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ABSTRACT

An experimental study of low Reynolds number drag on laboratory models of dendrite
fragments has been conducted. The terminal velocities of the dendrites undergoing free fall
along their axis of symmetry were measured in a large Stokes flow facility. Corrections for
wall interference give nearly linear drag versus Reynolds number curves. Corrections for both
wall interference and inertia effects show that the dendrite Stokes settling velocities are always
less than that of a sphere of equal mass and volume. In the Stokes limit, the settling speed ratio
is found to correlate well with the primary dendrite arm aspect ratio and a second dimension-
less shape parameter which serves as a measure of the fractal-like nature of the dendrite
models. These results can be used to estimate equiaxed grain velocities and distance of travel
in metal castings. The drag measurements may be used in numerical codes to calculate the
movement of grains in a convecting melt in an effort to determine macrosegregation patterns
caused by the sink/float mechanism.
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1. INTRODUCTION

One of the most detrimental forms of segregation in metal castings is macrosegregation caused by the sinking
(and floating) of free dendrites, equiaxed grains and inclusions. Movement of solid grains is fundamental to the
formation and distribution of the equiaxed zone in castings[1,2,3]. The processing of monotectic alloys and
particulate metal-matrix composites may also be limited due to Stokes flow and the redistribution of solid
phases.[4] During solidification of an alloy the solid under formation is of a different composition than the liquid,
provided the partition coefficient is not unity. Movement of either of these phases is required for the development
of macrosegregation. The rate and manner by which the free solids settle will influence the amount and distribution
of segregation. An understanding of this settling behavior is a necessary prelude to the understanding and possible
control of the solidification process.

Segregation driven by a sink/float mechanism in the form of “kishing” of graphite flakes is common in the
casting of cast iron[1] and is a factor in the solidification of Fe-C-Si alloys in low gravity,[5] and other eutectic
systems.[6,7] Macrosegregation caused by this type of mechanism can be quite severe.[3,8,9] Free, unattached
grains are produced by breakage of dendrites during pour casting[3] by partial remelting,[6,7] by mechanical
disturbances such as stirring or vibration,[10-12] and by heterogeneous nucleation of grains in areas of high liquid
fraction. Attempts have been made to use Stokes’ law to assist in the analysis of segregation caused by settling
processes,[6,13] however a detailed study of the effects of grain geometry has not been reported.

The size and shape of settling dendrite fragments can be estimated from postsolidification microstructures.
Three-dimensional dendrites can be thought of as simple constructions using cylindrical elements such as those
shown in Fig. 1. The relative size and spacing of the primary and secondary arms are representative of numerous
observations of real dendrite microstructures in Pb-Sn and are consistent with other morphology studies using
Pb-Au and succinonitrile-acetone.[14,15] The nearly cylindrical dendritic fragments in Pb-Sn have diameters on
the order of 1-2 X 10-5 m and lengths in the range 2.5-8.0 X 10-5 m[9]. These values were used to bound the aspect
ratios of dendrite models studied here. Secondary arm spacing and average dendrite diameter measurements in
Pb-Sn were used with the results of Tewari[14] to yield a parabolic tip radius to dendrite diameter ratio of 0.27,
This relation was used to insure consistency between the shapes shown in Fig. 1, recent morphology studies, and
measurements made in the Pb-Sn system.

An estimate of the dendrite Reynolds number in a casting can be obtained [cf. Eqn. (12)] by assuming a
spherical dendrite of diameter d = 2a falls through the melt at its terminal velocity Ut = 2ga2(ρs – ρ)/9µ, where
g is gravity, ρs is the density of the alloy solid, and ρ and µ are the density and viscosity of the alloy melt,
respectively. For a Pb-dendrite in a near eutectic alloy (62 wt.% Sn) with d = 4 X 10-5 m, ρs = 1.13 X 104 kg/m3,
ρø = 8.2 X 103 kg/m3, and µ > 3 X 10-3 kg/m-s one finds Re > 0.05. This may be regarded as an upper bound
here because the maximum observed radius was used in the calculation, and perhaps for dendritic systems in
general since Pb-Sn is characterized by a large density difference between the solid and melt. In any case, the
expected Reynolds numbers are quite low and in many instances the dendrite may be considered to be in the Stokes
flow regime. Also, owing to the small inertia effects, a free dendrite reaches its terminal velocity almost
instantaneously, or at least in a time that is negligibly small compared to the average suspension time in any
realistic casting system.
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It is evident that the settling process can be very complicated. When a mold is filled the initial flow is highly
turbulent. After the turbulent flow subsides, the movement of individual dendrites will be affected by neighboring
dendrites and solid surfaces and collisions may take place. Even at low solid fractions, the motion of a single
dendrite will be affected by convection currents induced by unstable thermal and concentration gradients in the
liquid melt. In all cases the dendrite settling speed will depend on the orientation of its central axis with respect
to the gravity vector. In this paper we do not address the above-mentioned complications, but rather focus attention
on the settling velocity for dendrite models falling at steady terminal speed along their central axis at low Reynolds
number in an unbounded fluid. Hence the present investigation represents a preliminary study of the very complex
problem of dendrite motion in realistic solidification processing conditions. Introductory remarks given in
Section 2 are followed by a description of the experimental apparatus and measurement procedure in Section 3.
Drag and settling speed measurements reported in Section 4 are analyzed in terms of a nondimensional length scale
which characterizes the fractal-like nature of the dendritic shapes. A discussion of results and concluding remarks
are given in Section 5.

