratios were well hove 500, and that's completely consistent with what we now know is a variable input signal. So, the approach that we ran take to try to draw as much information as we can from those pre-bomb ratios is these three steps I have here. It basically is just setting bounds.

We can establish upper limits for the travel times, 21 and that's what I did in the March ESF report that I think 22 most of you have seen, just by using the radioactive decay 23 equation from the maximum possible input ratio, which I just 24 assumed was 1500, and so that's going to give us 25 unrealistically high travel times for most of the samples,

1 but it is a bound.

2 Secondly, we can calculate travel times by 3 transport simulations, and also, in that March ESF report, 4 you've seen the results of Andy's tackling that problem using 5 the reconstructed chlorine-36 to chloride signal, and that 6 generally--he came up with ages between tens of thousand to, 7 well, basically, tens of thousand up to almost 100,000, I 8 think, for those various scenarios he showed. The more 9 realistic ones are going to be when he has the 3-D 10 simulations completed.

And then, finally, we can also get a lower bound on the travel time, constraining it by matching peaks in the reconstructed signal. For example, if we see a ratio that's the about 1,000 in a sample, we can say, well, when was the last time in our reconstructed signal that there was a ratio as high as 1,000, and by that way, set a lower bound, as long as recomponent.

18 Does that answer your question?

DR. LANGMUIR: I guess what I'm getting out of this is the uncertainties in the chlorine-36 data from surface-based testing above the ESF are very large. The uncertainties are large. We're talking thousands of years, but that's maybe all we can say. Are you better off than that, or is that pretty much where we are?

25 MS. FABRYKA-MARTIN: Yeah. You're saying that the

1 borehole data--

2 DR. LANGMUIR: When you say an order of magnitude, 3 that's a pretty big effect on those numbers; 40,000 versus 4 4,000.

5 MS. FABRYKA-MARTIN: Right. That may be as best we can 6 do, unless we can do a better job reconstructing the input 7 signals and have more confidence in that. The variations in 8 input signal, it's such recent results that I haven't quite 9 worked out how to deal with the problems that you've 10 identified as yet. We're well aware of them, but we're not 11 quite sure how successfully we are going to be able to 12 resolve them, other than the three things I've talked of 13 here.

14 DR. DOMENICO: Let me spread this around a little bit.
15 Was there a question?

16 DR. PALCIAUSKAS: Could you put up the map that follows, 17 previous to the bomb pulse one, showing the ESF locations? 18 The one previous to that.

19 MS. FABRYKA-MARTIN: Oh, the surface one? Okay.

20 DR. PALCIAUSKAS: Yes, the surface one. I have just two 21 brief questions.

There were two signal point locations, and I 23 presume you went back to try to verify those?

MS. FABRYKA-MARTIN: Right. We did go back and collect Samples. We don't have the results yet, analyses back yet

1 for those samples. They're at Purdue right now.

2 DR. PALCIAUSKAS: The other question is, could you, just 3 briefly, describe how those five locations correspond to the 4 surface infiltration areas?

5 MS. FABRYKA-MARTIN: Well, actually, it's interesting 6 you should ask that. What I did, if I can find it, I took 7 the surface map and made an overlay for Alan Flint's 8 infiltration map, if I can line this up. Yeah, it's pretty 9 close.

10 This is basically what you're asking, right, what 11 the correlation is?

12 DR. PALCIAUSKAS: Yes.

MS. FABRYKA-MARTIN: And you can just barely make out MS. FABRYKA-MARTIN: And you can just barely make out the circles where the bomb pulse locations are, but here's the north portal entrance, and the thing to note from here is that all of our elevated signals are in zones of low right infiltration fluxes, and this just drives home the point once again that a fast path does not equate to a high flux. All if means is that it's a fast path, that water gets in there fast, and, of course, we want to expand on pursuing this hypothesis in greater detail over the next few months or a 22 year.

DR. DOMENICO: There's another question by Dick Parizek. DR. PARIZEK: I was going to ask whether or not any of the stratigraphic units were crossed where you had Station 19 1 and 35, which was a chlorine-36 high value, but according to 2 that cross-section, these were in big units, but you were 3 talking about cooling joints being encountered at several of 4 these stations?

5 MS. FABRYKA-MARTIN: Most of the bomb pulse signals were 6 in cooling joints.

7 DR. PARIZEK: Now, that's inconsistent with what I 8 thought I heard maybe several meetings ago, that cooling 9 joints don't go anywhere. They kind of go up and die. They 10 don't cross units. So, now you've got a problem. You've got 11 to get water into cooling joints by some other path, since 12 the conclusions is cooling joints don't connect with the 13 surface.

MS. FABRYKA-MARTIN: Right. You're right. The cooling fjoints do generally seem to be constrained to the particular formation that they're in, the unit that they're in. However, what we think the pathway is, the role of the fault signal through the fault getting the bomb pulse signal through the PTn, and once it gets through the PTn, then it just moves laterally and takes the nearest pathway, which is going to be a cooling foint. That's our working hypothesis.

22 DR. DOMENICO: Question from Ike Winograd.

23 MR. WINOGRAD: I'd like to suggest twelve more samples,24 but I have no funding for such work.

25 Looking at that cross-section, the most likely

1 place for rapid infiltration is in the Tiva in the broken 2 zone. You have three samples there, two of which are pre-3 bound; two of three are pre-bound. Could you go back and 4 take a dozen samples in there?

5 MS. FABRYKA-MARTIN: We've done it. We just don't have 6 the results back yet. There are a whole slew of samples we 7 have through that broken zone that we've processed, but--

8 MR. WINOGRAD: It should be the most liable to.

9 MS. FABRYKA-MARTIN: Right. Well, the other thing is, 10 as some of you may well remember, we have a number of 11 borehole profiles that we've measured, and pretty much every 12 single borehole, the Tiva Canyon, where it had a thin 13 alluvial cover, you had massive bomb pulse throughout the 14 Tiva Canyon welded, and often, even going down into the PTn, 15 so we have borehole evidence to support the penetration 16 through there in many, many locations, but none of the other 17 boreholes had previously shown anything reaching the TSw 18 unit, and that's the major thing that was new about the ESF 19 study.

20 DR. DOMENICO: We're ten minutes late, so I think we 21 should adjourn for lunch and meet at ten minutes after one. 22 How's that?

23 (Whereupon, a lunch recess was taken.)
24
25

AFTERNOON SESSION

3 DR. DOMENICO: Can we get started, please? 4 We're about to get into our afternoon session, and 5 our first speaker is Tom Wigley, who I introduced yesterday, 6 giving us the perspective on climate modeling uses and 7 limitations.

8 MR. WIGLEY: Let me briefly summarize the topics that 9 I'm going to discuss. Firstly, I'll say a little bit about 10 what are climate models. Then I want to address the issue of 11 how good are current climate models, how do we test the 12 models to determine how good they are. How consistent are 13 models when one compares different models produced in 14 different institutions? How do we apply the models to the 15 problem of climate prediction? And then I'll summarize some 16 of the implications.

I'm not necessarily going to use all of the 18 transparencies that are in my handout, and I may use a couple 19 of others, because as this session has progressed, I've 20 realized a little bit more where the emphasis ought to lie.

Firstly, let me just tell you what a climate model rand there's a whole suite of climate models available of different complexities, but they all have one common characteristic, and that is that they are mathematical representations of a very complicated system involving

1

1 interactions between the atmosphere, the ocean, ice masses 2 and the land surface.

Nearly all of these models have to use computers in order to run them, and the most complicated such models are three dimensional General Circulation Models. Initially, these models were of the atmosphere only, but the most recent models include three dimensional structure of the ocean, as well as all sorts of interactions with the boundary that the atmosphere and ocean has around it.

10 General Circulation Model is then three dimensional 11 mathematical representations of physical principles that 12 control the behavior of the atmosphere and the ocean. There 13 are two different types of model that are used currently.

One type of model that's been used for many, many years, fa few decades at least, is Atmospheric General Circulation Model that simulates the motion of the atmosphere and the Physical and dynamic processes. And that type of model in the simplest form is coupled to a very simple representation of the ocean that is referred to as a mixed layer ocean. It's just a simple layer of water that has no contact or communication with the deeper layers of the ocean. So one only gets the interaction with the upper layer of the ocean, and it's only possible to carry out so-called equilibrium experiments with these types of model.

1 In other words, we can change the boundary 2 conditions, change the forcing, and allow the model to reach 3 a new steady state, and then see what the overall change is. 4 We don't have any time dimension in that type of 5 calculation.

6 The other type of model is one where we couple the 7 three dimensional atmospheric circulation to a three 8 dimensional ocean, circulating ocean, and that allows us to 9 look at time-dependent simulations that are very, very 10 important in the context of anthropogenic climate change, but 11 maybe not so important in the context of thousand year time 12 change, as is relevant to the Yucca Mountain problem.

13 These types of model are the only credible tool to 14 examine future climate change and make estimates of what 15 those changes might be, simply because the interactions are 16 so complicated that you can't just brain storm it and get a 17 reasonable answer. You actually have to use some sort of 18 mathematical model to cover all of these processes. And, of 19 course, the models that exist have to simplify some of the 20 processes, and many processes that we judge to be less 21 important are not even included, even in the most complicated 22 models.

The primary limitation of these types of model is their spatial resolution. There are problems with temporal

1 output that I'll mention shortly. But the spatial resolution 2 of most models, of models that cover the whole globe, is of 3 order of hundreds of kilometers, and most applications of 4 these models require intimation on shorter spatial scales. 5 In particular, the area of the Yucca Mountain site is very 6 much less than hundreds of kilometers, and so we have to 7 employ some method to downscale from the coarse resolution of 8 a global model to the fine resolution required for an 9 analysis such as this one. And there are different methods 10 for downscaling, and one method, the method that's been used 11 by Starley Thompson, is to embed a high resolution model of 12 limited area within the global scale model.

13 The other standard technique is to use statistical 14 procedures to relate the larger scales, both the larger 15 temporal and the larger spatial scales, to smaller scale 16 processes, using observational data and then assume that 17 those relationships hold in a changed climate.

This diagram is one that appears in a report of Starley's, slightly modified. This just shows the spatial resolution of the GENESIS model, and I've shown the area where the high resolution model is inserted, and that model a driven by the boundary results from the coarse resolution model.

24 Well, how good are General Circulation Models?

1 They are both good and bad. They can do some things very 2 well, and they can do other things very poorly. There are 3 some a priori limitations to these models, and the primary 4 one, as I mentioned already, is the coarse spatial resolution 5 that is really a constraint imposed by our computational 6 abilities, by the power of computers that exist today.

7 Because of the coarse resolution, that means a lot 8 of important details that affect precipitation on small 9 spatial scales, for example, orography, vegetation details 10 and so on, have to be simplified. In addition, processes 11 that occur on scales from meters up to tens of kilometers 12 cannot be represented individually, and they have to be 13 represented in some approximate area or average way, and that 14 process is called parameterization. And the most important 15 aspects of the climate system that have to be parameterized 16 in this way are those involving clouds, which clearly are 17 much smaller than the hundred kilometer resolution of the 18 model, and land surface processes, which can be very 19 heterogeneous over the resolution of these models.

For future climate projections, another problem, 21 and one that is particularly relevant in this case, is 22 deciding exactly what the forcing of the model should be in 23 the future. We can, of course, just consider natural 24 variations and then change the characteristics and the

1 seasonal and spatial distribution of incoming solar radiation 2 and then force the model at different times in the future, 3 but unfortunately we are already perturbing the climate 4 system fairly drastically by burning fossil fuels and other 5 anthropogenic influences, and those influences have to be 6 concatenated with the future natural processes that might 7 occur.

3 Just to give you one example, this is some work 9 that was done a number of years ago using a complicated 10 model, but not a full three dimensional model, but a model 11 that allowed one to look at time variations on a thousand to 12 ten thousand to hundred thousand year time scale, and this 13 particular model was run in two modes.

In one mode, it was assumed that the boundary Is conditions for the large ice sheets in Greenland and so on would stay the same in the future. And then in another mode, the model was run by taking the Greenland ice sheet away. And it's quite likely, I think, that if we continue burning fossil fuels at the rate we're doing now, or at an increasing rate, then global warming will, on a time scale of about ten thousand years, cause the Greenland ice sheet to disappear.

And that radically changes the boundary condition And that radically changes the boundary condition for the atmosphere and changes the whole atmospheric general circulation of the northern hemisphere, and what this diagram

shows is two different projections; one where Greenland stays
 in existence, and the other where Greenland disappears. And
 the variable here is a proxy indicator of global mean
 temperature.

5 So the time scale here is from zero to 80,000 years 6 into the future. The full line represents essentially the 7 global mean temperature fluctuations that might occur if 8 Greenland stayed there, and you can see there's this steady 9 cooling down to a minor period of about 20,000 years into the 10 future, and then a major one about 60,000 years into the 11 future. But if Greenland disappears, or is taken away 12 instantly at the start of the simulation, then there is no 13 cooling for 20,000 years, and it takes 60,000, 70,000, 80,000 14 years before the system catches up with what would otherwise 15 have occurred.

So boundary conditions are extremely important and 17 we don't really know how those boundary conditions are going 18 to change, although we can make informed guesses about them.

19 I'll skip the next transparency and go onto the 20 issue of how do we test climate models. How do we know how 21 good they are? There are a number of different procedures 22 that have been applied, and some of these have been used by 23 Starley Thompson.

24 One standard method is just to see how well one of

1 these models can simulate present day climate. A second 2 method is to see whether the recent changes in climate that 3 have occurred agree with what we think the anthropogenic 4 influences on climate have been over the last hundred years. 5 So in one case, we're looking at the status quo, 6 and the other we're looking at the changes over the last

7 century or so.

8 And then the final thing we can do is to look at 9 much longer time scales and try and simulate the 10 paleoclimatic past, and then use paleoclimatic data to see 11 whether that model simulation is reasonable.

In order to validate models against present observations, and this is really the most important way to test whether a model is credible or not, we need to look at test whether a model is credible or not, we need to look at the mean state of the atmosphere, how variable it is from gear to year. And that's an issue that came up yesterday realized the atmosphere, and it relates to interannual wariability of climate, and a large fraction of interannual variability of climate, particularly in this region, is controlled by the El Nino sudden oscillation mechanism. And if a model is unable to simulate that type of variability, then one would be rather suspicious about how well it could simulate variability, year to year variability of precipitation in the future.

1 The other thing we need to do is test whether or 2 not the patterns of simulated climate agree with patterns of 3 observed climate. There are many different ways of making 4 those sorts of comparison, and I will show some good results 5 and bad results, and let's start with some results that look 6 reasonably bad.

7 This is a rather complicated diagram, but it 8 essentially shows how well the current crop of climate models 9 is able to simulate the variability of mean sea level 10 pressure over the globe, and the actual values of mean sea 11 level pressure.

If a model were perfect, then with these two Is statistical measures, the values should be down in this 4 bottom left-hand corner here. And these black dots represent results for different models, and what they show is that all 6 of these models are, and some of them spectacularly so, when 17 you try to simulate observed mean sea level pressure, it does 18 not agree with the observations, that there are significant 19 differences between the way the model simulates the behavior 20 of the atmosphere and the way the real world actually is.

There are some models down here that are reasonably 22 good, and the latest version of the GENESIS model I think 23 comes down in this area, although the version that's been 24 used in this comparison is somewhere up here. So that's

1 not a very good result.

2 Another not very good result is this attempt to 3 simulate the zonal or average on the longitude band, the 4 zonal mean total cloudiness. And the white curve there shows 5 the average of 30-odd models, and the black curve shows the 6 observation of data, and you can see that even the average of 7 the models doesn't agree terribly well with the observations. 8 So models are not very good at simulating observed 9 cloudiness distributions.

However, some models are very good at simulating diagram shows, and I just want you to look at the top panel, and the variable here is the pattern correlation or the spatial correlation between the simulated precipitation and sobserved precipitation over the whole globe. And the correlation coefficients are given on a monthly time scale for each month of the year, and every line through here scale to a different climate model.

19 So there are some climate models where the pattern 20 correlation is really quite small on a global basis, where 21 there's only about 30 per cent of common variance or 22 correlation coefficient of around .5.

There are some other models up here where the correlations are consistently around .8, and that's a very, 1 very good result, because if one actually compares different 2 observational data sets, the correlations are only between .8 3 and .9 between different observational data sets. So an 4 examination like this shows that some models, the best models 5 are actually able to produce precipitation patterns that are 6 just about as good as the reliability of our observational 7 data. So that's quite a promising result.

8 Another way of testing these models is to see 9 whether they can simulate recent changes in global mean 10 temperature, and this is an example where people at the 11 Goddard Institute for Space Studies tried to simulate the 12 cooling that occurred globally after the eruption of Mount 13 Pinatubo in 1991, and then the recovery after the eruption of 14 Pinatubo. And you can see that there's really quite a good 15 simulation there, so that's also a positive point as far as 16 models are concerned.

The second most important way of testing models is 18 to see whether they can simulate past variations. And this 19 is the issue called detection. Can we actually detect a 20 model generated signal of anthropogenic climate change in the 21 past record. I won't go through that. That's a complicated 22 issue, but the answer is yes, we can provided we force the 23 models with the right type of forcing.

24 The interesting point here is that if we assume

1 that only carbon dioxide or greenhouse gases were the forcing 2 agent for climate change over the last hundred years, then we 3 do not get a good result. But when we account for the effect 4 of sulfur dioxide emissions and tropospheric aerosols, then 5 the agreement is quite good.

