Surface Roughness and XRD Studies of Electron Beam Evaporated Mo and Er Films: correlation to substrate and process conditions

Loren Espada, Dan Kammler, Rob Ferrizz, Elaine Boespflug Luke Brewer, Mark Rodriguez, Kim Archuleta and Michael Eatough

> <u>What do we measure</u> Grain Size orientation - Texture Surface Roughness

Growth of Thin Films

- Zone I Ts/Tm < 0.3 (low mobility; ad-molecules stick where they land: the results is a finegrained porous real structure).
- Zone II 0.3<Ts/Tm<0.5 (surface diffusion occurs with activation energies of 0.1-0.3 eV; a columnar real structure is obtained).
- Zone III Ts/Tm > 0.5 (bulk diffusion occurs with activation energies above 0.3 eV, resulting in a rough equiaxed grained real structure).

Importance of Process Conditions

- Deposition Conditions
 - Temperature, rate, atoms, energy, residual gases
- Substrate surface Morphology
 - Material Real Structure
 - · Grain size, orientation, defect density
- Film Properties
 - Electronic, Magnetic, Optical, Mechanical

Process Conditions

Substrate	Texture	Surface Finish
Si	(100)	smooth
Al ₂ O ₃	[1-102]	smooth
Rolled Mo	Rolled	rough

Deposition Temperature	RT
	250° <i>C</i>
	450° <i>C</i>
Deposition Rate	1.0 Å/s
	10 Å/s

LOCKHEED MARTIN

Summary of Samples

Substrate	Film	Thickness (Å)	Temperature °C	Deposition Rate (Å/s)
[1-102] Al ₂ O ₃	Мо	1000	250	1
Mo/[1-102] Al ₂ O ₃	Er	5000	450	10
No-Etched Mo	Er	5000	450	10
Etched Mo	Er	5000	450	10
Si(100)	Мо	1000	RT	1

HEED MARTIN

Texture Definitions

<u>Fiber</u>

Rolling Texture

out-of-plane (YES) in-plane (NO)

<u>Bi-Axial</u>

out-of-plane (YES) in-plane (YES)

Courtesy of Mark Rodriguez

Pole figure represents a distribution in space of a given set of lattice planes (hkl)

Pole Figure Measurement

All possible orientations of the given hkl are plotted on a hemisphere which is projected onto a planar surface

http://www.mrl.ucsb.edu/mrl/centralfacilities/xray/xray-basics/Xray-basics.html#x4

LOCKHEED MARTIN/

7

Courtesy of Mark Rodriguez

The Influence of Substrate Texture on Mo Films Grain Orientation

LOCKHEED MARTIN

Mo on [1-102] AI_2O_3

250°C, 1000 Å, 1 Å/s

• Mo film deposited on sapphire has out-of-plane (200) texture.

• Four fold spots at 45° chi for Mo (110) indicate (200) out of plane texture and in-plane bi-axial texture for film. Note that spots are not perfectly aligned to the 45° chi ring (yellow dotted line).

• Bi-axial Mo film on Al₂O₃ [1-102]

Er deposited on rolled Mo no-etched

450°C, 5000 Å, 10 Å/s

- No etched Mo substrate shows both (110) out of plane and (200) out of plane rolling texture.
- Er (002) out of plane with hint of rolling texture

450°C, 5000 Å, 10 Å/s

- Mo-etched substrate has (200) out of plane rolling texture. Er (002) shows rolling texture. Is Er (002) growing epitaxial on Mo (110)? Maybe
- Mo film has clear out-of plane (200) bi-axial texture.

LOCKHEED MARTIN

Er on Mo on Sapphire [1-102]

<u>450°C, 5000 Å, 10 Å/s</u>

- Er film appears to have bi-modal texture with the (002) and (100) nearby out of plane.
- The Er (002) does not appear to be growing epitaxially on Mo(110) this time perhaps because of the presence Er_2O_3 ? The (100) is nerby epi on Moly.

Er deposited onto various Mo substrates

Er/Mo/[1-102] Al₂O₃

450 °C, 10 Å/s

111407-3-1.00

Films RMS = 10.32 nm

Summary of the influence of substrate roughness and deposition parameters on the film surface quality

- The Mo films were prepared at low deposition temperatures ($Ts/T_m = 0.02 0.32$) they consist of small round grains as observed by SEM. At low temperatures the surface mobility is reduced.
- The surface roughness measured using AFM shows that the surface roughness varies with substrate and deposition rate. A facetted film is observed when deposited at 10 Å/s on sapphire.
- AES shows that the Mo samples has a surface oxide layer ~ 29.5 at/% and 18 at/% in the bulk

- A systematic study to parameterize the growth mode as a function of substrate texture and growth conditions and how that influence hydride structure
- Study the role of impurities (i.e. O₂) on film texture and residual stress