2. PRELIMINARY REMARKS

The drag on a sphere of radius R settling at constant speed U in an unbounded liquid of viscosity µ in the limit
of zero Reynolds number is given by[16]

D RU= 6 1πµ . ( )

One immediately observes that the characteristic force (µRU) in Stokes flow is proportional to the viscosity. Thus
a proper drag coefficient is obtained by normalization of the drag with µRU and not with a dynamic pressure
proportional to the density as in a high Reynolds number flow. Stokes flow theory has been extensively developed
for flow over long slender bodies and for flow past slightly deformed spheres, but results for more complicated
shapes must be obtained by numerical integration of the governing equations of motion or by direct experimen-
tation. In either case it is common procedure to report zero Reynolds number results in the form of the settling speed
ratio[17]

KS U Us r= / , ( )2

where Us is the Stokes velocity of the test object and Ur is the Stokes velocity of a reference sphere. The Stokes
velocity is the settling speed of an object falling in an unbounded fluid in the limit of zero Reynolds number. The
reference sphere is usually considered to be a sphere with mass and volume equal to that of the test object; in other
words, it is the sphere formed by melting down the test specimen. When a body falls in a fluid at constant terminal
velocity, its drag is equal to its weight less the buoyancy force of the displaced fluid. The submerged weight of
a dendrite is therefore the dendrite drag in the present experiments. Since both the object and the reference sphere
have the same weight and volume, they have the same drag. Hence the drag D on the object computed from
Eqs. (1) and (2) may be written

D D a U a U KSr r r r s= = =6 6 3πµ πµ / , ( )
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where Dr is the reference sphere drag, Ur is its Stokes velocity, ar = [3V/4π]1/3 is the radius of the reference sphere
computed from the solid volume V of the test object. The settling speed ratio computed from Eq. (3) is then

KS U a Ds r= 6 4πµ . ( )

The goal of this study is to obtain the low Reynolds number variation of drag and the Stokes settling speed ratio
KS for the model dendritic fragments given in Fig. 1. An accurate determination of KS thus depends on an accurate
measurement of the parameters on the right hand side of Eq. (4).

It is clear that real experiments cannot be carried out at zero Reynolds number, and one must always be
concerned with wall interference effects in any finite size experimental facility. These latter blockage corrections
must be made to obtain the Reynolds number variation of drag in an unbounded fluid. The Stokes settling speed
ratio KS is then obtained after making an additional correction for the effect of inertia in the finite Reynolds number
experiments. The procedure for taking into account these corrections is presented in the following section.

3. EXPERIMENTAL SETUP AND MEASUREMENT PROCEDURE

A. Experimental Apparatus

The experiments were carried out in the Stokes facility reported in Lasso & Weidman.[18] The tank is
composed of a thick aluminum base supporting vertical plate glass sidewalls 0.91 m high forming a square cross
section L = 0.61 m on edge. The large test facility was designed to permit the use of centimeter size test objects
and yet achieve minimal sidewall blockage effects. The test facility is particularly well suited for objects of
complicated shape which need to be of sufficient size to keep close tolerances on machining and construction. The
tank is filled to a height of 0.85 m with 0.34 m3 of Dow Corning 200 silicone oil with a nominal viscosity of
2.5 X 10-3 m2/s at room temperature. Currie and Smith[19] have shown that silicone oil at this viscosity is
Newtonian for shear rates less than 150 s-1, well above the maximum shear rate 20 s-l estimated for the experiments
reported here. The apparatus is equipped with a laser-triggered time interval measuring system accurate to
0.001 s, designed after the one used by Stalnaker and Hussey.[20] The release mechanism mounted on top of the
tank consists of a ring supporting three Airpax Model K92121-P2 linear actuators located 120° apart, each
equipped with needle-like prongs that can be radially positioned, independently or in unison, by means of an
electronic controller. The centered prongs serve to align and hold the dendrite model along the tank’s central axis.
Subsequently, the assembly is lowered into the oil and the test object is released.