6 So on balance, although models have known and 7 sometimes quite serious deficiencies, they do a reasonably 8 good job at simulating past changes, the present state of the 9 atmosphere, and on fairly coarse spatial scales.

Now, another important issue with regard to Now, another important issue with regard to setually agree with each other. And I'll show a different result than is given in the handout here, and this is an examination of the agreement between different models for temperature and precipitation projections at the Yucca Mountain site, or a region around the Yucca Mountain site. And the simulations here that are compared are where the amount of CO2 in the atmosphere is doubled. So it's a standard type of experiment, and there are I think eleven models that are involved in this comparison, and of course they all give different results.

The results here are presented in normalized form 3 or standardized form. In other words, what has been done is 4 to take the global mean warming and then divide the regional

warming or the regional precipitation changes by the global
 mean warming.

Now, different models have different global mean 3 4 warming, and that's something that one can use as a scaling What we're more concerned with in this region is the 5 factor. 6 regionality of the prediction, the spatial pattern of the 7 prediction, and what I'll concentrate on here is the 8 precipitation changes and the results are shown by season. 9 The middle value here is the average of eleven different 10 General Circulation Models, and the average shows that in the 11 summer, for every degree of global warming, there's a small 12 reduction in precipitation, but an increase in precipitation 13 in the other seasons. But there's a range of values for 14 different models, and if you take the high end values, you 15 can see that all seasons show roughly a 10 per cent increase 16 in precipitation per degree global warming. And if you take 17 the other extremes, then the average is for a decrease in 18 precipitation.

19 So that on the basis of that intermodel comparison, 20 one would have to consider a range of possibilities that 21 included increasing and decreasing precipitation in just 22 about all seasons as a function of global mean temperature 23 change.

24 By the way, there's a very interesting result here,
1 and that is that you'll notice that in general, warmer goes
2 with wetter in these simulations, yet the paleoclimatic
3 evidence and the model evidence suggests that at 80 kbp,
4 cooler and wetter went together. So the system clearly
5 doesn't act in a simple way, and the reasons for that are
6 quite complicated, but they're basically associated with the
7 type of forcing that is imposed.

8 Let me just add one little point here, and that is 9 that if the world were to warm, say, by 5 degree celsius due 10 to increasing carbon dioxide and other greenhouse gases over 11 a period of hundreds of years maybe, then these changes would 12 go up to about 25 per cent in the mean, or maybe up to plus 13 50 per cent at the extreme.

What about future climate prediction? Well, that What about future climate prediction. I will just remind you of what the needs are, and then I can use this as focus for my summary points that I'm going to get to next.

Firstly, with this particular problem, the Pariables that we need are on a daily time scale. So there's a critical issue here of whether or not a General Circulation Model can produce credible daily information. And the answer to that is if we want to just take the data straight out of the model, the answer is no. We also would like to have daily temperature and cloudiness information and maybe other

variables on a daily basis because it's this day to day
 variability that determines the infiltration rate.

3 The spatial scale that we require is very small. 4 It's down to less than a kilometer spatial scale. The 5 spatial scale of the global models is hundreds of kilometers, 6 and even if we embed a high resolution model, we can only get 7 down to a spatial scale of maybe 20 kilometers at best. So 8 there's a mis-match between the needs of the hydrologic 9 community in the Yucca Mountain area and the credible output 10 of General Circulation Models.

11 Now, let me just summarize the main points here. 12 The first point is that General Circulation Models, although 13 they have weaknesses, they have strengths as well, and their 14 main strength is that they are the only credible tool for 15 estimating future climate. There is no other way to do this. 16 We can't just take time series and extrapolate them to the 17 future, or anything like that. We have to use physically 18 based General Circulation Climate Models.

These models have weaknesses, but they also are quite good, given the complexity of the problem of simulating present day climate and past variations and paleoclimatic conditions as well.

The primary defect of these models or deficiency is 24 the coarse spatial resolution. We can get over that partly

1 by embedding a high resolution model in the coarse resolution 2 model, but that still doesn't get us down to the requirement 3 of resolution of one to ten kilometers for this particular 4 problem area.

5 My judgment is that these models, although one 6 would not want to place any faith in them quantitatively, 7 that one can at least get qualitatively reliable information. In doing any future projection, we must consider how the 8 9 natural processes and the human factors combine together. We 10 can't ignore the human factors. Even though we may solve the 11 problem of anthropogenic climate change on a time scale of a 12 few centuries, we're still going to be left with high levels 13 of carbon dioxide in the atmosphere. We still have the 14 possibility of melting the Greenland ice sheet, the 15 possibility of changing vegetation patterns and so on. Those 16 changes might last for thousands of years, so we can't ignore 17 those changes.

Individual models show quite different results Individual models show quite different results sometimes, and to comprehensively understand the range of possibilities in the future, we should consider results not just of one model, but of a suite of models, and it's possible to do that without necessarily performing the required experiments with a lot of models. We can inter-24 compare models for standard cases where the comparisons or

1 calculations have already been done.

Because of the uncertainties, and this word has been used already, we should consider these model simulations as scenarios, but they are scenarios that span, or can if carefully chosen, span the range of future possibilities.

6 And my last few points are more directed toward 7 this specific problem area, and firstly, as I said before, on 8 the spatial scales that are essential for this study, I don't 9 think we can believe the precipitation results of General 10 Circulation models. We have to be very careful in 11 interpreting those results. That's not to say that they are 12 useless. In fact, they do give us a lot of useful 13 information, but that information has to be combined with 14 other types of information in order to reduce the coarse 15 resolution information down to relevant spatial scales.

And the two approaches for doing that, and this is hyperbolic techniques and the two approaches available are to use statistical techniques, or to use stochastic simulation techniques. We've already been given a good example of the use of stochastic simulation techniques. And so my bottom line is that what is required a careful interlinked study that involves not only General Circulation Models, but also statistical downscaling methods and stochastic simulation methods. These three form the

1 three sides of a equilateral triangle, and I don't think that 2 we can just take one side; the whole thing will fall apart.

3 Thanks very much.

4 DR. DOMENICO: Thank you, Tom. Any questions from Board 5 members? Staff?

6 MR. WIGLEY: Either nobody understood me, or it was a 7 perfect presentation.

8 DR. REITER: Leon Reiter from Staff. Tom, one thing 9 that we've been wrestling with is how do you use the--and 10 maybe we'll talk about this later--how do you use the 11 paleoclimate data, the stuff that, say, Rick Forester or Ike 12 has been talking about, how do we use that together with the 13 modeling? What role does the modeling play?

MR. WIGLEY: Well, I think the primary role for the paleoclimatic data is--well, there are two roles. One is validating the General Circulation Models, and that's the rout of thing that Starley has already done. He has shown that his model is able to simulate qualitatively the correct of changes in precipitation and temperature on that paleoclimatological 10,000 year time scale. So that's a very important aspect of the use of paleoclimatic data.

The other aspect is to use it directly to bracket The range of possibilities in developing a credible set of tuture climate change scenarios. 1 DR. PALCIAUSKAS: I'd like to ask a question concerning 2 the logic of using an average of the multitude of models, 3 because certain models could be imperfectly crafted, then 4 what's the purpose of including them in an average?

5 MR. WIGLEY: I can talk for hours on this particular 6 topic, but it just happens, as one of my diagrams showed, 7 that when a suite of models is averaged together, then the 8 average validates better than any individual model. In other 9 words, the average of a number of models gives better 10 agreement with the observed status quo than any individual 11 model.

And the reason for that is because although the And the reason for that is because although the and other equations in their large scale equations for motion and other equations, they all consider the small scale details in different ways, and those so-called for parameterizations are not necessarily internally consistent.

17 They've got to be based on sound physical 18 principles, but they are not internally consistent in the 19 sense that when you look at the output of a model and see 20 how, say, temperature and precipitation relate to each other, 21 globally or regionally, then those relationships between 22 different variables for any individual model will not agree 23 with the observed relationships. And that's actually noise, 24 and when you average the models together, you get rid of some

of that noise, and with the present state of the modeling
 art, you actually improve things by averaging it.

3 Even when you include really manifestly poor models 4 in the averaging process, you can still improve things a 5 little bit. I think we've just gotten to the point now where 6 the very best models with the highest spatial resolution, 7 down to a couple of degrees by a couple of degrees, are as 8 good as, and in some areas, better than the average. So 9 we've just gotten to that point where the best models can do 10 away with the need for averaging things together to get rid 11 of the noise.

DR. CANTLON: You used the Greenland ice sheet as one of the types of lags in picking up the anthropogenic set of the effects. But there are other major ones. Could you sort of touch on what some of the other ones are?

MR. WIGLEY: Well, the time scale for significant
r changes in the Greenland ice sheet is thousands of years.
DR. CANTLON: Ocean impacts; again, a big lag?
MR. WIGLEY: Well, the types of experiment that Starley
and other models can perform in this case are not time
dependent experiments, as Starley will probably explain. So
we only can consider time slices at different points into the
future. So ocean lag effects don't really come into this.
DR. DOMENICO: Thanks, Tom.

1 The next presentation is going to be by Starley 2 Thompson, and it's going to be on future climate modeling. 3 MR. THOMPSON: Well, we at NCAR have been working on 4 this problem of future climate modeling for the Yucca 5 Mountain project for quite a while now, and it's only been in 6 the last year or so that we've gotten to the point of 7 actually doing so-called future climate analyses. And I'll 8 report on our first one at the end of my presentation.

9 The objective of the future climate modeling is 10 relatively simply stated, and that is we want to provide 11 estimates of the future climate conditions so that it can be 12 useful in estimating the effects on future hydrologic 13 conditions. So, in effect, we're providing estimates of 14 future boundary conditions either for qualitative models or 15 quantitative models or very detailed quantitative models, 16 hydrological models.

Our strategy for doing that is three-fold, and has been in place for several years now. First, we wanted to 9 establish that we could in fact simulate climates with 20 reasonable fidelity, develop a climate modeling system that 21 can be used for the project.

We also wanted to be able to identify future We also wanted to be able to identify future Use climate scenarios that might occur in the next 10,000 to 24 100,000 years, provide boundary conditions for our so-called

1 future climate simulations. This second bullet was actually 2 done several years ago, and has been in a continuous state of 3 refinement ever since.

And, lastly, the meat of the problem, we actually wanted to perform those climate simulations for the future and then provide our results for both hydrological modeling and performance assessment use.

8 The modeling strategy is worth taking a little bit 9 of time on. Fortunately, Tom went before me and gave you an 10 introduction to climate modeling and general circulation 11 modeling.

As he noted, it's not feasible to perform long continuous climate simulations, and we do what we refer to as sample and of stead state climates. The computational limitations of our super computers and of our models and of our understanding of what drives climate on 100,000 year time rades means that we can't set up the model and just run it forward in time for 100,000 years. It's just simply not peasible.

Instead, what we do is perform a finite set of short simulations that are designed to represent equilibrium climate states, and those states are an equilibrium with boundary conditions that we specify. For example, if we want know what a last glacial maximum climate looks like for

1 the Yucca Mountain site, for Nevada in general in the 2 simulation, we set up the model with boundary conditions 3 suitable for last glacial maximum, put in an ice sheet, 4 change the solar orbital variations, that sort of thing. 5 So as I said, we do it by prescribing boundary

6 conditions that are slowly varying, and then we do the 7 modeling based on that. So it's not a complete model of the 8 full earth system, which is still some decades away, I would 9 think.

10 Tom showed you a version of this. What we're using 11 is a nested modeling system, because global climate models, 12 to be economical to run, have to run with a fairly coarse 13 grid, and we embed a high resolution general circulation 14 model. It's effectively the same kind of model, only run 15 with a finer resolution.

Effectively, inside the output of the global model, the two models do not run simultaneously, they run in a two stage sequential process. We run the global model first, save-away output, then run the regional model. This actual domain highlighted here is an older domain we were using. Tom actually had a picture showing the current domain. It's about half that size, centered just over the Western United States.

24 The models that we're using for this project were

1 both developed at NCAR. The global model is an outgrowth of 2 the so-called community climate model operation at NCAR, 3 which is a global general circulation climate modeling 4 activity. The particular version we're using is Version 2 of 5 GENESIS, which is our latest developed version. It has about 6 a 400 kilometer grid spacing globally. It provides boundary 7 conditions to the regional model.

8 The regional model is a Version 2 of the regional 9 model developed over the last decade by Filippo Giorgi and 10 his crew at NCAR apart from the Yucca Mountain project. It 11 also has a long lineage and we're running it at a 50 12 kilometer grid spacing. It's still quite coarse compared to 13 topographic belief at the site.

Here is a picture of the actual regional model domain and the topography contoured that the regional model sees. The contour interval, I believe, is about 200 meters. Preven with that small a domain and 50 kilometer resolution, the topography of course is highly smooth. A 50 kilometer resolution was chosen experimentally after several tests as being the minimum resolution needed in order to resolve the rain shadow effect, the major rain shadow effect of the Sierra Nevada Mountain Range, which is a single large factor determining the relative validity of that portion of Nevada, the Great Basin area.

1 We could go to higher resolution. The model is 2 capable, the actual continuous equations are capable of going 3 down to about a 10 kilometer resolution, but it would be 4 relatively unaffordable to run it at that resolution.

5 So why are we doing all this? Tom has already told 6 you that succinctly climate modeling gives us the potential 7 to identify and quantify unprecedented, non-analog climate 8 behavior. Non-analog is essentially a buzz phrase referring 9 to things that have not necessarily happened in the past, or 10 may have happened in the past, but we just don't have any 11 information about. The obvious one is anthropogenic climate 12 change.

13 The limitations? Again, very succinctly, the 14 models are imperfect, as Tom showed you, either because of 15 numerical approximations or we've left things out or we put 16 things in incorrectly. In terms of the Yucca Mountain 17 project, since we have to reduce our effort down to a limited 18 number of scenarios of future climate change, effectively 19 that becomes a limited number of boundary condition 20 scenarios, we may neglect an important one. We may miss it. 21 This is largely dependent on expert judgment, paleoclimatic 22 evidence, theoretical evidence.

And, lastly, even if we had a perfect model and knew precisely which scenarios we wanted to run, the models,

1 by virtue of being highly demanding computationally, we have 2 finite runs. There's simple statistical sampling error. 3 Because they're not able to run the models long enough, you 4 may miss some significant climatic event that might only 5 occur once every 50 years or every ten years, depending on 6 how long you've run the model.

7 The models have gone through fairly extensive 8 testing. As I said, they both have long histories to them, 9 different model versions. The global model goes back in 10 terms of its antecedents for many years. The same thing is 11 true of the regional model.

A lot of our work at NCAR takes place outside of 13 the boundaries of the Yucca Mountain effort, but the 14 expertise that has developed has been brought into play into 15 this effort as well.

16 The regional model and the global model, for that 17 matter, have been tested specifically for the Yucca Mountain 18 project, however, to see if they work together well in 19 coupled mode, and also in terms of looking at present day 20 climate around the Yucca Mountain site as simulated by the 21 regional model and climate as simulated over 21,000 years 22 ago, or the last glacial maximum around the Yucca Mountain 23 site. Those two efforts, those two analyses were done in the 24 last few years as precursors, sort of the validation phase of

1 our modeling effort.

2 This figure here just shows an example of enhanced 3 topography. It's augmented. This looks strange here. One 4 of the things we have in this model is the ability to go in 5 and change the topography around. Since we're smoothing the 6 topography anyway because it goes to a 50 kilometer grid, we 7 ask the question, well, what happens if we modify the 8 topography to really make it simulate all the peaks of the 9 mountain ranges instead of the average. That's the sort of 10 thing that you can play around with to see what the 11 sensitivity of the model is. It turns out in that case it 12 was not a good thing to do, so we went back to the regular 13 topography.

We have begun comparing the results, the model We have begun comparing the results, the model Is results, to observations, temperature, precipitation, Meteorological observations around the site. Nothing nearly ras extensive as, for example, Alan Flint does, but just to site us an indication of how well the model is doing.

19 The picture here shows boxes of various sizes that 20 we chose for averaging site data. The little dots are 21 weather stations. That's not all of the rain gauges that are 22 there, obviously, but those are the ones that are available 23 as regular weather stations. And we've averaged up over 24 different size boxes and compared the averages of the model

1 to the averages of the data, and it turns out it doesn't make 2 too much difference which averaging size you average over. 3 Everything I'm going to show you in the line plots to follow 4 are averaged over the larger box to get rid of some 5 statistical noise.

6 In our early efforts, which have been the efforts 7 over the last two or three years, they were largely just 8 testing efforts, which means that we were running the 9 regional model for sort of the minimum amount of time 10 necessary to get the answers that we were looking for, which 11 turned out to be two year integrations. This is two years of 12 monthly average precipitation from the regional model for two 13 specific years, 1989 and 1992. This is just running the 14 regional model, not the global model.

We used observed boundary conditions for those two We used observed boundary conditions for those two We are ran the regional model, and the reason we chose those two years is because they had very different observed precipitations. 1992 was an El Nino year, which as you know from yesterday's discussions, makes it a lot wetter at the Site. So here's the two years as simulated by the model, and sure enough, the regional model does in fact show 1992 in the wintertime, late wintertime, to be quite a bit wetter. The mean is just the average of those two years.

24 So how does that compare to reality? Here's 1992,

1 the wet year, compared to the observations averaged within 2 150 kilometers of the site. So this is an average involving 3 on the order of, say, 36 regional model grid cells and all 4 the stations within that box for that time. As you can see, 5 there's a very good correlation between the regional model's 6 precipitation and the observed average precipitation, and 7 that was very heartening because it meant that the regional 8 model at the very least, if it's given good boundary 9 conditions, will in fact capture those sorts of anomalous wet 10 years in that region.

Then they went on to test the full up modeling 11 12 system, full up meaning both the combined global model and 13 regional model, and the paleoclimate test case. We chose 14 21,000 years ago, is roughly the time of the last glacial 15 maximum, ran the global model with prescribed ice sheets, 16 CO2, insolation correct for 21,000 years ago, and prescribed 17 C surface temperatures from the climate C surface temperature 18 data set, ran the global model, took the output from the 19 global model, put it into the regional model, ran the 20 regional model for two years, and here's the results of the 21 regional model for that time. Again, it's just a two year 22 average, but this is undoubtedly statistically significant. 23 The model averages anywhere from a couple of 24 degrees colder to up to five to six degree colder in the

1 summer, again averaged over that box around the Yucca

2 Mountain site, and this compares favorable, at least

3 qualitatively, to what Rick Forester was saying this morning, 4 namely colder, wetter. Here's the colder. Now I'll show you 5 a wetter.

6 The same thing for precipitation. Again, only two 7 years, so it's problematic how statistically significant it 8 is, although I think the winter is significant. Since this 9 model doesn't have El Ninos, it's fairly reproducible from 10 one year to the next. Quite a bit wetter in the cool season; 11 not much change in the warm season. This is about a factor 12 of 75 percent increase in precipitation and five to six 13 degrees colder in the summertime. So qualitatively, quite 14 promising that the model is in fact capable of reproducing a 15 known large climate change.

16 So we concluded from the testing phase the 17 following. They were in fact able to adequately simulate the 18 wet years for the YMP site region. This is given the 19 provision that we're given reasonable boundary conditions. 20 So it's really a test of the global model now, providing the 21 right interannual climate variability. The kinds of global 22 models that we run, since they don't have coupled dynamical 23 ocean models and are not terribly high resolution, do not 24 produce El Ninos. So the fact that we don't produce El Ninos

1 has to be sort of added in to anything that we produce as an 2 overlay of extra variability.

3 We already know what El Ninos do pretty much. What 4 we're trying to do is look at the big background type climate 5 changes to which you might add El Nino after the fact.

6 We correctly simulated qualitatively the climate of 7 the YMP site region as being colder and wetter for 21,000 8 years ago. And we figured we were ready to take on the task 9 of a future climate analyses.

10 As I mentioned earlier, the selection of future 11 climate scenarios is really one of expert judgment. We have 12 to reduce the future climate scenarios or future climate 13 boundary condition sets to a finite set in order to be 14 manageable. We call those the future climate scenarios. So 15 this was actually first done on the order of six or seven 16 years ago, and we've effectively been following the set that 17 we created along with Tom Crowley when he was still working 18 in the project, since then with some minor modifications.

You look at paleoclimate, what present climate You look at paleoclimate, what present climate of does, for example El Ninos, theoretical arguments about the future, projections for anthropogenic effects, and you come up with a set of scenarios, which I'll show you in the next overhead.

24 The selections try to anticipate conditions

1 yielding greater effective moisture in the Yucca Mountain 2 region. So we say we're biased. We want to make sure that 3 we get things in there that are likely to produce wetter 4 conditions, and the choice and the schedule, the actual 5 schedule in which we produced the analyses is highly subject 6 to the limitations of our computer resources.

7 We started the first of the future climate 8 scenarios in this year. For all the future climate 9 scenarios, you need a control case to compare to, so that's 10 one of the cases we've been working on. And the first one we 11 wanted to do was a two time CO2 case, because we preferred to 12 do the non-analog cases, the ones for which there is no 13 paleoclimatic evidence, first because those, in my opinion, 14 are the highest priority cases for the modeling.

15 The next fiscal year I think we'll be able to do 16 two out of the following: either a very large anthropogenic 17 greenhouse case, and that case might be the kind of case that 18 would eliminate the Greenland ice sheet, for example, go back 19 to the two time CO2, but ask the question what would happen 20 if you entered a permanent El Nino state with that climate, 21 or perhaps go back to 21,000 years ago and do a longer 22 integration and do a more detailed comparison with the 23 results of the paleo people to see to get better validation 24 on the model. We should have capability of doing two out of

1 those three, and that's to be decided.

2 Other potential scenarios on the list, and these 3 have been effectively on the list, as I've said, for five or 4 six years, an intermediate glacial case. As Rick Forester I 5 believe noted this morning, or was it Ike, anyway one of the 6 two noted this morning that as paleoclimate observational 7 evidence moves along rapidly, it's, for example, not 8 necessarily clear that there was a mass of fully grown ice 9 sheets up until maybe 40,000 years ago. So an intermediate 10 glacial case may be quite relevant to something that might 11 happen, say, in the next 10,000 to 20,000 years.

On the other hand, as another unprecedented case, at least as far as we know, we could develop the ice sheets even larger and ask what would happen in that case. And also swith increasing atmospheric CO2 and global warming, there is some evidence from modeling, coupled ocean modeling in the North Atlantic deep water that circulation might collapse, which we can mimic, even though we don't want dynamical ocean models, we can mimic this by modifying the C surface temperatures in our model and asking the what if question on that.

We've just gotten preliminary results from the two time CO2 future climate analysis, so this really represents the first future climate analysis result that we've produced

1 and presented anywhere for the Yucca Mountain project. This 2 shows the change in winter precipitation between the two time 3 CO2 case and the present day, showing a large--this is a four 4 year average showing a large and coherent pattern of increase 5 over the central and southern West Coast of the United States 6 and, in fact, it results in an increase in the Yucca Mountain 7 site as well.

8 Let me just show you the temperature curve. This 9 is using the fully coupled GENESIS regional modeling system. 10 The temperature increases on the order of two to three 11 degrees C pretty much uniformly throughout the year. This 12 is, again, averaged over that box around the Yucca Mountain 13 site. And from what Tom showed, I think this is consistent 14 with the average of the eleven models.

15 The sensitivity of the GENESIS model to a CO2 16 doubling is two and a half degree Celsius, which is right in 17 the middle of the swarm of model estimates, and two and a 18 half degree is the generally accepted sort of centroid 19 number, best estimate for the present day, and GENESIS fits 20 right on that.

In terms of precipitation change, again averaged within the region of the site for double CO2, it's again very consistent with the average of the eleven models that Tom and GENESIS, at least this version of GENESIS, is not

1 one of the eleven models that Tom had in his little table. 2 An increase in the winter months, and a slight decrease in 3 the summer months. Summer may not be statistically 4 significant since this is only a four year average. The 5 winter, I'll have to go in and do the statistics on this for 6 the report that I'm working on this month to see if it is, 7 but as Tom pointed out, we have a model that shows you make 8 it colder, 21,000 years ago, you make it wetter. Increase 9 the CO2 to make it warmer, and you make it wetter. So cold 10 and warm don't necessarily equate because the real world is a 11 complicated dynamical system.

Lastly, where are we going with all this, which is really the key element here? Our output from these future climate analyses, of which this double CO2 one is the first sexample, will be going to two different areas. We'll be going to Alan Flint, which is sort of through the rhydrological modeling area, and we'll be providing him output from the regional model of daily values of temperature, precipitation and cloud cover in hopes that he will be able to use those data to actually drive his infiltration models. He should be able to use, say, four years output from our modeling, run it through his statistical process to generate, say, a 100 year statistically generated time series that are consistent with our model, and then use those for his

1 infiltration calculations.

2 He'll also provide data to performance assessment 3 directly. For those data, they'll be more time averaged, and 4 statistical extreme values measures the variability will also 5 be provided.

6 So I think we're moving right along. Even though 7 it's been a long road, I think we've made good steady 8 progress and are now in a position where we can produce 9 something quite beneficial.

10 DR. DOMENICO: Thank you. I have a question first.

I I saw I think two regional models, one of which is Western United States, and the other is part of Nevada and Southern California. Do you use the Western United States to 4 establish the boundary conditions for that smaller region? MR. THOMPSON: No. We only have one step in nesting. MR. THOMPSON: No. We only have one step in nesting. Okay, I'm just trying to get what you were referring to. DR. DOMENICO: I did see a small region, it was Yucca Mountain, Nevada, and I've seen that. You keep referring to 19 that as your regional model.

20 MR. THOMPSON: This is the actual regional domain of the 21 model.

22 DR. DOMENICO: The Western United States?

MR. THOMPSON: That's the actual computational domain.24 This is just a zoomed-in view. It has nothing to do with the

1 computational domain of the model. This is just a zoomed-in 2 view on Southern Nevada and California illustrating where we 3 chose averaging boxes.

4 DR. DOMENICO: Okay. So that is also 50 kilometer 5 spacing, the same as the other one, grid spacing?

6 MR. THOMPSON: Yes. I mean, the 50 kilometer grid 7 spacing is the basic resolution of the model, supposedly 8 fundamental quanta that we get to average over when we 9 average the model results.

10 DR. DOMENICO: In other words, the detail that we're 11 seeing at Yucca Mountain is coming off of the detail that we 12 see in all of Western United States?

MR. THOMPSON: That's right. Right, we end up MR. THOMPSON: That's right. Right, we end up 14 simulating all of the Western United States and out into the 15 Pacific just in order to get the detail around Yucca 16 Mountain. For that matter, we end up simulating the whole 17 globe.

18 DR. DOMENICO: Just to get the detail. Was there 19 another Board question? Don, did you have something? John 20 Cantlon, Board?

21 DR. CANTLON: Yes, on one of your overheads, you 22 indicated that one of the areas that would be of interest 23 would be the effectiveness of the moisture, moisture 24 effectiveness. 1 MR. THOMPSON: Right.

2 DR. CANTLON: You do have temperature data. Have you 3 done anything in combining the two to get some sort of a 4 moisture index effectiveness? For instance, if you could get 5 a better prediction of how much of it came as snow?

6 MR. THOMPSON: The model actually does separate or make 7 a distinction between snow and rain. And, in fact, as part 8 of the output for this two time CO2 case, we will include 9 information on snow cover, snow fraction, as well. The 10 regional model also has the ability to look at soil moisture, 11 infiltration, runoff, but at a very coarse scale. Even 12 though the actual physical model, the land surface model, is 13 inside the regional model, it's a relatively good model, a 14 state of the art model called BATS.

The coarse spatial scale pretty much makes that useless for anything other than qualitative looking at it. For the 21,000 year ago paleoclimate simulation that we did, we actually did look at runoff and soil moisture that we produced to make certain that those variables which are effectively more relevant to effective moisture were still consistent with the paleoclimate evidence. And, in fact, quantity such as soil moisture actually looks better than the precipitation because with it being colder and the

DR. DOMENICO: I have one more. Would the 50 kilometer spacing, wouldn't all of Alan's measurement points more or less have to be lumped into one or two points? I'm sure that he has more than one precipitation station. He may have several precipitation stations within a 50 mile radius. How do you handle that?

7 MR. THOMPSON: Is Alan still here?

8 DR. DOMENICO: Well, if he did have, how would you do 9 that?

MR. THOMPSON: Well, he has a lot of points close in, 11 and he has far-flung points as well.

12 DR. DOMENICO: Yes, but you have a lumped system over 13 there with one point.

MR. THOMPSON: That's right. We have what effectively 15 is trying to represent the average over a 50 kilometer grid 16 cell, and I think I'll let him take it from there.

17 DR. DOMENICO: I would just suspect there's a lot of 18 variation in his data within a few models.

19 MR. THOMPSON: Oh, absolutely.

20 DR. DOMENICO: And then you're going to be using 21 basically the average of this to represent that?

22 MR. THOMPSON: That's right. I mean, what we're trying 23 to do is just get the right average over a 50 year or 100 or 24 300 kilometer averages on the assumption that the properties

1 of that average can then be matched down to more detailed 2 spatial properties using some kind of downscaling. It can 3 either be very simple or be very elaborate, but there needs 4 to be another downscaling step past the regional modeling 5 step. This is what Tom noted, you know, there's a triangle 6 and we've got effectively two sides of it. There's one more 7 step that needs to be done, and it can be done simply or more 8 complicatedly, but it will have to be done in order to 9 represent precipitation on the Yucca Mountain site.

MR. HANAUER: I'm Steve Hanauer with DOE. If you could please, sir, find the view graph that had the conclusions from the testing phase? You showed us a very small number of simulations, and my question was these conclusions, that it adequately simulates the climate variability and correctly simulates the glacial climate. Could you characterize for us khat the basis is? Is it one, ten or a hundred such simulations, or what is behind those conclusions?

MR. THOMPSON: It's not one and it's not ten. It's more 19 like three or four. The number of simulations that we've 20 done for the present-day climate, if you don't count the long 21 history of the model development, has been on the order of 22 three, of which I only showed you the latest one. No 23 regional model that I know of has ever been run for more than 24 eight to ten years because of the tremendous computational

1 requirements.

2 So given that, and I think in fact the eight year 3 run was done at NCAR, given that, it's hard to say the model 4 does a perfect job, or even an excellent job or a great job 5 at simulating interannual variability because we haven't done 6 a lot of cases. But we have very limited computational 7 resources.

8 We've had to try to be smart in the choice of our 9 years that we do, so we deliberately picked, for example, an 10 El Nino year and a dry year and compare the two and show that 11 the model predicts wet, you know, extra precipitation in the 12 El Nino year, and less precipitation in the dry year. And we 13 hope that will apply to every time there's an El Nino 14 condition and every time there's a dry condition. But, no, 15 we haven't done any exhaustive testing to see if that was 16 just a fluke of the regional model or not.

In terms of the paleoclimate test case, again, it 18 was only a two year integration. As I said, we try to keep 19 those integration links down to the minimum necessary to get 20 the qualitative conclusion, and the qualitative conclusion is 21 after two years, it became pretty obvious the model was 22 colder and wetter and we didn't need to run it out any 23 further. It's unlikely that it's going to change.

And so that was the minimum set that we needed to

1 do, that we set out to do as part of the original study plan 2 to verify the model, one, can produce interannual variability 3 when driven with the right boundary conditions and has the 4 right quantitative result to that and, two, can reproduce a 5 paleoclimate vastly different than today, which was also 6 wetter at the Yucca Mountain site.

7 DR. DOMENICO: Thank you very much, Starley. I think 8 we'd best move on here.

9 The next presentation is by Michael Wilson of 10 Sandia on TSPA insights into the impacts of climate and 11 Chlorine-36.

MR. WILSON: All right, I'm supposed to talk about the things that you've been hearing about over the last day from a TSPA perspective, and in case anyone here doesn't know, TSPA stands for Total System Performance Assessment and it refers to studies that pull together all the components of the disposal system, the waste form, the waste container, the natural system to make calculations of quantities related to the safety, the waste isolation, things like calculations of doses to individuals and also for comparison with required to an an all the components.

To start with, I want to talk a little bit about 24 how performance assessment fits in with the things you've

1 been hearing about, the site characterization program, and 2 this part of the site characterization program in particular. 3 First of all, I think I should emphasize that the studies 4 that you've been hearing about over the last day based on 5 TSPA calculations to date are among the ones that we consider 6 to be key to predicting repository performance.

7 First of all, in a number of TSPA studies, 8 repository performance has consistently been shown to be very 9 sensitive to the percolation flux at the repository, which is 10 closely tied to infiltration. The distinction is that 11 percolation is the flux at depth; infiltration is the flux 12 right at the surface, at the top. If you have vertical flow, 13 they're the same. If you have non-vertical flow, then it 14 redistributes itself.

Secondly, repository performance is very sensitive Secondly, repository performance is very sensitive Secondly, repository performance is very sensitive to seepage of water into the emplacement drifts, and in particular to contact of waste containers with seeping water. And that is, of course, very closely tied to the percolation plux, first of all, but it's also very closely dependent on the division of the flow, the spatial heterogeneity of the the flow, and in particular how it's divided among matrix and fracture flow.

The idea is that matrix flow, there's a good chance 24 because of capillary force, we'll be able to go around the

1 emplacement drifts and not flow into them. Whereas, fracture
2 flow has much less capillary force, and so is not as likely
3 to be deflected by the drifts. And so if you have fracture
4 flow, it can probably flow freely into the drifts.

5 And then lastly, repository performance is 6 sensitive to climate changes. That's been seen in studies 7 that have been done.

8 In PA, we have talked a lot to various PIs and site 9 characterization, and we have provided feedback on what parts 10 of the studies we think are of most value to us in what we 11 need for performance assessment.

We're currently in the middle of some studies to We're currently in the middle of some studies to we're currently in the middle of some studies to we're currently of new information from the ESF with affect our past TSPA predictions. Probably most people hearing, though, that the last big TSPA study was called TSPA hearing, though, that the last big TSPA study was called TSPA hearing, though, that the last year, and the next big one is people to be completed to be completed in successful to be completed in 19 1998. So there's a big gap between the big studies and of course in the meantime, we need to be evaluating current information to help us in our development work.

22 Something that's important to say I think is that 23 some of the data that you have been presented are things that 24 we use directly in performance assessment, like infiltration

values. The full-blown TSPA model, including all the
 components of the system, has an input for infiltration which
 we can take directly from Alan Flint, possibly with some
 spatial averaging or something like that, and use it
 directly.

6 Some of the data, especially the various kinds of 7 isotopic data, are things that don't go directly into a TSPA 8 calculation, but they are background, so to speak. They help 9 us in determining which models are appropriate to use and 10 what appropriate ranges of parameters for some of the models 11 might be, the kind of thing that Andy Wolfsberg talked about 12 this morning.