Prior to any experiment the silicone oil in the tank is mechanically mixed to overcome any temperature
stratification induced by the ambient temperature gradient in the laboratory. Three hours after mixing, the
temperature is found to vary less than 0.05 °C in the central region where tests are conducted.[l8]  An ASTM-56C
Fisher mercury thermometer with 0.02 °C resolution was used to measure the fluid temperature in the center of
the test region before and after a series of tests. All dendrite models were released along the tank centerline about
0.04 m below the free surface and fell approximately 0.23 m before intercepting the upper horizontal laser beam
which triggers an electronic timer. The dendrite model falls an additional 0.2939 m before intercepting the second
laser beam which records the transit time between the focused beams. The test object then settles to the bottom
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of the tank approximately 0.28 m below the lower laser beam. Lasso and Weidman[l8]  found that test specimens
of the size and weight used in the present investigation will be at their constant terminal speed during transit
between the laser beams.

The variation of the fluid density ρ(T) and viscosity µ(T) was measured over the range of temperatures
incurred in the experiments. Details of these measurements are given in Appendix A. Least-squares fits to the data
are given by

ρ = −1006 13 1 41 53. . ( ) ( )T kg m

µ = − −3 8216 0 05367 6. . ( ) ( )T kg m s

valid in the temperature range 20 °C < T < 27 °C.

Prior to weighing, all objects were cleaned in an ultrasonic bath and then allowed to dry at room temperature.
Dry weight measurements were made with a Mettler Model H54 analytical balance having a resolution of
±0.01 mg. The drag force was obtained by measuring the effective mass of the object immersed in a constant
temperature bath of silicone oil and multiplying by the local gravitational acceleration (g = 9.79608 m/s2). The
drag was corrected to the temperature of the tank at the time of experimentation using[18]

D D gV
d
dT

T T D gV T To o o o= − −( ) = + −( )ρ
1 41 7. , ( )

where D is the drag corrected to experimental temperature T, and Do is the drag at temperature To. A direct
calculation for the surface area A and volume V of each dendrite is given in Appendix B.

B. Inertial and Blockage Correction Procedure

Eventhough the experimental facility is large, corrections for wall interference (blockage) effects are
essential. Since the velocity in Stokes flow decays as the inverse power of the radial coordinate from the test object,
a blockage ratio as small as 3% can induce a 10% error in the settling speed measurement from that in an unbounded
fluid. Furthermore, all test objects have a finite Reynolds number and inertial corrections to obtain Stokes drag
must also be made. These inertial effects typically become noticeable when the Reynolds number of the test object
exceeds 0.1. Figure 2 depicts the essential features of the inertial and blockage correction procedure described
below. The method equates the test object to a sphere of equal drag (effective weight in the test fluid), also having
a zero Reynolds number blockage correction equal to that of a spheroid whose aspect ratio is determined by the
maximum vertical and horizontal dimensions of the object. Use is made of the accurate experimental data of
Sutterby[21] who measured wall interference and inertial corrections for spheres falling along the central axis of
a concentric cylinder. Sutterby’s correction constant K is defined as

K U Us m= / ( )8
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where Um is the measured settling velocity in a cylindrical tank and Us is the Stokes velocity of the sphere. In order
to make use of these results one must find the equivalent diameter, deq, for our tank of square section. The analysis
of Happel & Bart[22] gives this relation to be

d Leq = 1 10659 9. . ( )

The specific steps comprising our generalized procedure for determining the wall interference and inertial
corrections for axisymmetric or nearly axisymmetric bodies are as follows.

(1) The maximum length ø and maximum breadth b of the object [Fig. 2(a)] are determined. The length ø
is the maximum dimension of the body parallel to the vertical axis of free fall.

(2) An equivalent spheroid [Fig. 2(b)] with semi-axes ø/2 and b/2 along the vertical and horizontal axes,
respectively, is constructed. This spheroid is an intermediate step that approximately accounts for the
overall three-dimensional shape of the test object.

(3) The spheroid fineness ratio ø/b and its blockage ratio b/deq is computed. Using these geometric shape
parameters, Table III of Wakiya[23] is interpolated to obtain the corresponding wall correction factor Kw.
This is the blockage correction for a centrally falling spheroid that has the same fineness ratio (ø/b) as the
experimental specimen. At this point finite Reynolds number blockage effects are approximately deter-
mined.