In some of these cases, there may be multiple steps 14 of modeling and interpretation between the data and our use 15 of it in performance assessment, and it's important to 16 realize that. And the other thing that I think I should 17 mention is that the site characterization organizations have 18 the responsibility for doing detailed process level modeling, 19 and because of the greater scope of our TSPA calculations, 20 including so many different kinds of models, we typically use 21 simpler or abstracted models for the individual components of 22 the system.

And, lastly, I wanted to mention that it's currently planned that starting at the beginning of next

1 fiscal year, we are going to be forming working groups 2 composed of people from both performance assessment and the 3 site characterization groups to define exactly what the 4 models we should use for TSPA-VA are and what the data sets 5 we should use are. So we should be working very closely on 6 that, and I think that will be of a big benefit to the final 7 product of TSPA-VA.

8 For the rest of the presentation, I have two parts, 9 first on isotope and ESF kinds of things, and second on 10 climate kinds of things. And when I talk about the 11 importance, as it says there, what I mean is importance to 12 repository performance.

13 Starting out with isotopic studies and ESF and that 14 kind of thing, first of all, as has been noted more than once 15 in the last day, the various kinds of isotopic data that we 16 have been getting from the ESF and from boreholes are 17 indicative of the existence of flow in isolated fast paths. 18 I don't think we have enough information right now to tell 19 the fraction, how much of the flow is in fast paths and how 20 much of it is in slower flow, but we know that there is some 21 of both.

High levels of Chlorine-36, and I could mention as Well tritium, have been found in a number of places, and these indicate the places where there was presumably water

1 flowing in fractures sometime in the last 40 years, and 2 that's places where there might have been seepage into the 3 tunnel at the time it was flowing.

At the present, we don't see any such seeps. We see a dry ESF tunnel. We don't know really how much that's being obscured by ventilation at the present. I think it's going to be very interesting to see the kinds of experiments that were talked about yesterday by Alan Flint and Dennis Williams in which they seal off part of the tunnel for a while or put up plastic sheets or something so that we can negate the effects of ventilation for a while. All these various observations are important because they give us constraints on the models that we use in performance assessment.

15 I'm going to talk a little bit about models now, 16 flow models. First of all, a model that has been used a lot 17 in the past for performance assessments we call the 18 composite-porosity or equivalent-continuum flow model, and 19 the basis of that model is that you have a very good 20 communication in the flow between fractures and matrix, or 21 strong coupling, if you will. And because of that strong 22 coupling, the effect is to slow down flow in fractures 23 basically, and because of that, it's very hard to see the 24 kind of fast movement that's observed. To get a tracer from

1 the surface to the ESF in 40 years in a composite-porosity 2 type model is difficult. I won't say it's impossible to 3 tinker with the model and input parameters to achieve that, 4 but it's not really a natural sort of thing to happen in that 5 sort of model.

6 The next step in complexity or sophistication in a 7 flow model is what's referred to as a dual-permeability 8 model, in which you have separate flows calculated for the 9 matrix and for the fractures, and you have a coupling term of 10 interaction between them. And that's the kind of model that 11 Andy Wolfsberg was talking about when he gave his results 12 this morning, and as he showed, with that kind of a model, at 13 least for some ranges of the parameters, it's possible to 14 match the kind of Chlorine-36 travel that we see.

15 The next step beyond that, or ways that you can get 16 even faster travel are to drop the steady state assumption. 17 If you allow large pulses of infiltration, it's possible to 18 move tracers somewhat faster. If you imagine the flow being 19 in rather discrete channels rather than in kind of long 20 sheets, then that reduces the interaction area between the 21 fractures and matrix, and that, once again, tends to increase 22 the travel speed, or the velocity.

And, lastly, it's possible for things like fracture 24 coatings to reduce the communication between the fractures

1 and the matrix and to enhance the flow down fractures. And 2 one thing I want to talk about later in the talk is what we 3 call the weeps model. That is an alternative conceptual 4 model that we've used in some of the past TSPAs to 5 investigate this type of behavior in which the flow is in 6 discrete fracture paths.

7 First of all, as I alluded to already, I think the 8 rapidity of transport of Chlorine-36 from the surface to the 9 ESF, and even farther down in some boreholes, not Chlorine-10 36, but tritium, favors a weeps or a dual permeability type 11 model with a weak coupling between the matrix and fractures 12 because of, whatever reason, because of time scale effects or 13 because of coatings or something along this line.

Dryness in the ESF is something that I consider a Dryness in the ESF is something that I consider a Svery favorable indication for repository performance. Either there just isn't much water flow down there at all, or there is water flow, but it's not going into the tunnels. In seither case, the water doesn't contact any waste that would happen to be in the tunnel, which is a good thing.

20 We, as I said, have been looking at variations in 21 the kind of flow model to use for performance assessment, and 22 one thing that is coming out of this is the importance that 23 I've already mentioned of seepage into tunnels, and in 24 particular the number of waste containers that are under
1 seeps is being found to be very important to performance.

2 One important question, of course, is whether the 3 dryness is going to carry over to future climates.

I want to go on now to talk in a little more detail on this second bullet with a couple of pictures. This shows results of a calculation that we did a couple years ago to get a feel for how our weeps model, as it was parameterized for TSPA 1993, what it would predict for observations in the SEF, which at that time hadn't been made yet. And I think the results look more or less like what are reasonably similar to what's observed.

Number one, it has almost 50 per cent probability Number one, it has almost 50 per cent probability in this calculation of seeing no seeps at all into the And then there's some probability of higher numbers, and I think it's important to emphasize that the parameterization of the parameter ranges in this are, for the parameterization of the parameter ranges in this are, for the parameter ranges work. As of 1993 when we made these parameter ranges, we didn't have much in the way of hard information to define these, and yet I guess I feel like we did a reasonably good job at guessing at it.

The thing to compare this with is it could be that the observation that this should be compared with is no seeps at all. That's what we see. Though, as I said, I don't know how much that's affected by ventilation. But it's also

1 possible that this should be compared to the Chlorine-36 2 observations, because the weeps model is intended to be an 3 episodic model so that a weep that only flows once every six 4 years during El Nino periods would be counted in this, so it 5 could be that you should count the seven Chlorine-36 6 observations from the ESF main drift and compare that to 7 this. In any case, that's not that important.

8 The main thing that this is for is to kind of put 9 this next graph into perspective a little bit. In that 10 calculation, the average infiltration, or the average 11 percolation flux was half a millimeter per year. Now, this 12 shows this quantity that I have claimed is important, the 13 fraction of containers that are contacted by weeps as a 14 function of the percolation flux, as it has been models in 15 some past TSPAs. This is one of the sub-models that you need 16 for TSPA calculation, an estimate of how many containers are 17 contacted by flowing water, and of course how much water is 18 in the flow as well.

19 This line here shows the results for that weeps 20 model as it was parameterized in 1993, and a half a 21 millimeter per year is right about here. So I think that 22 kind of gives a feel that somewhere around a fraction of 23 containers of ten to the minus two to ten to the minus three 24 getting wet is reasonable, given the fact of a dry ESF.

1 That's kind of what I want to point out.

2 Then compared to these other models, which are 3 really the same model but implemented slightly differently in 4 two different studies, this is based on composite-porosity 5 type model, and for that model, you can see that if you want 6 to have a dry ESF, you're going to have to have a flow 7 probably less than a hundredth of a millimeter per year, 8 which is all right, but the catch is that a composite-9 porosity model with a flux of a hundredth of a millimeter per 10 year probably has a travel time of a million years between 11 the surface and the ESF, which is not a good match with the 12 speed of transport of Chlorine-36.

And the point to this is more or less that with additional observations, we're starting to be able to for constrain our models more with real data, and I think that we could improve on the weeps model. We could make a dual permeability model to replace the composite-porosity model that would, by using the isotopic data and ESF observations, would do a much better job.

20 Next, let me go on to talk about climate. The 21 effects of climate can kind of be parcelled into two pieces; 22 the timing and the amplitude. The first one I want to talk 23 about is timing. The first point is that for a short 24 performance period, like 10,000 years, the probability of a

change to wetter climate during that short period is
 important to performance.

3 For past performance assessments, we have in all 4 cases assumed a fairly small probability of change to a wet 5 climate during the next 10,000 year period. Some of the 6 newer data discussed by Rick Forester this morning is 7 indicating that it may be fairly likely that there will be a 8 wetter climate within the next couple thousand years. That's 9 something that might make an important change.

Secondly, for a long performance period, like a 11 million years, we know that there's going to be many climate 12 cycles, so that the timing of the cycles isn't going to be 13 particularly important. What's more important in that case 14 is just the division of the fraction of the time that's in 15 wet climate conditions as opposed to dry climate conditions. 16 And Rick Forester in one of his view graphs this morning 17 said that was 70 percent.

Lastly, I wanted to point out in particular that a 19 change to wetter climate during the thermal period, by which 20 I mean, say the first couple thousand years, might be 21 especially important because the extra influx might change 22 your predictions of dryout time, relative humidity and, 23 therefore, container lifetime.

24 This is a list of different climate-induced effects

1 that can affect repository performance. Changes in the 2 unsaturated zone flux obviously are going to be important. 3 The redistribution of seeps to different locations, that is, 4 if the seeps don't always flow in one place but sometimes 5 change as the climate changes, that will affect performance. 6 The episodicity of flow, whether the weeps flow once a year 7 or once every six years or once every hundred years, that 8 affects performance.

9 Changes in the water table elevation affect 10 performance. Changes in the saturated zone flow can affect 11 it in two ways; changes in the amount of dilution and it can 12 create outflows of water from the repository at nearer 13 locations than occur now. And, lastly, changes in the 14 biosphere, for example, a wet climate condition might be more 15 conducive to people living around Yucca Mountain.

16 This is just an example. I want to make two points 17 with it. This shows three different dose curves; dose to an 18 individual as a function of time over a million year period, 19 and I don't want anybody to look at any of the numbers. It's 20 just, like I say, to make two points. One point is that 21 depending on the assumptions you make about your models and 22 about the climate effects, you can go all the way from having 23 very large climate changes, to having almost no change in the 24 doses over time. And the second point is just that the

1 typical picture that I think almost everyone has in his mind 2 that a dose rises, comes to a peak and then falls in time may 3 not be the correct picture, because we don't have a steady 4 state flow system.

5 In TSPA calculations so far, we have indeed found 6 the increase in unsaturated zone flux to be one of the 7 important parameters to performance. And in TSPA 1995, that 8 was pointed out explicitly. In that study, they didn't 9 examine the effects of changing the timing of the climate 10 change, so they didn't see the sensitivity to that. But in 11 1993, it was shown that for 10,000 year calculations, the 12 timing was important.

The weep stability, that is whether the weeps or 14 seeps stay in one place or change over time, has been found 15 to be important to performance, the idea being that you may 16 emplace a container in a dry place, but perhaps in the 17 future, it will turn into a wet place, because the flow 18 patterns change.

And then some of the effects that I listed haven't 20 really been evaluated yet. The changes in saturated zone 21 flow aren't expected to be a really big effect. I'm not 22 aware of any studies recently, but there's a ten year old 23 study by John Czarnecki of the USGS in which he estimated the 24 effects of a wetter climate on saturated zone flow, and he

1 found flow increases of a factor of two to four. So that's 2 important, but we get larger factors due to a lot of other 3 things, so it's not a big player. And biosphere, we haven't 4 done anything with, and that kind of depends on what the 5 regulations look like, I think.

A very short point; that for a composite-porosity 7 type model, the change in flux is what's most important. 8 It's almost the only thing that's important. But for a weeps 9 type model or a dual permeability model with enhanced 10 fracture flow, then the parameters that go into the locations 11 and numbers of those flowing fractures are important.

To conclude, in PA, we do not look at a single flow model. We think it's very important for us to be looking at alternative models of all of these different things, constrained as much as possible by observations, and in some cases, constraints are very weak, and so we may need to rinclude fairly disparate models. In other places where they're tightly constrained, maybe we only need to use a single model.

The new observations from the ESF and from recent boreholes as well are giving us a lot more data to constrained models than we had in the past.

The percolation flux and its spatial and temporal variation are very important to performance. And I include

1 in that spatial variation the distribution between matrix and 2 fractures.

And the number of waste containers contacted by flowing water, by seeps, I think is probably more important than the fact that it is fast flow. We focus on the fact of fast paths, but the fastness isn't so important as the number, is what I see from preliminary modeling that we've done.

9 And then, lastly, climate change is potentially 10 important. I think we have yet to model a lot of the newer 11 ideas that were presented by Rick Forester and others today. 12 DR. DOMENICO: Thanks, Mike. I have a question from 13 John Cantlon, Board.

DR. CANTLON: Michael, in your list of conclusions that 15 you put up, your last slide, you indicate that the number of 16 waste containers contacted is really very important. What is 17 your assumption about the role that the drift itself will 18 become a pathway, moving water wherever it gets in to change 19 the humidity for the whole drift?

20 MR. WILSON: We have not modeled that so far. I guess I 21 don't expect--at first it sounded like you were thinking of 22 water flowing down the drift, and I think the drainage at the 23 bottom of the drift will probably be fairly good, but you 24 could indeed, as you say, increase the humidity for a large

1 region around a seep, and that hasn't really been
2 investigated.

3 DR. CORDING: I was interested in your Page 8 on your 4 presentation on the estimated number of weeps in the main 5 tunnel. And before I get to some of the conclusion type 6 points on it, were those fractures assumed to be something 7 perpendicular to the tunnel that was flowing 100 per cent 8 over that fracture surface when they ran that calculation? 9 MR. WILSON: There are a multitude of assumptions in 10 this calculation. They are assumed to be rather discrete 11 pathways, so they're almost like point objects, and there is

13 there is just a geometrical probability calculation to 14 determine whether they contact containers or not.

12 a range of aperture sizes and a range of flow rates, and

DR. CORDING: But they could be channelized? I mean, in other words, 100 percent of the surface of the fracture is not necessarily flowing that's in contact with the tunnel? MR. WILSON: No, that's right. It may be flowing down wo centimeters. In our assumptions, the mean width was half a meter. That was just sort of a number representing a typical cooling fracture, I guess.

DR. CORDING: Okay. So a number of weeps is over, say, a half a meter length of fracture, something like that for each weep of flow?

1 MR. WILSON: Each weep typically is, yeah, like a half a 2 meter wide by 200 microns thick.

DR. CORDING: Okay. One of the things that's of 3 4 interest is, and I don't recall exactly what the number is on 5 the amount of water to be taken out in ventilation, but it's 6 orders of magnitude greater than that sort of flux. And so 7 if you had a distributed flux, you wouldn't see anything at 8 all, but that doesn't mean that you wouldn't see something if 9 you had flow in concentrated areas. You would start to see 10 things, and the question is at what levels would you start to 11 see it and expect it. And even with this tremendous amount 12 of ventilation we have, it would seem that you could say that 13 we would--you know, at what level should we be seeing flows 14 in the tunnel? What sort of flows would that represent and 15 what types of flows will we not see because evaporation takes 16 it out? And it has to do with the distribution of that flow, 17 not just an average flux. If it's all in one joint in ten 18 feet of the tunnel, you're going to see the water.

19 MR. WILSON: That's right.

20 DR. CORDING: And so even now we could have some 21 information on that in a very gross sense as to what the 22 maximum flow is. And certainly as one starts to seal off 23 some drifts and look at some of those other features, you'd 24 be able to see in more detail what happens.

1 One of the concerns on the drifts in terms of 2 measuring these flows is that the drift itself is not so much 3 a conduit, but it's a barrier to flow, at least to advected 4 type flow, or may be, and so those are some of the things I 5 think would be very interesting to see. And it seems to me 6 one could at least make an initial calculation here very 7 quickly as to what sort of flows are not occurring, because 8 it would otherwise be overwhelming to the ventilation system.

9 MR. WILSON: I think we could take the current 10 observations and constrain that model quite a bit. I don't 11 have a plot and I don't know the distribution of the flow 12 rates in those predicted weeps, but I suspect that some of 13 them were probably big enough that they would be observable. 14 If you were to take that into account, you may push this 15 whole curve up some more.

16 DR. CORDING: Sure. Whether or not that's the 17 distribution you have or not is not so much the problem. You 18 know, this approach is interesting. You can go and do some 19 checking. It would seem to me it could be very useful. 20 MR. WILSON: Right.

DR. DOMENICO: A question from Jared Cohon, Board? DR. COHON: On your overhead Number 2, you say that performance assessment analysts have provided specific feedback from priorities, et cetera. Could you give us some

1 examples of that?

2 MR. WILSON: Examples?

3 DR. COHON: Yes.

4 MR. WILSON: Well, one example is that in a memo two or 5 three years ago, we pushed fairly strongly for a lot more 6 calcite dating and isotope studies. And something I meant to 7 emphasize more strongly is that short of finding some actual 8 flowing water in Yucca Mountain, those isotope studies are 9 the only way we have of getting information on how flow is 10 distributed between matrix and fractures.

11 DR. COHON: I'm more interested in process here than I 12 am substance. How do you communicate this feedback, and is 13 it invited? Is it solicited?

MR. WILSON: A lot of times it's informal, just in talking with people. There have been a few instances where where have sent memos to the PIs or even to DOE people when requested to giving our evaluation of priorities.

18 DR. COHON: All right.

MR. WILSON: And sometimes it's in the form of reviews of reports and that kind of thing as well.