(4) For the given value Kw, the Re = 0 data in Table I of Sutterby[21] is quadratically interpolated and
Eq. (9) is used to obtain the sphere blockage ratio d/deq. This blockage ratio corresponds to that of a sphere
[Fig. 2(c)] with diameter d having the same zero Reynolds number wall interference effects as the equivalent
spheroid.

(5) This sphere becomes the equivalent sphere when it has the same drag as the test object. The
Reynolds number, (Re)eq, corresponding to this drag is estimated from the Stokes flow equation
(Re)eq = d3gρ(ρs – ρ)/18ρµ2, where ρ is the liquid density and ρs is the density of the solid dendrite. The
equivalent sphere [Fig. 2(c)] now has the same drag and approximately the same zero Reynolds number
blockage correction as the original test object [Fig. 2(a)].

(6) Using the blockage ratio d/deq and Reynolds number (Re)eq, Sutterby’s[21] data is interpolated to obtain
the combined inertial and wall correction constant K for the test object;

then the Stokes settling velocity Us is computed from Eqn. (8).

It must be emphasized that the above “equivalent sphere method” correction procedure is approximate. However,
a comparison of measurements with theoretical results for solid cylinders[18] indicate that it works well for
axisymmetric test objects of moderate aspect ratio as in the present investigation.

C. Dendrite Models

Four models of each dendritic shape sketched in Fig. 1 were constructed in order to cover a range of Reynolds
numbers. Small and large models were each machined from Delrin and ABS (acrylonitrile-butadiene-styrene).
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Delrin is heavier than ABS, so the drag and Reynolds number of the Delrin models are significantly larger than
that of their ABS counterparts. Knowledge of the densities of the plastic models is not required in the data
reduction. The models fall into two groups, uniaxial (U designation) and triaxial (T designation), and each group
consists of branchless and branched models. The number immediately following the U or T designation denotes
the number of sets of secondary branches. We distinguish between small and big, light and heavy geometrically
similar models with letters S and B, L and H, respectively. Designation suffixes A, B, and C pertain to different
primary rod aspect ratios ø/a within a common group. The physical dimensions of each model are presented in
Table I. Models for groups U0A, U2, U3, T0A, T0C, Tl, and T2 were constructed to simulate actual dendrite shapes
observed in metal alloys. Models for groups U0B and T0B were made at a later stage and tested to better understand
trends in the experimental data. Models Ul were constructed at the last moment by removing the smaller set of
secondary branches from two U2 models. In the end, a total of 34 model dendrites were constructed and tested.

4. PRESENTATION OF RESULTS

Although the model dendrites were released with their primary axis of symmetry aligned with gravity, they
sometimes tilted and rotated for reasons discussed in Lasso & Weidman.[18] Data was taken only if the central axis
of a dendrite model exhibited a maximum declination of 8° from vertical and in most cases the angle of declination
was less than 3°. The measured data for each dendrite presented in Table 11 include its dry mass M, the test
temperature T of silicone oil, the dendrite drag (submerged weight) D at temperature T, and the measured terminal
speed Um. The next four columns list Kw, d/deq, (Re)eq and K used to determine corrections for blockage and inertia
effects as outlined in Section 3B. Next comes ar, the radius of the sphere formed from the volume of the dendrite
model, determined directly from the buoyancy measurements. The final two columns list the settling speed ratio
KS and the dendrite Reynolds number defined as

Re ( )= ∞ρ
µ

a Ur 10

where U∞ is the measured settling speed corrected only for blockage effects, viz., U∞ = KwUm.

The dendrite models may be distinguished by type (uniaxial or triaxial), complexity (the number of branch
sets, with each set comprised of four orthogonally intersecting arms), and by the aspect ratio of the primary rods.
Important geometric characteristics describing the models are given in Table III. The first column gives the
designation for the dendrite models and the second column lists the average aspect ratio ø/a of the vertical rods
for each group determined from the dimensions in Table I. The next two columns give the volume and surface area
of each dendrite computed from the results in Appendix B using the measurements in Table I. The following
column gives ar determined from the volume calculation in Appendix B, and one should note that these results
agree well with the corresponding values for ar, given in Table II obtained from the buoyancy measurements.