21 DR. COHON: Another related question. You made 22 reference to the working groups that will be formed for joint 23 performance assessment and site characterization working 24 groups, and you indicate they'll be formed at the beginning 1 of FY-97.

2 MR. WILSON: Yes.

3 DR. COHON: Is this going to leave enough time in order 4 to have the influence it should have on TSPA-VA?

5 MR. WILSON: I think so. I think it gives about a year 6 before the calculations need to be nearly finalized. Ιt 7 doesn't allow time if there were a lot of computer model 8 development required, but I guess I am hoping that we'll get 9 by with a lesser amount of new computer codes being written. 10 DR. CORDING: Since this is a public meeting with a 11 record, let me go on record as saying I doubt it. It just 12 seems to me that given the complexity of TSPA and the many, 13 many components it has and the amount of scientific results 14 that have to be integrated into it, that not to start the 15 process of coordination between what I'll refer to as the PIs 16 and the modelers until about a year before you really need 17 the results is very risky. And I--well, I've spoken my

18 piece.

MR. WILSON: Well, let me qualify that I don't expect that we will know everything there is to know at the end of this process, but I think we will have something much better than what we have now. That's what I think.

23 DR. LANGMUIR: Could I pick up on that?

24 DR. DOMENICO: Langmuir, question or comment?

1 DR. LANGMUIR: Well, it's a combination of them, but 2 it's picking up on what Jared was just saying.

3 About three years ago, we were all introduced to 4 the concept of TSPA as a pyramid within this program. The 5 pyramid had at the top the TSPA models which you've been 6 speaking of today. At the bottom was supposed to be folks 7 that now you're not going to talk to till '97. The pyramid 8 showed all the investigators and the detailed models at the 9 base of the pyramid, and we were led to believe that there 10 was communication going on starting back in the early 11 Nineties between the investigators within the TSPA program, 12 and the folks at the top with the larger models. It clearly 13 hasn't been going on systematically. It hasn't been going on 14 in a structured, as far as I can tell, manner.

MR. WILSON: There were discussions with the PIs, by the kay, not to name any individuals. But this is just the first time that the site characterization organizations are going k to have a large amount of funding to work intimately with us. If it's just going to be a lot closer than in the past.

20 DR. LANGMUIR: This is not a criticism of you.

21 MR. WILSON: I think Abe wants to say something.

DR. DOMENICO: We'll take the last comment from Abe VanLuik.

DR. LANGMUIR: Before he speaks up, Abe, let me add

1 something to what you're going to have to respond to.

2 Yesterday, we heard from the DOE that the waste isolation 3 strategy was created in concert with the TSPA folks, and that 4 there was an interplay across the way between TSPA and waste 5 isolation. Yes? No? I got a yes, but I was led to kind of 6 question whether there really had been coordination. Can you 7 respond to that as well as my concerns about the pyramid, 8 which is supposed to have been here for years now?

9 MR. VAN LUIK: This is Abe Van Luik from DOE. Yeah, I 10 stood up basically because I think some of the questioning of 11 Mike Wilson, who is an analyst in the PA program, has been a 12 little unfair because you're asking programmatic questions.

In the first place, if we talk about the waste I4 isolation strategy, if you read the front part, it is based I5 on TSPA-95 results and works forward from there. The PA 16 people, as well as the site people and the engineering 17 people, have all been intimately involved with this latest 18 version. That doesn't mean that every PI in each one of 19 these areas has been personally involved, but we have 20 basically gotten buy-in from a lot of people representing 21 each organization.

I think some of the other things that were mentioned a minute ago, not starting interactions until fiscal year '97, I think the right spin on that one is that

1 we have had interactions for quite some time and they've been 2 quite intense. For example, Bo has been laden with feedback 3 from us, formal feedback, on the first version of his model 4 and is responding to that feedback.

5 We have given LANL feedback on their transport 6 model. And something that Mike Wilson said a while ago, that 7 we, you know, need to develop a dual permeability capability 8 for transport, LANL has actually already provided that. So 9 we're working in concert with them and we're going to 10 basically formalize that process by what Mike Wilson was 11 talking about in the boundary, and Mike makes a good point 12 that in the past, this interplay between us and site was a 13 little bit ad hoc, and that now we are actually going to 14 factor into the schedule and into the funding the direct co-15 working on this next TSPA.

Is one year enough? As Mike points out, if we find If that there are holes in the modeling, that one year is not Renough. But that's one reason why we're already planning beyond the program plan that was just released. And instead of doing additional sensitivity studies for the TSPA-LA, we are planning a full-blown new performance assessment for the TSPA-LA to give us that extra two years to improve on the products that we have going into the TSPA-VA. So we're very well aware of the issue, and I forget what other questions

1 came up.

2 DR. LANGMUIR: Well, I'm concerned that the Board isn't 3 going to really know. You guys will disappear into the lab 4 for three years. How do we find out where you've gotten and 5 where the key issues are going? Will we hear about this sort 6 of thing? Will you be in a position to tell us as you 7 progress what the important issues are?

8 MR. VAN LUIK: I think the answer is an unequivocal yes, 9 and I don't see how we are ever able to in the past or in the 10 present keep secrets from the Board.

11 DR. DOMENICO: With that note, I think we had best move 12 on. Thanks very much, Michael.

Well, it's time for a wrap-up. Sheryl Morris is14 going to wrap things up.

MS. MORRIS: My name is Sheryl Morris. I'm one of the nembers of the hydrology team, geochemistry and climate team. Specifically, I'm the climate WBS manager.

18 What I'm going to try to do is, as alluded to, I'm 19 going to try to wrap up some of the presentations that you 20 heard both yesterday afternoon and today. To make things a 21 little simpler, this presentation probably looks familiar. 22 This is Russ Patterson's presentation. We thought it would 23 be a good foundation to go back and pick up the strategy, 24 pick up the speakers and give you the highlights. 1 So, again, we are only going to be addressing the 2 speakers that addressed the waste isolation attribute on 3 seepage.

Again, the overall objectives were to determine the variability and the magnitude of the infiltration and percolation flux, to look at those factors that might influence the infiltration and percolation, to obtain the adequate bounds on those factors, and determine some of the likely impacts on saturated flow and transport.

10 Strategy was to use the geologic structure as a 11 framework, to look at how today's hydrology relates with the 12 geological structure, and how hydrology responds to the 13 climatic conditions of today, of yesterday, and what we might 14 look for in the future.

The first speakers were Warren Day and Steve The gave you an overall presentation of their results of the faults, both the superficial and at the ESF Nevel. And then Ed Kwicklis got up and gave a quick presentation on how the hydrology responds to the geologic structure. He talked about fracture flow that occurs within and through the PTn. He gave us some of the magnitude flow numbers for fracture and matrix, as well as the deep percolation.

24 We've looked at the geologic structure, how

1 hydrology relates to that today. We can look at present day 2 conditions of infiltration and meteorology. Alan Flint did 3 that, and of course he emphasized many times that 4 infiltration is temporally and spatially variable, and he 5 talked about how you could take some atmospheric parameters 6 and turn that into infiltration that would feed the other 7 hydrology models.

8 We've looked at the present day conditions. We 9 went into the past conditions. First, Rick Forester gave us 10 some highlights of where the paleoclimatic studies are, 11 laying the foundation with the cycles, the 400 and the 12 100,000 year cycles, laying the paleoclimate records as an 13 overlay on that, covering some of the last glacial parameters 14 and talked about the annual precipitation and the temperature 15 being colder and wetter.

So how did the past hydrology react to the past Ne looked at it from two approaches; that being Rell Peterman's and one of June Fabryka-Martin. Zell came back that evidence slow percolation, slow deposition and low volume water.

June and Andy came back and next talked about some June and Andy came back and next talked about some the results from the Chlorine-36 studies that they're and that it indicates a fast pathway that as itself does not indicate the magnitude, looking at a pretty good

1 foundation as a path. The present and the past are going to 2 lay the foundation for the future.

As Starley pointed out, looking at the future 4 climate modeling, the test case of the past and the present 5 has been run through the model. He's finishing up the CO2 6 case and will be going into the next phase later on, but this 7 numerical output will be given to Alan for his use to send 8 down to the hydrology models, and a copy of it is being given 9 to TSPA for their use.

Overall from a climate perspective, we've looked at today's climate and how it affects hydrology. We've looked 2 at the past climate and how it affects hydrology. We're 3 looking at some of the cases that we have not seen in the 4 past and we're using future modeling to try to incorporate 15 what could occur that would affect repository performance.

As a group, these individuals will get together and As a group, these individuals will get together and package what will be given to TSPA later on next year, and IN TSPA then will go ahead and follow through with the impacts 19 that future climate could have on future hydrology.

20 And that's it; a real quick rundown.

DR. DOMENICO: Thank you very much. There's probably no 22 need for questions because that was a wrap-up, unless of 23 course there is some comments or questions.

24 (No response.)

1

I was right. Thank you very much.

I have an announcement to make. Before we go on break, we're of course getting set up for the round table, which will be led by Garry Brewer. We have selected some of the presenters and some people who have not presented material for that panel group. Those of you that were not selected, that doesn't mean we didn't want you; we just didn't have room. But don't leave, because we anticipate there's going to be some interchange between the people sitting around in the panel and the remaining people here in the audience, if I can call it an audience. So don't run for the airplane yet.

13 They'll need 15 minutes to put that together, I14 believe, so let's take a 15 minute break.

15 (Whereupon, a short recess was taken.)

DR. BREWER: Will everyone please reconvene, including DR. BREWER: Will everyone please reconvene, including No our panel. My name is Garry Brewer, and I have been the silent member of the Nuclear Waste Technical Review Board. I'm neither a hydrologist nor climatologist, and one can wonder why I am chairing this panel, and it's either because there is plausible denial, doesn't go well, but more to the point, it's because I got the short straw. So it's my job this afternoon to keep this thing on track.

24 We have for the past day and a half heard a lot

about climate and hydrology, trying to figure out the past
 and the present and the future. From a performance
 perspective, we're particularly interested in the present
 hydrologic regime at Yucca Mountain and how it might change
 as the climate changes. It's really been the main reason for
 having this particular theme for the meeting.

We've heard a lot. A lot of the work was nicely summarized right at the end by Sheryl Morris, and we need not go back through that. She's done the job.

The round table really has a couple of fundamental 11 questions, and as a non-hydrologist/climatologist, I kept 12 asking myself versions of these questions for the last day 13 and a half, and I'll take the prerogative of the chair to ask 14 them again in very specific terms as we go along. Is the DOE 15 program going to be successful and what do we mean by 16 success? Success in the sense of reaching an understanding 17 of climate and hydrologic regimes in the past and more 18 particularly in the future, and how these might affect the 19 repository. I think that is basically the question; what's 20 going to happen on this one place in Nevada that we're all so 21 concerned about.

More to the point, and Jerry Cohon at the end got to it in terms of process, are we heading collectively, and the particularly the PIs and DOE, heading in the right

1 direction? To begin to ask and answer that question, are we 2 going to have success in terms of the program, this 3 particular goal? Are we collecting the right data? Do the 4 models make sense. Is the interaction good, the processes 5 good, communication good? Those are all things that a Board 6 like ours has to be concerned about. That's one of the main 7 reasons we invited you all here for the last couple of days.

8 In addition to the speakers who were formally on 9 the program and people who made presentations, we knew in 10 advance that there were three or four others that we wanted 11 to involve in the round table, and as the two days 12 progressed, there were a couple of other individuals we 13 thought could make meaningful contributions to the round 14 table. I'll talk a bit more about that in a moment, the 15 round table and how we proceed.

16 Neil Coleman, a hydrologist in the Division of 17 Waste Management with the NRC, is one of these individuals 18 we've invited. Abe Van Luik, who stood up and was beginning 19 to get into the panel before we were ready for the panel, so 20 he's primed, who is in charge of performance assessment at 21 Yucca Mountain. Parvis Montazer, a consulting hydrologist in 22 Nye County, Parvis is at the end of the table, who formally 23 was with the USGS and is to a large extent, or to a 24 significant extent, responsible for some of the unsaturated

1 zone modeling at Yucca Mountain.

2 Two other individuals who we have invited to join 3 the round table are Marty Mifflin of Mifflin MAI, Mifflin 4 Associates, and Roger Morrison here of Roger Morrison and 5 Associates.

6 Now, in terms of how the round table works, I'd 7 like to start off by giving those who did not make 8 presentations a moment or two to kind of speak their piece, 9 and then we get into basically a free-for-all, and my job is 10 going to be good cop, disinterested party kind of referee. 11 And we will take conversation from people around the table 12 first, following up on anything that comes to mind, and then 13 as that either dies down or dissolves into something out of 14 control, we will then go to the audience.

We have, as always, left time at the end for anyone 16 from the public who wants to ask questions. Our basic 17 objective is to be finished with the round table about 4:40 18 or 4:45.

Now, a word to my colleagues on the Board. We will Now, a word to my colleagues on the Board. We will wrap up. The luggage is next door in the safe. We will meet for a quick businesslike meeting in Room 240, and then we will proceed directly to our retreat. There's no need to move the luggage, is the basic point.

24 Now, having gotten that monumental piece of

1 business out of the way, let me invite Neil Coleman to 2 comment on whatever comes to mind. Neil?

3 MR. COLEMAN: You said a moment. Is that the three 4 minutes I heard about?

5 DR. BREWER: Three minutes is a moment.

6 MR. COLEMAN: We should start this out with a bang then. 7 As everyone knows, it's a tough job trying to 8 understand the hydrology of Yucca Mountain, even under 9 present day conditions, and the need to consider future 10 climates adds another dimension to the problem. As of now, 11 we don't know what the period of performance will be for a 12 repository. Hopefully, the new EPA standard will be out 13 soon. If it turns out that the performance period will be 14 hundreds of thousands of years, or perhaps even a million 15 years, climate would be even more important.

At NRC, we see a key question here. What's a At NRC, we see a key question here. What's a defensible range of future climates at Yucca Mountain? R Climate change is the most important factor in estimating long-term shallow infiltration and deep percolation at the site.

21 Site characterization gives us information about 22 the present day conditions, and that's an essential starting 23 point. But the climate will certainly change over thousands 24 of years, and precipitation will increase. In the Great

Basin, past climates have been significantly wetter than now,
 and such conditions have to be considered to provide
 reasonable assurance that climate change is an integral part
 of performance assessment.

5 Now, DOE has proposed an extensive program of 6 global and regional climate modeling. From what I've heard, 7 it's a little less extensive than it used to be, but it's 8 still an important effort.

9 But attempts to use global climate models to 10 predict climate changes over tens of thousands of years will 11 almost certainly remain very controversial, leading to debate 12 over the competence of one model and data set versus another. 13 Efforts to validate global climate models will likely result 14 in continual attempts at validation and model calibration.

15 In addition, only highly unreliable speculation is 16 available to predict the manner and degree to which future 17 human activities will affect climate.

Now, I personally advocate an approach to bound the hydrologic consequences of climate change in which one would develop a reference climate scenario that is consistent with known climatic patterns during the Quaternary. As I see it, that would include conditions that would be challenging to repository performance. Using what is known about paleoclimatic trends, reasonable and realistic assumptions 1 about future climate change could be made to support 2 performance assessments.

3 Projecting the Quaternary cycles into the future 4 has several advantages. We don't need to know the exact 5 causes of glacial cycles. We don't have to praise or 6 persecute Milankovich. The cycles would speak for 7 themselves.

8 Also, as I mentioned, we can avoid the highly 9 unreliable speculation about future human activity. There 10 are, after all, limits on the availability of the fossil 11 fuels that are being consumed, producing greenhouse gases. 12 And even after a century of industrial revolution, average 13 surface temperatures, air temperatures on the earth are 14 estimated to only be about half a degree centigrade higher 15 than a century ago.

Now, this approach to climate change was presented Now, this approach to climate change was presented in our paper at the recent High Level Waste Conference. Our spaper was intended to encourage discussion on this topic at about a reference climate scenario, but as I found that participation in this year's conference was much less than in prior years, there wasn't a whole lot of discussion to be had.

23 Efforts in global climate modeling do not appear to 24 provide a lot of added value to the program through

1 predictions of the likelihood of various climate scenarios. 2 Realistically, there seems to be greater value in the 3 interpretation of paleoclimatic data specifically from the 4 Great Basin region, and these data include information from 5 paleo-discharge sites, pollen studies, paleo-lake levels, the 6 Devil's Hole work, and other sources.

7 The key work in these areas have been done by 8 Jeffrey Spalding, Ike Winograd, Jake Wade, Marty Mifflin and 9 a host of other folks.

I personally believe that there is a clear path to II a scientific consensus on this issue. I don't mean a 2 consensus on what the ranges of precipitation will be in the 13 future, but on the variability and periodisity of what we 14 might expect in future climate.

15 That concludes my statement.

16 DR. BREWER: Okay, thank you, Neil.

17 The next individual will be Abe Van Luik. Abe?
18 MR. VAN LUIK: I think I may not even take the three
19 minutes I'm allowed, which makes me a hero.

I would like to remind people that we have one repository program, but we have divided it into several divisions to make it workable and manageable. As part of that manageability division, performance assessment was created to look at total system performance and the 1 implications of work being done by others on total system.

I think what you have seen in the last two days is ample evidence that the scientific program is on the case and is looking seriously into the process level understanding of the mountain in terms of flow and transport in its evaluation of new revelations from the site.