The Reynolds number variation of dendrite drag for all test specimens is plotted in log-log form in Fig. 3. It
should be mentioned that in these drag curves, both the drag and the Reynolds numbers have been adjusted to a
common temperature T = Tr = 24.4 °C, necessary for a consistent comparison since the drag has not been
nondimensionalized. These values of D (Tr) and Re (Tr) are listed in Table III. We note that the data for model
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Ul was obtained using a different silicone oil with kinematic viscosity ν = 2.41 X 10-3 m2/s (@ Tr) and its Reynolds
number was made consistent via the equation Re2 = (ν1µ1/ν2µ2) Re1. Individual drag curves for each model are
presented in Fig. 4 with quadratic least-squares fits through the origin. Error bars represent the rms deviation of
repeated (two to three) measurements. The error range is because of the scatter in the fall time which varies with
dendrite declination from vertical (≤ 8°). The curve fits in Fig. 4(a) are all closely linear, attesting to the fact that
inertia effects are unimportant when Re < 0.1. Curve fits to the higher Reynolds number data in Fig. 4(b), on the
other hand, do exhibit slight nonlinearity. For example, the dashed line for dendrite T0B is a linear fit through the
origin for the lower data point, while the quadratic fitted curve exhibits a clear rise above the linear drag line. Each
curve in Fig. 4(b) shows that inertial effects first become apparent for these dendrite models when Re > 0.1,
approximately. However, even if the Reynolds number is as high as 0.4, the results in Fig. 4(b) show that only a
small deviation from Stokes drag behaviour on the order of 5-10% would be encountered. Our choice of weights
and sizes of the model dendrites did not uniformly span the range of Reynolds numbers in each group; the Reynolds
number for two models (SH and BL) are nearly the same. The close correspondence between the values of drag
for these widely disparate (but geometrically similar) models of nearly equal Reynolds numbers provides
validation of Reynolds’ similarity law. Thus the present results are valid for any dendrite mass of similar geometry
as long as it falls within the range of Reynolds numbers tested.

The average value of the Stokes settling speed ratio KS computed from Eq. (4) for each of the ten dendrite
groups are given in Table III. KS is, by definition, Reynolds number independent and thus depends only on the
aspect ratio of the axial rods and the complexity of the dendrite configuration. As a measure of the fractal-like
nature of the dendrites, we introduce the shape length scale Ls = 3V/A which decreases with increasing dendrite
complexity. This choice of length scale is motivated by the fact[24] that the Stokes drag of a sphere is one-third
volume dependent (pressure drag) and two-thirds area dependent (viscous drag) and hence the Stokes drag on
bodies of greatly varying volume/area ratio is expected to depend on this quantity. The length scale is made
nondimensional by ar so that the parameter Ls/ar takes on the value unity for a sphere and decreases with
increasing dendrite complexity. Indeed†, this parameter is not new since Wadell[25] introduced it nearly 60 years
ago calling it ψ, the “degree of true sphericity”, defined as the surface area of a volume-equivalent sphere divided
by the surface area of the test particle and hence ψ = Ls/ar. The calculated values of Ls and the average
dimensionless shape parameter ar/Ls (= ψ -1) are listed in Table III. Figure 5 gives a plot of the settling speed ratio
KS as a function of ar/Ls, with rod aspect ratio ø/a as a parameter. Circles and triangles correspond to uniaxial and
triaxial dendrite models, respectively, and the open symbols refer to branchless dendrites while the closed symbols
denote branched systems. Again vertical error bars represent the rms deviation in repeated measurements. The data
falls neatly into two groups, triaxial and uniaxial, with the settling speed of the triaxial dendrites consistently lower
than that for uniaxial dendrites of the same aspect ratio. Clearly, the horizontal rods of the triaxial models offer
more resistance and result in a lower value of KS. The effect of secondary branches at fixed aspect ratio is shown
by the dashed lines which follow ø/a > 4 for the uniaxial models and ø/a > 8 for the triaxial models. In both cases
the settling speed ratios appear to asymptote to constant values as the branching patterns become more complex.
The asymptotic values are approximately KS >0.8 for uniaxial models with ø/a > 4 and KS > 0.6 for triaxial
models with ø/a > 8. These results show that the more realistic dendrite shapes (triaxial with secondary branching)
have settling speeds 40% lower than spheres of equal mass.

†The authors are indebted to Mr. Sandeep Ahuja for bringing this fact to our attention.
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Following Heiss and Coull,[26] an alternative procedure to correct for inertia effects is to extrapolate the drag
curves back to zero Reynolds number. We define the zero Reynolds number drag coefficient Cd as

C

d D
d

d = =

( )
(Re)

( )Re 0

6
11

πµν

and note that the numerator in this expression is readily determined from the quadratic least-squares fits to the
individual drag curves in Fig. 4. This direct approach may constitute a more accurate way of determining Stokes
drag results because only the blockage correction factor Kw is used and the slope calculation emphasizes the data
in the linear regime Re < 0.1 where Kw is small (cf. Table II). The drag coefficients are listed in Table III and plotted
as a function of the dimensionless shape parameter in Fig. 6 with the same definitions for the symbols as in
Fig. 5. The branchless uniaxial and triaxial data exhibit a linear variation drag coefficient with ar/Ls. Also, as
expected, the drag slope of the triaxial models is greater than that of the uniaxial ones. The effect of adding
secondary branches is to move along the dashed curves to asymptotic values Cd >1.2 for uniaxial dendrites of
aspect ratio ø/a > 4 and Cd > 1.7 for triaxial dendrites of aspect ratio ø/a > 8. In the limit Re → 0, U∞ → Us, and
Eq. (3) gives D = 6πµνRe/KS. It then follows from Eq. (12) that Cd = (KS)-1. Thus the extrapolation procedure
for calculating the zero Reynolds number drag coefficient Cd provides an alternate method for calculating KS. The
consistency of the two independent determinations of KS is seen in Fig. 7 where a plot of Cd versus (KS)-1 reveals
a straight line nearly within experimental error.

5. DISCUSSION AND CONCLUSION

Plastic dendrite models patterned after the shapes of real dendritic fragments observed in postsolidification
microstructures of metallic alloys were constructed for testing in a low Reynolds number experimental apparatus.
The settling speeds of 34 models conforming to four uniaxial and the three triaxial configurations of varying aspect
ratio were measured. The blockage-corrected drag curves for these models given in Fig. 4 exhibit noninertial
behavior when Re < 0.1 and inertial effects become evident when Re > 0.1. Results in the Stokes flow limit of zero
Reynolds number have been derived by two independent means. In the first method, the ad hoc procedure of Lasso
and Weidman[18] is used to estimate inertial corrections to determine KS, the Stokes settling speed ratio defined
by Eq. (2). In the second method, the blockage-corrected drag curves were used to determine the zero Reynolds
number drag coefficient given by Eq. (11), itself equivalent to the inverse of KS. The consistency of the two
approaches is verified in Fig. 7, but it is believed that the direct extrapolation of the drag data provides somewhat
more accurate results when sufficient data at low Reynolds number are available. Figures 5 and 6 show that the
Stokes results for these complex dendrite fragments correlate well with the dimensionless shape parameter ar/Ls.

The results in Figs. 5 and 6 show that the settling speed KS and drag coefficient Cd for dendrites in real metal
casting systems will have values significantly different from spheres of equal mass (unity for both KS and Cd).
In particular, at large ar/Ls, uniaxial dendrites with ø/a > 4.0 have settling speeds 20% slower than equal mass
spheres and triaxial dendrites with ø/a > 8.0 have settling speeds 40% slower. Figures 5 and 6 also show that
secondary branching has profoundly different effects on the uniaxial and triaxial dendrite models. The growth of
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secondary branches on uniaxial models of aspect ratio ø/a > 4 causes an immediate increase in the drag coefficient
and concomitant decrease  in KS. Secondary branching on the triaxial models of aspect ratio ø/a > 8, on the other
hand, exhibits no discernible effect on the dendrite drag. The explanation for this difference in behavior is as
follows. The addition of secondary arms to the uniaxial fragments greatly increases the horizontal scale of the
dendrite and hence its drag. Further addition of smaller secondary arms do not increase the horizontal scale of the
fragment and offer little (if any) increase in Cd. The slight increase in the drag coefficient for branched uniaxial
dendrites in Fig. 6 is most likely due to the increase in aspect ratio of the models from 3.8 to 4.4. In the case, of
triaxial dendrites, the growth of secondary branches is observed to have virtually no effect on the drag coefficient,
the slight differences in Cd with secondary branching again being attributed to the different aspect ratios of the
primary rods. This is due to the fact that secondary branching on a triaxial model does not alter its horizontal length
scale which is already set by the branchless configuration. It is possible that a more accurate set of measurements
would exhibit some slight change in the drag coefficient when secondary branches of dendritic form are added
to the basic triaxial stalk, but the measurements presented here suggest that secondary branching on triaxial
dendrites will not affect the settling speed ratio.

One must bear in mind that the foregoing results depend only on the Reynolds number of the dendrite and its
shape as characterized by the nondimensional parameters ø/a and ar/Ls. The foregoing results may be used to
estimate the settling rate of a low Reynolds number dendrite fragment in a metal casting as follows. First the
dendrite model shape most similar to grains observed in the casting is chosen from Fig. 1. Next the values of the
shape parameters ø/a and ar/Ls are estimated through analysis of dendrite size and back of the envelope
calculations for dendrite models composed of mutually intersecting rods. The corresponding settling speed ratio
KS is then found from the results in Fig. 5. Finally, Stokes’ law gives the terminal velocity