7 I think it's important to recognize that 8 alternative conceptual models that were talked about by PA 9 and by several other people are to be considered and 10 evaluated as part of the process level model development for 11 flow and transport, and they are to be evaluated as part of 12 the site program. However, the PA program is intimately 13 involved in that exercise because the evaluation of these 14 things in terms of what they mean in terms of total system 15 performance is our responsibility.

So we are working arm in arm, sometimes head to head with the sites, the engineers and the joint groups that are looking, for example, at the near field environment, and we will be, as was pointed out by Mike Wilson, starting in early fiscal year 1997, starting a very intense program of cooperative work to make sure that whatever we put into the ZTSPA-VA will have the understanding and the blessing of the site program and the engineering program.

24 And I think the likelihood of success goes up as we

1 get the whole program behind, the results that we put forth 2 to bodies such as this and to the public, and I think that's 3 all I'd like to say.

4 DR. BREWER: Thanks, Abe. Parvis Montazer?

5 MR. MONTAZER: Over the five years that I was involved 6 in the program, from 1982 to 1987, I basically did nothing 7 but to develop a site characterization program. And a lot of 8 my effort went into the exploratory shaft test plan 9 development which is now the exploratory study facility 10 program.

I came back to the project about two years ago. In 12 1987, I thought that we had a good solid site 13 characterization program presented to NRC, and it was 14 conceptually solid. There were a lot of things that we 15 didn't know how to do and we were hoping to learn the 16 process. When I came back a couple years ago, I found that a 17 lot of basically the bricks, the foundation on which we based 18 that program are basically taken apart. And in the past two 19 days presentation, I'm getting a feeling that there are a lot 20 of holes left open that are really making this program in a 21 critical state as far as coming with a conclusion in a quick 22 manner.

I would like to see if we can focus on a way of 24 going back and filling those holes and gaps as soon as we can 1 while we have the opportunity in the process.

The main thing that I'd like to point out is the exploratory study facility, as we planned it, is going to create a major boundary condition, induced boundary condition in the mountain. Unfortunately when I came, I saw that there was very minimal effort to characterize that boundary condition, and still really there is not a good effort for the characterization of that boundary condition.

9 Also, I have noticed that there's been a lot of 10 variation and deviation from what was planned, which is 11 basically blamed on the construction problems and health and 12 safety problems, one of which is the water issue, water use 13 in the tunnel that was supposed to be at a minimum possible 14 amount. And what I'm finding out is that there's really not 15 100 percent care used in that process.

I think we have very little left in the completion If of the ESF tunnel, and I would like to encourage the scientists involved in the program to rethink seriously to 9 see if they can get all they can in that process in that 20 short of a period of time between now and December or April, 21 whatever the completion of the ESF is concerned.

That's about it, and I can go to specifics if there are questions.

24 DR. BREWER: I think it's appropriate that we come back

1 to it, because one of our major questions is changes in the 2 program that ought to be considered, and your comment about 3 holes in the program is certainly a leading question. We 4 should probably come back to it.

Marty Mifflin next, if you would, sir.

5

6 MR. MIFFLIN: I started out on this project I think it 7 was 1980. NRC made a tour around Nevada and other places on 8 possible proposed sites, and in 1981, I recall--I was 9 reminded actually yesterday by Phil Justice of NRC that 10 things had come down to what was discussed in a smoke filled 11 room I think it was in 1981, trying to brainstorm what the 12 issues would be of the Yucca Mountain site. One was climate 13 change, and the position of the site in the vadose zone in a 14 region that was known to have had major changes in both 15 climate and effective moisture, and that particular issue has 16 been worked on subsequently by a number of different folks, 17 both within the Yucca Mountain program and outside because 18 it's a very challenging issue.

To me, it's a potential site, if not killer site 20 modifier, because the quantitative evidence for effective 21 moisture, what I call effective moisture or effective 22 precipitation that comes from the Great Basin pluvial lakes 23 at their maximum stage is about one order of magnitude 24 greater than the current hydrologic budgets in the basins,

1 and the extremes are during the pluvial periods, would appear 2 to be about .5 orders of magnitude greater, to 1.5.

3 So if Alan Flint's numbers of, say, five or ten 4 millimeters of net infiltration are turned into 50 or 100 5 millimeters of net infiltration during the pluvial, and then 6 we hear today, and others have already said it, that the last 7 2.5 million years, the climate has shifted back and forth on 8 some type of semi-cyclic basis, but looking at the various 9 records that Ike presented, you could say 60 to 70 or even 80 10 percent is some type of a cooler or wetter global climate 11 over that time period.

So, really, based on the inventory life of the high level waste, which for plutonium is ten to the five years, and for the uranium it's forever, for all practical purposes, for at the minimum, and say 80 percent at the maximum, or something in those rough ranges, the site will be in some ruppe of a so-called pluvial or glacial climate. So it's a svery, very important issue from the perspective of the performance of the site, not so much in licensing criteria, but from the practical perspective of how long will the engineered barriers persist and what happens to the waste after the engineered barriers are gone.

23 I think I'll stop there.

24 DR. BREWER: Thanks, Marty. Thank you very much.

Final opening comments from Roger Morrison.

1

2 MR. MORRISON: Hello. Ten years ago, I started work on 3 Lake Tecopa, which for several million years was the sump, 4 the terminus for the Amargosa River which heads at Yucca 5 Mountain. And Lake Tecopa has a superb stratigraphic, 6 climatic, hydrologic record, and it's been a fascinating 7 place to study. The record is exposed in deep badlands in 8 three dimensions, much better record than you can get from 9 any boreholes, which are highly site specific.

But Lake Tecopa had a several million year history Hi with long periods of playa conditions, long periods, one was almost a million years long, in which chiefly playa conditions prevailed in the basin. But that ended about a million years ago, and since then, there's been a trend of Frising lake cycles. Each lake maximum tended to be higher han the preceding one, with some long periods of desiccation, dry playa conditions, shallow lake playa sconditions.

19 The trend is an upward trend, as I perceive it, and 20 this is parallel with the record of other pluvial lakes in 21 the Great Basin, of which there are more than a hundred. 22 Lake Lanontan and Bonneville are well known. Their last two 23 seen lake cycles, the last two high lake cycles were as high, 24 and in some cases higher than any of the middle lake cycles.

I do not see from this record that there was a trend toward
 2 increasing aridity. Rather, the opposite.

3 Furthermore, I'm glad to see more emphasis upon 4 recognition of climatic cycles, of which there were about 44 5 during the two and a half million year term of the whole 6 Quaternary period, and these were inter-glacial type cycles. 7 The usual trend in climate was to have many more 8 fluctuations. These have been now recognized, say, in the 9 last inter-glacial, and especially during the transition from 10 the last inter-glacial into the last glacial. Lots of warm 11 times, then within decades, probably within a person's 12 lifetime, sudden cooling to glacial conditions. This is what 13 not only the Greenland ice cores show, but also pollen 14 records in Europe, and it shows to some extent in the last 15 records in Europe and China.

But we see many more high frequency and high maplitude changes during these larger cycles, and we're just beginning to get the chronologic and stratigraphic resolution y to detect it. But what is likely is that there will be a growth of ice sheets in Europe and North America within the next several thousand years. This is a prediction of Alan Berger, a Belgian astronomer who is one of the leading specialists in Milankovich studies.

24 The Milankovich mechanism seems to be a pacemaker

1 for Quaternary climatic cycles, and being astronomical, it 2 can be predicted, these first insolation changes can be 3 forecast, provide a forecast hundreds of thousands of years 4 into the future.

5 We understand that there are various feedback 6 mechanisms and so forth, but I won't go into that. But the 7 opinion of Berger, I heard him talk in Berlin at the INQUA 8 Congress last summer. He predicted substantial growth of ice 9 sheets in Europe and North America in 3,000 years. He's 10 published I think between three and 5,000 years, which is 11 rather alarming.

I would like to point out in the--for instance, one I of the talks had some interesting data that might be I followed, the talk by Peterman on paleohydrology age control from U series and C-14 dating of calcite and opal in the Veins in the Yucca Mountain area. Many of those dates are rather old, and they go back to about 50,000 years. Being radiocarbon dates, those probably are only minimum dates and pot reliable. But that touches upon, as some of the paleoclimatic studies in Europe and some in other parts of the world have suggested that during the growth of anaglacial, the waxing glacial, the ocean's surface water, the surface water in the oceans of the world is relatively warm, particularly of course in the tropics and the middle
1 latitudes, but this, with the cooling, this is a time where 2 the pluvials of the Quaternary apparently occurred. It is a 3 mistaken concept that the full glacials were both cold and 4 wet.

5 I've heard this mentioned several times at this 6 meeting. The last glacial apparently ended cold and dry. 7 This is what the pollen records in Europe and North America 8 seem to show. And I think some of these vein dates on 9 calcite and opal, these old dates actually probably are 10 indicative that there were important pluvials during the 11 build-up of the last glacial period in the Yucca Mountain 12 area. That ought to be looked into. That's probably enough 13 to say.

DR. BREWER: Okay. Well, thank you very much, Mr. Morrison. I'm going to take the chairman's prerogative, mainly because it's a question that I have in my own mind based on what I've heard the last couple of days, and Neil Coleman mentioned it as well. The trade-off or the conflict or the difficulties in resolving the modeling approach versus the paleoclimate data approach, and I would really like to hear, by way of summary, I'm going to ask Ike Winograd to comment on your views, and also Tom Wigley, because from my point of view as a non-specialist, I mean you really represent two very different ways of getting at the

1 uncertainties of what's likely to happen at that mountain.

2 NRC's representative, Mr. Coleman, is saying, in 3 effect, that the models don't add that much value. He'd 4 rather see some more data. I think I represented your point 5 reasonably well. If not, say so. So could you, for me, and 6 I would hope maybe even three other people in the audience, 7 try to resolve a bit the conflict.

8 Is it either/or, is it and, or where does it all 9 stand? Should we be putting more energy and money into 10 modeling of the climate? Should we be working harder? And I 11 take--it's not even by inference, I just listened to Roger 12 and, you know, he doesn't talk about models, he was talking 13 about data, and your views on this. I'm confused. But I'm 14 easily confused, Ike. Ike, and then Tom, if you would. 15 That's by way of just getting the discussion started.

MR. WINOGRAD: If one believes that there is a role for geologic disposal, i.e. underground, I'm going to start a little off the subject, but I'll get back to it within a minute, if this is still a consideration that the nation wants to follow, then no matter what site one chooses, these type of debates will appear and reappear and reappear, for the unsaturated zone in the sand dune, for saturated zones in rocks, which are always fractured, and there will never been the a resolution. There will never be a resolution because you

1 will always have these differences of opinion, valid

2 differences of opinion between scientists and engineers about 3 which model to use and so forth.

So one can abandon geologic disposal altogether and say that we will never converge on any site because of all these questions that are being raised, and we can go to a surface storage system above ground, and Gene Roseboom has written a wonderful essay on this subject, and some of the sociologists, not those here necessarily, are saying store it above ground because the uncertainties are much less than below ground, but they never put error bars on their statements. So that's just one opening statement.

13 If we stick with the attempt for geologic disposal, 14 then I think it would be arrogant to choose one or the other, 15 between the paleoclimate, which is dear to my heart, although 16 I'm not funded by this project, or climate modeling. I don't 17 think we know enough in either of these areas. There are not 18 many well dated proxy records out there; very, very few, and 19 most of them are less than 30,000 years old. So I don't have 20 that much confidence in the proxy records, which was one of 21 the messages I tried to relay this morning.

I want all the help, if I was in this program, all the help I could get from the other disciplines, all other disciplines. So that would be my first answer, and I'll stop

1 at this point, both are needed in our present state of

2 ignorance if we're going with geologic disposal. But you can 3 chuck geologic disposal if you wish to.

4 DR. BREWER: All right, thank you very much. That was 5 right on target. Tom Wigley?

6 MR. WIGLEY: Let me begin by saying I agree with the 7 initial premise of Coleman, and that is that what we need is 8 a defensible range of climates. And I agree totally with 9 what Ike said about needing to define that defensible range 10 using all of the available tools, and that means a synthesis 11 of information from the paleo-record and a judicious use of 12 models.

One of the reasons why models must have a role to 14 play is because I think there is a very high probability that 15 the future, or at least the future will be very different 16 from the past. In other words, the assumption that the past 17 is the key to the future in this particular case I think is a 18 very poor assumption and a dangerous assumption to make. And 19 there are a number of reasons for that.

One reason is that if one makes statistically based projections using Milankovich as the fundamental driving mechanism, projections of future global mean temperature, then the future over the next 100,000 years looks nothing like the future of the last 100,000 years. It's just not

1 possible to just pull out, say, the last 400,000 years and 2 then tack that onto the present and use that as an idea of 3 what might happen in the future. You've got to do something 4 a little bit more sophisticated than that.

5 One of the disadvantages with using that type of 6 approach, which I think Coleman was partly advocating, is 7 that that only gives you an idea of the global change. It 8 doesn't tell you anything about what's happening at Yucca 9 Mountain, and I don't think there is enough information from 10 Yucca Mountain to be able to extrapolate in a defensible 11 statistical way what's going to happen to that particular 12 site, particularly for changes in effective moisture, which 13 is a very complicated function of temperature changes and 14 precipitation changes.

And another real problem with using local And another real problem with using local Paleoclimatic data is that Ike Winograd has shown in reviewing various types of evidence that there's high spatial variability in changes in effective moisture availability, and there is no particular record for Yucca Mountain, and if you've got a lot of records that show great spatial variability, how in the hell do you get Yucca Mountain out of that.

I think that one has to use both types of evidence, because both types of evidence, modeling and paleoclimatic

1 evidence, is rife with uncertainties, and we've just got to 2 make the best use of these imperfect tools that we possibly 3 can.

4 DR. BREWER: Anyone care to follow on this particular 5 comment, or this line of discussion?

6 The uncertainties are huge. I take the advice, I 7 mean, you get whatever help you can get to reduce the 8 uncertainties and that's where we are. But how much is 9 enough? And I want it exactly. Marty Mifflin?

10 MR. MIFFLIN: Tom, I agree that the climate modeling has 11 important purposes, but I don't think that the purpose that 12 you mentioned to try to get at site specific climatic 13 parameters is a valid one. I think it's very useful for the 14 modeling for other purposes. The reason I say I don't agree 15 with you is that within the region, agreed in the Basin, but 16 right within the region, there is not a proxy record of 17 effective moisture. There is a good record that is a direct 18 record of effective moisture by virtue of the ground water 19 discharge deposits, the evidence where the water table was, 20 and just in the basins immediately to the north, the closed 21 hydrographic basins, the size of the pluvial lakes, and that 22 is a direct measure of effective moisture with all of the 23 climatic parameters lumped in to yield whatever moisture 24 escaped, evaporation after rainfall and runoff.

1 These direct measures, very, very less proxy than 2 all of the climatic parameters, are there in the region. And 3 so from that particular perspective, I'd say that you can 4 create through the modeling effort a whole series of 5 combinations of, say, temperature, precipitation, wind 6 perhaps, evaporation, but you have something to calibrate 7 those climatic models with right locally at the same scale as 8 your grid scale. I mean, you're starting with something 9 that's already there well dated and measured, and that's my 10 comment.

DR. BREWER: Alan Flint was next, and then Abe Van Luik. MR. FLINT: There are I guess several ways that I think about using both of these approaches, and Marty's comments 4 about water table rise is a regional concern because the 5 water most likely did not come from Yucca Mountain that 6 caused the water table to rise, but from some area of higher 17 elevations.

18 What we've tried to do in our analysis, I presented 19 several ways in which we modeled infiltration. One was a 20 static way, which is dependent on current climate. The other 21 way is a more dynamic approach which uses the correct physics 22 we think, and the physics include, I didn't go into detail, 23 but it includes solar radiation, ozone, precipitable water in 24 the atmosphere, turbidity, all of those different kind of

1 components, slope aspects, blocking ridges, whether we have 2 snow on the north slope, all of that.

But to make the transition from a climate scenario 3 4 into a flux, specifically at Yucca Mountain, you need another 5 model for any kind of scenario that we apply. And we have to 6 look at how we're going to make that transition. I've 7 proposed one way, and that's to use an infiltration model 8 that uses daily rainfall values, because as we've pretty much 9 determined, infiltration is dependent upon conditions within 10 weeks, not within hundreds of years. And what Starley can 11 do, which is of tremendous value to us, is he can look at 12 something like an increase in CO2, which is not something 13 we've necessarily seen in the past, or if we have, we don't 14 recognize it as that, and he can covert that information to 15 daily values of precipitation, air temperature, cloudiness, 16 to be consistent with what his best estimates are.

17 The other thing that he can do, which is what makes 18 the global climate model very important in looking at 19 paleoclimate records, unless there's another way and somebody 20 could suggest that, of converting that paleoclimate record 21 using a model to match, which he's done, and from that match, 22 he can then provide us the kind of input in terms of the 23 rainfall patterns, not just that it's wetter or colder, but 24 whether it's wetter or colder together or at different times,

1 how that's distributed, whether we have wetter conditions 2 because we have a higher frequency of storms, or whether we 3 have wetter conditions because we have a higher intensity of 4 rainfall or just longer duration. Those are very critical 5 items, and the ability to convert a climate scenario from the 6 past paleo-records into values that we can then put into a 7 conversion model to get the flux at Yucca Mountain is very 8 important.

9 We need two sets of conditions. We need a regional 10 set of conditions so that we can deal with saturated zone 11 flow systems like the rise in water table that Marty is 12 talking about, and where that water might end up going, and 13 then a localized at Yucca Mountain approach. So I think we 14 do need this way to convert climate scenarios into values 15 that we can then do another modeling approach, convert to 16 specifics at Yucca Mountain specific for the site, for a 17 very, very small footprint on the surface of the Southwestern 18 United States.