U KS U
a g

KSs r
r= =







2
9

12
2 ∆ρ

µ
( )

where g is the local gravitational constant and ∆ρ is the density difference between the solid dendrite and its liquid
surrounding. (Note that the dendrite mass enters through the term ∆ρ.) Thus the values of KS provided in this study
enable one to ascertain meaningful estimates of the velocity, and hence distance of travel, for dendrite fragments
and equiaxed grains in solidifying metal alloys under ideal conditions in the absence of convection. In closing,
however, we note that the drag coefficient curves may be input into numerical codes to calculate the movement
of dendrite fragments in a convecting melt, and thereby obtain particle trajectories and settling times in more
realistic solidification processes.
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APPENDIX A:  Density and Viscosity Measurements

The density of the silicone oil was measured using a Mettler/Paar model DMA40 digital density meter. The
measuring principle is based on the natural frequency of oscillation of a fluid-filled glass U-tube. The mass, and
hence the density, of the test fluid in the U-tube affects the natural frequency of the oscillating, liquid filled U-tube.
In practice the density is calculated from the equation

ρ = −( )A R B A2 1( )

where ρ is the density in kg/m3, R is the digital readout of the instrument, and A and B are calibration constants
determined by taking readings for liquids or gases of well-known densities. These constants were determined
using air and distilled water as the calibration fluids. The density meter was connected to a constant temperature
bath regulated by a Yellow Springs Model 72 temperature controller. The bath circulates water at nearly constant
temperature (±0.01 °C during time of measurement) through a glass tube enclosing the vibrating U-tube. The
absolute air pressure in the room was measured to the nearest 0.5 Torr by means of an MKS Baratron Model 220BA
absolute pressure transducer. An analysis of sources of error gives a maximum density error of 0.05% for densities
near unity. The measured densities of the silicone oil over a range of temperatures are presented in Fig. Al. Open
and solid symbols correspond to measurements made before and after the 18 month period of data acquisition,
respectively. It is clear that the density is very nearly a linear function of temperature over the range of interest
and a linear least-squares fit shown in the figure is given by Eq. (5) in Section 3A.

The absolute viscosity of the silicone oil was measured using a Model DV-II Brookfield Digital Viscometer.
Although not quite as accurate as a factory calibrated Cannon-Fenske viscometer used for measuring kinematic
viscosity, proper cone selection and experience showed that repeatable measurements with error on the order of
0.5% is expected. Silicone oil viscosity measurements taken before and after the 18 month period of the experiment
are plotted in Fig. A2. The linear least-squares fit shown in the figure is given by Eq. (6) in Section 3A.
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APPENDIX B: Calculation of Dendrite Volume and Area

The mathematical determination of the volume and surface area of the dendrite models is not a trivial matter.
Clearly, the total volume and area for a dendrite composed of intersecting cylinders with hemispherical ends are
less than the volume and area of the nonintersecting cylinders used in their construction, and one needs to ascertain
the common volume and masked area in regions of intersection. Figure Bl displays two types of mutual
intersections of three cylinders. In Fig. Bl(a) a cylinder of radius R2 is symmetrically pierced by two orthogonally
intersecting cylinders of smaller radii R1. In Fig. Bl(b) three cylinders of equal radii R2 mutually intersect at the
origin of the Cartesian coordinate system. We write V1/2 for the volume of cylinder 1 displaced by cylinder 2;
A1/2 is the area of cylinder 1 masked by cylinder 2; etc. Note that in general A1/2 ≠ A2/1.

Consider first the problem of the orthogonal intersection of a single cylinder of radius R1 along the y-axis with
a larger cylinder of radius R2 along the z-axis as shown in Fig. B1. The cylindrical surfaces are described by the
equations

x z R x y R B2 2
1
2 2 2

2
2 1+ = + =,      . ( )

The following expression for V1/2 may be integrated once to obtain

V dz y x dx I R I B
R x z

1 2 0 1 2
2

20
8 4 4 2

1

/
( )

( ) , ( )= = +∫ ∫

where

I R R R R R z z dz
R

R R F m R R E m
R

B1 2
2

1
2

1
2

2
2

1
2 2 4

0
2

2
2

1
2

2
2

1
22

3
2

1 3= −( ) + −( ) − = −( ) − −( )[ ]∫ ( ) ( ) ( )