DR. BREWER: Abe was next, but I'm going to go to 20 Starley. Would you like to respond to this, just amplify, 21 pick up on it, say it's a great idea because that's what you 22 should say?

23 MR. THOMPSON: Well, I hope Alan is not giving us too 24 much credit, but in principle what he says is true. If in

1 fact we're able to show that we can reproduce the

2 paleoclimate, analog state, with sufficient veracity, then in 3 principle, you could then take the output of the model, which 4 is much more detailed at least temporally that any 5 paleoclimatic reconstruction is, and then use it to run the 6 infiltration models that Alan has. It's actually an 7 interesting use that I hadn't thought of until Alan just 8 brought it up, but in principle, it should be possible.

9 DR. BREWER: The thing that's really interesting, and I 10 know Jerry Cohon, because of his question and some 11 conversation we've had, is where do all these parts and 12 pieces kind of come together to answer the question is Yucca 13 Mountain a good place? Abe?

MR. VAN LUIK: The Tecopa Basin badlands, I think that's beautiful place. I visited there many a time to visit the hot springs and other things, and I'd recommend it to anyone. If you come to Las Vegas, take the time to drive the 80 miles to Tecopa Basin.

In TSPA, we have played around with climate change 20 by multiplying flux by two times, by five times, by .5 times, 21 and we find that these things are significant to performance, 22 but whether or not they are meaningful to performance from 23 the perspective of showing compliance with the regulation of 24 course is up in the air at this point.

1 Where we feel even more vulnerable than what the 2 multiplier is in the pluvial versus a non-pluvial cycle is 3 exactly what Alan was talking about. How was this flux 4 distributed in the mountain, and this is where we look to the 5 flow modelers to tell us what the distribution is between the 6 matrix and the fractures. The work that Michael Wilson has 7 showed us in the weeps shows that actually it's a good thing 8 to have it confined to fracture flow and have it pass out of 9 the system quite rapidly without seeing must waste.

10 So, to me, the weightier issue, and I hope one that 11 we get to before this round table is over, is not only the 12 input from the climate, but also the modeling of the flux 13 from the surface to the deep surface. And I think the reason 14 that I mention Tecopa Basin is if you have an extreme climate 15 change, you will have much more runoff. I don't know what 16 that means in terms of the internal water in Yucca Mountain, 17 but you will have a very different biosphere than what we're 18 dealing with now.

19 DR. BREWER: Jerry had a comment. If you'd grab a 20 microphone somewhere?

21 DR. COHON: I read something else into what Mr. Coleman 22 said, and a lot of people are putting a lot of words in your 23 mouth, Mr. Coleman. You might want to speak up. But what 24 his statement did for me was create the following scenario,

1 which I can easily imagine in 1998 or 2001 or 2003. Abe, 2 you're sitting in a Congressional hearing or in a licensing 3 hearing, and someone says to you you mean to tell me that the 4 flux will not be 100 millimeters per year? I have 18 5 climatologists willing to testify right now that at some 6 point during the useful lifetime of this repository, it's 7 going to be that or more.

8 Now, this is not to say we should ignore 9 climatology and studying the situation both in terms of data 10 and modeling. But what seems certain is that you, me, no one 11 can really defend a position that says we will not have such 12 a flow, a flow that will create conditions in the repository 13 that could create real problems.

DR. BREWER: Does anyone care to respond to that? MR. MONTAZER: It's not in response to that. I just wanted to comment on something that was earlier discussed as far as the modeling as opposed to the paleohydrologic, how we tie these things together, whether to choose one or the yother. Do you want to pass that on?

20 DR. BREWER: Let's hold that. Abe wanted to respond I 21 think directly to Jerry Cohon's questions. We'll come back 22 to that.

23 MR. VAN LUIK: But I think we're talking about the same 24 response, but I'm probably wrong. I was going to say that in

1 such a hearing, we would go directly to a person like Alan 2 and say with this increased precipitation, what is the break-3 out? How much flows down the mountain? It has in the past 4 had some surface flow. How much infiltrates with the new 5 climate scenario? How much is evaporated out of the first 60 6 meters, or six meters, or whatever? And then we would turn 7 to the hydrologists in the site program and say what is 8 physically possible to shove down that mountain, and that's 9 another constraint on the problem.

10 So just going by climate alone is not the correct 11 answer, and I thought that's what you were going to say. 12 DR. COHON: This is go germane here. But the question 13 then is how much money should we invest now in predicting 14 future climate? That's really the question. But in terms of 15 using program resources to refine what will unavoidably be 16 extremely uncertain and very difficult to defend, do we want 17 to use the money that way?

18 DR. BREWER: Let's see, we've got a queue. Rick wanted 19 to say something, Marty and Parvis. So, Rick?

20 MR. FORESTER: I just wanted to quickly say that I think 21 models have a great value in terms of exploring all of the 22 ramifications of data, but with all of the weaknesses that go 23 with data when you have 100,000 or 500,000 years of record, 24 that still represents the best actual reality that you can

1 have for a region, and logically when that is taken forward 2 into the future or used as a criterion to discuss the future, 3 it clearly can have problems, but it still represents the 4 best estimation of past boundaries outside of artificial 5 shifts in climate in the future.

6 DR. BREWER: Okay. The whole boundary issue is 7 something that Marty mentioned in his opening comments. Do 8 you want to follow on this? You've got your hand up.

9 MR. MIFFLIN: Well, I wanted to make a comment on 10 performance assessment and how it's being handled. If I 11 understand in reading the '93 and the '95 total performance 12 assessment, that the maximum fluxes that have actually been 13 run is something like less than a millimeter. Is that 14 correct? Am I wrong? I saw .3 millimeters per year at the 15 repository level on the '95 total system performance.

16 MR. WILSON: The fluxes get much higher than that in the 17 simulations.

18 MR. MIFFLIN: It was? I read something that .3 was the 19 actual simulation.

20 MR. WILSON: Well, .3 in TSPA-95 was used for some of 21 the hydrothermal calculations. But in the release in flow 22 and transport calculations, they went as high as--I'm not 23 sure I can remember--about ten, I think, millimeters per 24 year.

1 MR. MIFFLIN: Ten millimeters?

2 MR. WILSON: In TSPA-93, we went higher than that. 3 MR. MIFFLIN: Okay. It seems to me that in the 4 performance assessment, based on what we've heard in the last 5 two days where you now have real pretty strong evidence of 6 some of the behavior of the Yucca Mountain site specific 7 conditions where there is localized fracture flow that may be 8 very ephemeral in the present climate and it's very 9 localized, and it looks like you cannot get a distributed 10 flux down through the Topopah Spring host rock, that your 11 performance modeling should be looking at running more water 12 down localized areas.

Now, I understand that we don't know how many of Now, I understand that we don't know how many of those you should be running it down or what they should be or how long they should be, but that seems like the evidence is there, you don't have to wait, and the evidence was developing quite a while ago, so my feeling is is that the modeling should be redesigned if necessary so you can handle his problem, because it's going to be the problem and it's going to be the issue. And if Alan decides that in a distributed flux over the repository block under climate and in extreme wet period is 11 millimeters per year, and then some of the water is diverted so you can't say it's only the repository area, so you might have to up it, or if he decides

1 it's five millimeters per year and you have to up it then, 2 whatever the scenario comes out, then you have to take that 3 and either you have to get rid of it some place, or you've 4 got to put it down into some zone. And that's what 5 performance modeling should be, I think, and you don't have 6 to have exact numbers.

7 DR. BREWER: Abe, do you want to pick up on that, and 8 then Purvis?

9 MR. VAN LUIK: Yes, I'd like to pick up on that, because 10 I'm basically in agreement that the way that we have modeled 11 to this point, we have done some extreme cases using the 12 weeps model, throwing everything into fractures, and show 13 that that has one consequence, and then you were shown those 14 consequences a minute ago, and then we have also used the ECM 15 approach, manipulating the fracture matrix interaction to see 16 what the sensitivity is, and we see there is great 17 sensitivity.

But I think that we are looking to the site program provide us the model that fits the observations, and then we will work with them to make sure that the next TSPA gives us the best possible, most defensible product that mimics what we see in the mountain.

23 DR. BREWER: Parvis, you've been patient.

24 MR. MONTAZER: I just wanted to mention I don't think we

1 have a choice as far as modeling or paleohydrology and 2 paleoclimate. I think they all have to go hand in hand with 3 the site characterization. The signature of paleohydrology 4 is in the site, is in the unsaturated zone and saturated 5 zone. The paleoclimatology is going to provide us with 6 broken records. I don't think there's anybody that's going 7 to tell me that we're going to have a continuous record for 8 the past 10,000 years.

9 The only way we can tie these things together is 10 through the climatic and infiltration and the site hydrologic 11 models. Adding to that, I think, just following in the 12 performance assessment, the performance assessment eventually 13 has to be based on the hydrologic model for the site. Once 14 the hydrology of the model of the site is verified, to the 15 extent what's the definition of that, to the extent that we 16 can afford in this project, then that hydrologic model should 17 be used with all these different inputs for the performance 18 assessment.

DR. BREWER: Tom Wigley on this point, and then I'll go 20 to Roger. Tom, and then Roger.

21 MR. WIGLEY: I'd just like to go a little bit beyond 22 what Alan Flint said with regard to the estimation of changes 23 in or the range of possible infiltration rates. First of 24 all, it seems to me that the primary thing that we're trying

1 to do is get a range of possible infiltration rates, and what 2 Alan says, and I agree completely with him, is that in order 3 to do that in a credible way, you need information on a daily 4 time scale, and how one gets that information is a real 5 problem. It's a problem in trying to get it from paleo-data.

I have no idea how you can get daily time scale information from paleo-data unless you go backwards using some sort of model, you know, starting with ground water fluctuations, then going backwards through infiltration and vadose flow model to try and figure out what the variations in infiltration are. And in any inverse calculation, small uncertainties in the input lead to large uncertainties in the autout, which is actually what you want as the input. So I don't think that's a good way of approaching the problem.

I don't think water table fluctuations, for le example, would be directly related to variations in local rifiltration rate. I think it's a very difficult problem to back one out of the other. But I still think paleoclimatic data per se are very useful, but one has to be very careful how they're used.

There are similar problems with using model climate There are similar problems with using model climate data, and one of the points I made in my presentation is that all don't believe any model data on the resolution that is don't believe for this study. I don't believe model precipitation

1 projections on a 100 kilometer resolution, or even maybe 2 1,000 kilometer resolution. So, you know, how do you 3 actually use the output of the climate model?

Now, the way that Alan was suggesting is to develop a stochastic simulation model, and the simplest types of such model might have three parameters, two for the amount and one for the model process. And so what you need to do is in some credible way tweak those stochastic simulation parameters, and it is possible to do that with low spatial resolution climate date provided one can show that the spatial variability of those stochastic parameters is not as high as the spatial variability of precipitation, and there is sevidence that that is true.

14 So that it is possible that we can use coarse 15 resolution information in order to tweak the high spatial 16 resolution stochastic simulation model. And it might be 17 possible to do that with paleoclimatic data as well.

I don't think these problems have been carefully 19 thought through at this stage, and maybe we're just at the 20 stage where that issue needs to be addressed more carefully. 21 How do we make the optimum use of the crude data that we 22 have available from two different pathways.

DR. BREWER: Roger Morrison was next on line, and then24 Ike on this topic.

1 MR. MORRISON: Models tend to be highly deterministic, 2 and keep in mind that the geologic record, particularly of 3 the Quaternary period, shows frequent crossings of 4 thresholds. The stratigraphic climatic record of the 5 Quaternary shows that there were many, many times of 6 sometimes very sudden changes in types and rates of all sorts 7 of surficial processes, whether it be a stream, various kinds 8 of stream regiment, downcutting, lateral planation, 9 aggredation, soil developing, sand, dust, deposition, all 10 that sort of thing. But I think we need to keep in mind that 11 we need to consider thresholds and changes of maybe one or 12 more orders of magnitude in rates of various kinds of 13 processes.

Models are getting better than they were a few years ago, but we need to perhaps consider chaos there, something of this sort, and open to a larger field of exploration, not just using present modern historic conditions.

19 DR. BREWER: Thank you. Yes, Ike, did you want to 20 follow up, or even talk about chaos?

21 MR. WINOGRAD: Chaos? Can I talk on something else?22 DR. BREWER: Please do.

23 MR. WINOGRAD: Okay, thank you. I think we need all 24 these studies, but I get the impression, again, I only pop in

1 on this program once every four or five years and it's 2 exciting and I appreciate the invitation, I truly do, and Ray 3 Wallace tries to keep me up to date, but there's just too 4 much going on. Anyway, the original concept of the site, as 5 written by Gene Roseboom in USGS Circular 903, was that (a) 6 there would be recharge, (b) that the vertical transmisivity 7 of the fractures in the Topopah would transmit the recharge, 8 (c) that other engineering measures could be used, shields, 9 umbrellas, other things, drains, to minimize the contact of 10 water with the waste.

It turns out from what I've heard today and over I2 the phone with Ed Weeks, the fracture permeability is on the order of tens of darcies, much greater than Gene or I ever thought, and I just would like some--well, my question is, and I have a question I guess to Abe, is, now before going on with engineered barriers, I would agree with Marty that you r cannot count on engineered barriers if you are tied, if the nation is tied to the Academy's one million year proclamation, then certainly engineered barriers fall, and I think the whole concept of geologic disposal then falls. But if we're not tied to that, then it appears to me this site is just admirably suited to engineered barriers to get around the fact that we cannot answer all these questions about the antural system, and I don't think we ever will, we hopefully

1 will start to converge.

2 So my question to you, Abe, is is a major effort 3 being given by DOE to engineered ways of keeping the water 4 from the wastes, putting the high fracture permeability to 5 work? Are our studies being conducted to increase the 6 natural flow of air through the mountain to reduce the 7 humidity after the repository is shut? And even when heat is 8 below boiling, is below 100 degrees, what sort of effort is 9 being given to putting the natural permeability to work for 10 you?

DR. BREWER: There's that issue, and if I could add, DR. BREWER: There's that issue, and if I could add, leader it's been a question in my mind for years, I mean the relationship of the uncertainties which are huge, engineered barriers, which is an issue that keeps popping up, but how barriers, which is an issue that keeps popping up, but how barriers to the design of the repository itself, the does this relate to the design of the repository itself, the advanced conceptual design? That always seemed to be kind of the missing piece. Is that kind of on target?

MR. WINOGRAD: Exactly. But it's been there from the 19 beginning. It was there from the initial conceptual writings 20 on Yucca Mountain that this site lends itself superbly to 21 simple engineered barriers if we're not tied into a million 22 years of protection.

23 DR. BREWER: I wanted to go to Abe because the question 24 was really addressed to him, and then Neil Coleman, in that

1 order. Abe?

2 MR. VAN LUIK: I'm madly thrashing about looking for an 3 engineer. But from the performance assessment perspective, 4 we have felt all along that what we need in engineered 5 barriers is our engineered barriers that take advantage of 6 the physics that flow in an unsaturated environment, which I 7 think is what you were pointing to.

8 There is, in fact, a system study which comes due I 9 believe at the end of August, which is looking at various 10 options for enhancing the effectiveness of the engineered 11 barrier system, and I believe they are looking at some of the 12 options that you are in fact hinting at.

As far as air flow enhancements in the mountain, 14 that's a new concept on me personally, but others in this 15 audience may know something of it.

16 DR. BREWER: Parvis, on this point?

MR. MONTAZER: We have been looking at the potential network proposed this on several occasions as to using the natural ventilation if we can keep the repository open without any backfill, without any real engineered barrier. And preliminary results show that we can keep the waste and everything dry if, and without any forced ventilation, just year that we can keep the system that 1 will remove the moisture basically for as long as the

2 repository stays open naturally. You know, under certain 3 conditions, the repository can close and collapse, but as 4 long at it stays open, that waste can stay dry.

5 DR. BREWER: Before I forget about it, Abe, when that 6 study is available, I think we of the Board would like very 7 much to see it if it's possible.

8 MR. VAN LUIK: Yes, it's been referred to in the past as 9 the backfill study, but it's looking at other options besides 10 backfill. So you may remember it from previous discussions. 11 DR. BREWER: As the backfill study, yes. I think we've 12 talked about that, haven't we?

Any followup on this particular line? Ed Cording,14 and then--

DR. CORDING: I know there's been discussion in the program regarding ventilation, and my understanding, I don't know if Dick Snell is still here from the M&O, but my understanding is at present, the plan does not include a ventilation component to it, at least certainly after closure. But I know that several people have been interested in that, and we'd certainly be interested in learning more about what some of these studies are showing.

23 DR. BREWER: Neil Coleman?

24 MR. COLEMAN: I wanted to follow up on some of the

1 comments from earlier about paleoclimatology and the global
2 climate modeling, and so on. I want to be sure to
3 differentiate between climate modeling and the hydrologic
4 modeling that is being done at the site, the comments I made
5 earlier referring to global and regional climate modeling per
6 se.

7 Tom mentioned that you have to be very careful how 8 you use paleoclimate data. Well, I would also add you have 9 to be extremely careful how you use any model and that a 10 model used for any purpose has no more value than the 11 information used to construct it, and that isn't going to 12 change in 10,000 years.

I would submit that projections of future climate It that are based on Quaternary cycles would be just as good as sany projections that could be made with the assistance of climate models, and especially climate models that pretend to know what people might be doing 10,000 years from now. I can ktell you what people will be doing 200 years from now. Phey'll be scrambling around looking for energy sources.