I
R z

R
dz R R m E m m F m B

R
2

1
2 2

20 1 2
2 1 21

4 1 4=
−









= + −[ ]∫ −arcsin ( * | ) ( ) ( | ) . ( )/ φ φ

Here F m and E m( ) ( )  are complete elliptic integrals of the first and second kind, respectively, with modulus

m = R1
2/R2

2. In Eq. (B4) φ = sin-1 m  and φ* is defined through the relation

F m m F m B( | ) ( * | ). ( )/φ φ= 1 2 5

I2 was calculated by the change variables sinθ = R y R1
2 2

2− and subsequent integration by parts yielding an

incomplete elliptic integral of the second kind with modulus greater than unity. Using identities in Abramowitz
& Stegun,[27] the result was rewritten in standard form with modulus less than unity. Combining results one obtains
the common volume for two intersecting cylinders as
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V
R

m F m m E m R E m m m F m B1 2
2
3

2
3 1 24

3
1 1 2 4 1 6/

/( ) ( ) ( ) ( ) ( * | ) ( ) ( | ) . ( )= − − −[ ] + + −[ ]−φ φ

Consider now the computation of masked areas. Referring again to Fig. Bl the area of cylinder R1 masked by
cylinder R2 is given by

A R R R R d R R E m B1 2 2
2

1
2

1
2 2

1 1
0

2

1 1 28 8 7/

/
sin ( ) ( )= −( ) +∫ =θ θ

π

where θ1, is the azimuthal coordinate for the smaller cylinder. The area of cylinder R2 masked by cylinder R1 is
given by

A R R R d R R m E m m m F m B2 1 1
2

2
2 2

20 2 2 1 2
1 2 18 8 1 8/

/sin ( * | ) ( ) ( | ) ( )= − = + −[ ]∫ − −θ θ φ φ
φ

where θ2 is the azimuthal coordinate for the larger cylinder and φ is defined above. Thus the total masked surface
area for two orthogonally intersecting cylinders is given by

∆A A A R R E m m E m m m F m B1 2 1 2 2 1 1 2
1 2 18 1 9/ / /

/( ) ( * | ) ( ) ( | ) . ( )= + = + + −[ ]− −φ φ

The overlapping volume and area for three orthogonally intersecting cylinders two of radii R1 and the third
of radius R2 > R1 may now be calculated. We note in Fig. 1 in Section 1 that the smaller cylinders do not intersect

each other outside the boundary of the larger cylinder. In this case R1 ≤ R2/ 2 , and the reduced volume due to
mutual intersection is simply twice V1/2. We denote this volume as ∆V1/1/2, and hence

∆V
R

m F m m E m R E m m m F m B1 1 2
2
3

2
3 1 28

3
1 1 2 8 1 10/ /

/( ) ( ) ( ) ( ) ( * | ) ( ) ( | ) . ( )= − − −[ ] + + −[ ]−φ φ

Similarly, the total masked area of the three intersecting cylinders denoted as ∆A1/1/2 is simply twice ∆A1/2, and
substituting m = R1/R2 into (B9) yields

∆A R m E m E m m m F m B1 1 2 2
2 1 2 1 216 1 11/ /

/ /( ) ( * | ) ( ) ( | ) . ( )= + + −[ ]−φ φ

Consider lastly the special case of three orthogonally intersecting cylinders of equal radii R as shown in
Fig. B2. The volume common to two intersecting cylinders can be determined by setting R1 = R2 in Eq. (B6) and
taking the limit m → 1 which yields

V R B2 2 2
316 3 12/ / . ( )=
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When a third cylinder perpendicularly intersects these two cylinders as in Fig. B2, the volume of the third cylinder
displaced by the other two is given by

V R r rdrd R B
R

2 2 2 2
2 2 2

00

4
2
316

16
3

3 2
2

1 13
2

/ /
/

sin . ( )= − = −




∫∫ θ θ

π

The total displaced volume for three mutually intersecting cylinders of equal radii R2 is then

∆V V V R B2 2 2 2 2 2 2 2 2
38 2 14/ / / / / . ( )= + =

The area of a single cylinder masked by the two other intersecting cylinders in Fig. B2 is given by

A R d R B2 2 2
2

4

2
2
28 8 2 15/ /

/
sin , ( )= =∫π

π
θ θ

and the masked area of the three orthogonally intersecting cylinders is readily found to be

∆A A R B2 2 2 2 2 2
23 24 2 16/ / / . ( )= =

The volume and its surface area of a dendrite model can now readily be determined. Suppose the dendrite is
composed of m triple intersections of cylinders of equal radii R2 and n mutual intersections of two cylinders of
radii R1 with one of the larger cylinders of radius R2. The volume and surface area of that dendrite is given by

V V V V B= − −Σ ∆ ∆1 2 2 2 2 1 1 2 17, / / / / ( )m n

A A A A B= − −Σ ∆ ∆1 2 2 2 2 1 1 2 18, / / / / ( )m n

where ΣV1,2 is the sum of the volumes and ΣA1,2 is the sum of the surface areas of all the individual nonintersecting
cylinders of radii R1 and R2 which make up the dendrite. Extensions of this methodology to dendrites with systems
of smaller branches is straight forward.
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