21 Climate modeling won't hurt anything in this 22 program. It can't hurt a thing. But I just don't really see 23 the added value, what you have with it that you wouldn't have 24 without it. Proponents of climate modeling often use words

1 like catastrophic to talk about the changes that will come 2 about from anthropogenic activity, especially talking about 3 greenhouse warming. And I mentioned earlier that there is a 4 very finite resource of fossil fuels on this planet. There's 5 no guestion about that.

6 But in the debate, you seldom hear about the most 7 important aspect of planet earth as far as life on earth is 8 concerned. The earth is an enormous heat sink. It very much 9 resists major changes in climate, and even to compare the 10 coldest climates of, say, the Wisconsin Glacial Stage with 11 today, they are not actually on a planet wide scale huge 12 changes that would affect the existence of life on earth. 13 These are natural cycles that have been going on for a very 14 long time. And even during the current holocene, there was a 15 period of time with a warmer climate than today.

I mentioned earlier we've had a century of I industrial revolution. I believe it was called the Nypsothermal time, it was on or about 6000 years ago, also Number was the warmest post-glacial time. And one estimate I ve seen for it, and some folks here may have more current information, is that the temperature was maybe a degree or two degrees centigrade warmer than today. Now, there was not any major anthropogenic activity going on, and it was during the current holocene, and shows that natural variability even

during the current holocene could, I feel, swamps the change
 in climate that we have seen from anthropogenic activity.
 And anthropogenic effects are detectable, they are
 increasing, but I would submit that they have not yet
 approached the natural climate range of the holocene.

6 DR. BREWER: Okay, let's have one kind of closing 7 comment on that, and there's one big issue that we haven't 8 had a chance to air in the round table, and that really 9 relates to the presentation by June of the Chlorine-36, and I 10 know that Don Langmuir has been very, very patient and so has 11 Pat Domenico.

12 MR. MIFFLIN: Could I ask Ike one question, one quick 13 question?

14 DR. BREWER: Okay, here we go, and then we get to the 15 new topic.

MR. MIFFLIN: Ike, I detected in a polite way you did not really subscribe to the Milankovich correlations, or you kind of are holding back from adopting that as a predictive 19 tool. Is that true?

20 MR. WINOGRAD: That's correct, yes.

21 MR. MIFFLIN: And a second question. You did spend 22 quite a bit of time on the predictability of the duration of 23 an interglacial with respect to where we are right now. I 24 would like to ask you, or get some kind of response, if you

1 feel there is not a predictive tool out there that is 2 qualified to project into the future, wouldn't you have to 3 take a conservative analysis and say, okay, we have 10,000 4 year duration interglacials and we have 20,000 and we cannot 5 say when climate is going to change, so we have to assume in 6 a conservative sense that it will be sooner rather than 7 later, and secondly, we have to assume that it would be a 8 strong one if the Milankovich doesn't--so I think Neil was 9 getting down to how do we bound the decision making.

10 MR. WINOGRAD: May I answer that?

11 DR. BREWER: Yes. Ike, with a quick response.

MR. WINOGRAD: A quick response would be I would put on my engineering geologic cap and take a reasonable worst case, h not the worst, but something close to it, and then I would go to the engineering geologic community and ask can this site, with this flux, can this site handle it. Is the transmisivity of the unit large enough and other engineered barriers to keep the waste dry most of the time? Because here's no underground environment that I can picture that would keep it any dryer, underground environment. That's what I would do.

I mean, you can take that attitude and dispense with all the academic studies. I would not do that personally, because I believe in a well rounded program. So

1 that's what I would do in response to your question, worst 2 case. And in fact if you read Gene Roseboom's Circular 903, 3 and I plug it, we should all reread it, and by the way, the 4 air circulation concept is in that circular also, you'll see 5 that he did that. He said I'm going to take all the 6 recharge, the annual recharge, and put it down to the 7 repository in a couple hours.

8 DR. BREWER: Abe?

9 MR. VAN LUIK: I was going to take the opportunity to 10 kind of answer the question that was asked earlier. I think 11 it's a reasonable thing for the program to continue to invest 12 a modest amount in continuing this, you know, looking at 13 various angles of evidence for bounding what we should be 14 modeling.

On the other hand, you can see by the controversy involved that we don't expect a definitive answer any time roon. But I keep trying to drag this discussion underground because I think, and your answer kind of hit on it, because I think what June has shown is, for example, that Chlorine-36, the good news it's still available there for us to look at, the repository didn't flush in one day, one month or one year. It took some time for that material to get there.

23 And then Zell Peterman's stuff shows that in the 24 matrix, we essentially have already endured one or two global 1 climate changes, and still the evidence shows that we have 2 extremely low flux within the matrix, and that's where I 3 think I would focus my major effort, with a minor effort 4 continuing in looking at bounding the problem through global 5 climate work.

6 DR. BREWER: Don Langmuir?

7 DR. LANGMUIR: I like Abe's lead-in there. Thank you 8 very much, Abe.

9 What I was going to try and do was from my very 10 prejudiced personal viewpoint, try to pull together what 11 geochemistry I've heard. This is another piece of our 12 program, obviously, we've been talking about climatology and 13 some hydrology so far, but this is a multifaceted program and 14 my sense is that in the last year or so, geochemistry has 15 contributed a great deal to our understanding of whether this 16 is a suitable mountain or not. And, to me, I've been 17 suggested a number of directions to go because of this.

Let me tell you where I think we are now because of 19 the geochemical information that's come to us, and I will 20 tend to over simplify it because I'm not a hydrologist. I 21 think the issue really is what is the infiltration in the 22 repository block. We're worrying about it up on the surface 23 within 15 meters, but the bottom line is where is the water 24 going in the repository block, and the ESF studies bear

1 directly on that issue.

June Fabryka's studies with Chlorine-36 are telling Jus we have some fast pathways. I had hoped we would be able to back out of June's work and Zell and Jim's work the volumes of water involved from the chemistry. I'm not sure we can, not easily. But there's a lot of other information available that is highly relevant here.

8 If it's true, and the sense I'm getting from Zell 9 and Jim's work is that they're seeing very slow precipitation 10 rates of silica and calcium carbonate. If they can show, and 11 I think maybe they're not too far from there now, that these 12 rates have always been very, very slow and they've been 13 fairly uniform, then maybe it doesn't matter what climate is 14 doing.

Maybe the issue is that no matter what climate has done in the past or might do in the future, it will go down those tubes with Chlorine-36, and the block in between, if we and uniform for millennia, are suggesting that it's going off to the side of the block, even though it's coming down all over the place perhaps in the shallow horizons, as Alan Flint would say, the bottom line is what's going on inside the repository block. And if we can find a place in there to put the waste that is as dry as it appears to be from these age

1 dates with uranium and Carbon-14, maybe that's all we need.

2 So I'm just suggesting that there are a number of 3 things we could pursue to continue with this. I would add 4 Alan had this great idea and started doing it, putting in 5 plastic sheets. We can add the infiltration piece to this, 6 get the volumes by putting those sheets up, and get current 7 volumes of infiltration through the matrix and through the 8 fractures with the plastic sheets. We can put the chemistry 9 into that water and get current information on transport 10 proportions in fractures and matrix.

Anyway, I think these are some pieces that have Anyway, I think these are some pieces that have come to me in the last couple of days, and I don't know whether everybody agrees with me on this or where we are, but see this as much to the point on suitability as anything se've talked about this week.

16 DR. BREWER: Let's see, Ed Kwicklis, you haven't said a 17 thing.

MR. KWICKLIS: It hasn't gotten too much attention at 19 this meeting, but I'm always encouraged by the results of the 20 weeps model that Mike Wilson showed very briefly here this 21 afternoon. And he showed a diagram between the number of 22 canisters contacted and flux, and unlike some very early 23 performance assessment analysis, it showed a very linear 24 relationship and a very robust relationship between

1 performance and flux, in that performance didn't deteriorate 2 extremely rapidly at some threshold value and the site fail, 3 and didn't require that we determine between .1 and .2 4 millimeters per year. It was a very robust performance over 5 a very broad range of percolation fluxes and assumed 6 essentially instantaneous transport from the ground surface 7 to the water table, no retardation.

8 I don't know what some of the details of their 9 assumptions are, but I think that the project has in some 10 sense overly accounted for in their PA analysis some of the 11 implications of the data that we've heard discussed here in 12 the last two days, and I would ask the Board to keep those 13 analysis and results in mind when considering the 14 implications of these recent data sets.

15 DR. BREWER: Okay, Ed, thank you very much.

16 One last comment here, and then we're going to have 17 to move on.

MR. WIGLEY: I just feel as though I have to defend the 19 vast community of climatologists and related disciplinarians 20 who have contributed to estimates of how anthropogenic 21 climate change, or how large anthropogenic climate change may 22 be in the future, and also to add a little bit to what Mr. 23 Coleman said about the paleoclimatic record, which I think 24 was misleading.

Firstly, it is true that proxy indicators show that parts of the land areas of the globe in the summer period of the year were significantly warmer, say, 6000 years ago than today, but there is no evidence to suggest that the global annual mean temperature was any warmer 6000 years ago than it was today.

7 And in that context, a global mean warming of half 8 a degree celsius that's occurred over the last hundred years 9 is quite a significant event, and we can't say how 10 significant it is because it's quite difficult to reconstruct 11 global mean temperature variations in the past. We can get 12 seasonal variations, site specific variations. We can't get 13 good global mean. So it's an open question as to whether or 14 not the past record over a hundred years is significant 15 relative to natural variability, and that's well admitted in, 16 for example, the IPCC report that has just been published.

But that's not really the issue here. The issue But that's not really the issue here. The issue Is is, and if I go back to another statement that Coleman made by default essentially, he implied that there wasn't enough fossil fuel around to be able to raise global mean temperature very much in the future. Well, that is just wrong.

There's an enormous amount of coal available, in 24 the United States alone an enormous amount, but if you add in

1 China and other parts of the world, it's enough to raise the 2 CO2 concentration in the world to something well over 1500 3 parts per million, and that would have a very large effect on 4 global mean temperature. And the projections, the best 5 projections that can be made that certainly don't have any 6 inkling of using up all the fossil fuel available, the best 7 projections that we have global mean temperature change out 8 to the year 2100 are for a warming of one to four degrees.

9 At the top end, that's the same amount of warming 10 as occurred over the last 20,000 years from the last glacial 11 maximum to the present, and that's something that one ought 12 to be concerned about, and I think that's a pretty realistic 13 upper bound to the possible change on a 100 year time scale. 14 That's pretty rapid. The change could only be one degree, 15 but even one degree would be, I believe, and I think I can 16 support this with a lot of evidence, that a one degree 17 warming would be well outside the range of variability that's 18 occurred in global mean temperature over the last 10,000 19 years.

Another unfair statement, I'll just close with this 21 one, that was made was that to the effect that climate 22 modelers say that catastrophic changes are in store. Well, I 23 know of no climate modeler who has made such a statement. 24 There have been plenty such statements in the press, but I

1 don't believe these changes are catastrophic. I think they
2 are very important, but, boy, I'd never use a word like that.
3 I think humanity can adapt to quite large changes and quite
4 rapid changes in climate.

5 DR. BREWER: Okay, thank you very much, Tom. A quick 6 response from Neil Coleman?

7 MR. COLEMAN: Sea level was higher 6,000 years ago, so 8 some melting was going on somewhere. I just thought I'd 9 mention that. Also, the coal reserves in China have been cut 10 in half in recent years, the proven reserves.

And I'd also have to mention the fact that it took approximately 3,000 to 5,000 years for the earth to reach its warmest post-glacial time after the melting of the great continental ice sheets. So it shows how long it takes the searth to respond, because of that enormous heat sink I was kalking about, how long it takes to respond to these changes r in climate. And that's why even 100 years, 200, 300, 500 years of fossil fuels, I question whether that can bring about really, and I think you used the word catastrophic in this meeting at some point, a word like it or a synonym of tit--

22 MR. WIGLEY: I never would use that word. I never would 23 use that, and I think, you know, you're speaking out of the 24 top of your head basically.
1 DR. BREWER; Time out, please. I think this is a 2 conversation that you two guys should probably carry on on 3 your own, and I expect you will.

What I'd like to do, because he was the leader of the band here for the last day and a half, is to turn it over to Pat Domenico to talk about some implications for the program, as he sees them. And when Pat's finished, we will ask if there's any questioning or comment from the public. So far, no one has signed up. Pat?

DR. DOMENICO: We haven't really addressed that. But, Dyou know, several months ago when I walked into that tunnel and everything was dry, it would give you a nice warm feeling. I'm sure anybody who's been down there gets that nice cozy feeling. And then we start hearing about so-called fast pathways, and presumably there's a lot of them, but they always couple that with but it's a small flux.

Well, now let's bring the climate into it. Is it well, now let's bring the climate into it. Is it well, now let's bring the climatic regime, and that going to be a small flux under new climatic regime, and we have a problem that you can engineer. That's a source of water into that repository if they're in that repository that we weren't that repository if they're in that repository that we weren't thinking about, other than the matrix flow in the fracture/matrix interconnections. This is another source, and it may be a large source under different climatic regimes, because those things may be almost ubiquitous down 1 there. You have to investigate every structural feature to 2 see if it's a fast pathway.

But where are we seeing this? We are investigating the east side of the block, and my understanding is the east side of the block is the more structurally disturbed one. The repository is going to lie to the west in less structurally disturbed parts of the rock, and we understand the correlation between fast pathways and structure.

9 This program needs a western extension of the ESF 10 at the repository level into the rocks that will serve as a 11 repository. Maybe some of the fast pathway problems will 12 disappear in that part of the rock in the sense that we, at 13 least based on the surface mapping, it's less structurally 14 disturbed, and then we're not worried about that any more.

And what might that do to the climate issue? It Makes the climate issue much more tenable, much more Tractable because if indeed the fast pathways do not exist in the repository region, then the only thing we have to worry about is matrix, coupled matrix and fracture flow as the water getting into the repository as one item, and one I think that is less worrisome is the rise of the water table 20 meters from waters coming in from the north someplace. So this program is, I think, in desperate need of a

24 western extension of the ESF. And keep in mind we're only

532

1 getting a small sample of those rocks in that area. And I 2 won't ask June, but I'd be curious to see how many structural 3 features don't produce hits. About half. About half don't 4 produce hits, and there's a hell of a lot of structural 5 features down there.

6 So I urge the program to think about a westward 7 extension, and maybe some of these problems with disappear, 8 or at least if we believe that correlation holds, maybe some 9 of those problems will disappear. If it's not done that way, 10 we're going to be talking about this forever, and it's never 11 going to be resolved. It's never going to be resolved. So I 12 think let's go to the rocks where the rocks count. That's 13 what I believe.

14 DR. BREWER: Okay, thanks, Pat.

We do need to make some time for public comment.
I've got one name, Dr. Gilles Bussod from Los Alamos.
DR. BUSSOD: Thank you for allowing me to speak.

I simply wanted to bring up an aspect of the program that impacts all of the studies, particularly the predicted ones that go out to a million years, both in climate, hydrology and transport.

We are in a period that's not much addressed this way, but we are in the Dr. Jekyll and Mr. Hyde period of having two regulatory missions, one that is the official

533

1 present day one of 10,000 years, the other one that is dose 2 based and leads us to do modeling to a million years. And to 3 be honest, I have a very great difficulty understanding what 4 is the scientific or social economic basis for even 5 considering a million years.

6 A lot of the studies that are coming together in 7 terms of the integration modeling, the integration of all our 8 data over the past decade is showing that if the site will 9 fail, it's on the order of several hundred thousands of 10 years. And sort of the rhetorical question here is is it 11 even reasonable for us to talk about a million year 12 prediction.

13 Thank you.

14 DR. BREWER: Thank you very much. And since it was 15 rhetorical, we don't have to find an answer.

16 MR. MIFFLIN: Can I answer that?

17 DR. BREWER: Marty Mifflin has an answer.

18 MR. MIFFLIN: I would like to know who is projecting 19 that the site will fail in 200,000 years in terms of 20 engineered barriers. I think that that's the question; is 21 the site going to fail in terms of engineered barriers in 22 200,000 years.

23 DR. BREWER: Dr. Bussod?

24 DR. BUSSOD: Very quickly, we're dealing with a multi-

1 barrier redundant system and what all the studies show is 2 that we have on the level of hundreds of thousands of years. 3 We do have defense in depth. That is, you could have 4 failure of the engineered barrier system and under most 5 scenarios to date, and granted it's only to date, we have the 6 natural barrier system that can limit the dose to the 7 accessible environment within reasonable limits for over 8 several hundred thousands of years. So I would again remind 9 that the barrier system at Yucca Mountain is not an 10 engineered one; it allows for a very good engineered barrier, 11 but it's a redundant barrier system.

DR. BREWER: Okay. If there are no other comments from the public, I would like to thank everyone who participated in the panel. I think we actually covered a great deal of territory. It served as, for me, a very nice summary of discussions that were sometimes, as a non-technician, a bit hard to follow. I think some of the major issues are underlined. They're on the record and that's where they belong.

Thanks to one and all. Thanks to everyone for a very, very productive two day session, a good session.

John Cantlon, our chairman. John, do you have the 23 benediction?

24 DR. CANTLON: I have nothing further to add. Thanks to

535

1 everybody. Peace.

2 (Whereupon, at 4:50 p.m., the meeting was adjourned.)