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It is now recognized that self-as-
sembly is a powerful synthetic 
approach to the fabrication of 
nanostructures with feature sizes 
smaller than achievable with state 
of the art lithography, and with a 
complexity approaching that of 
biological systems. For example, 
recent research has shown that 
silica/surfactant self-assembly can 
direct the formation of porous and 
composite thin film mesostructures 
characterized by precise periodic 
arrangements of inorganic and or-
ganic constituents on the scale 
of one to 50 nanometers in size. 
Despite the potential utility of 
these films for a diverse range 
of applications, such as sen-
sors, membranes, catalysts, 
waveguides, lasers, nano-flu-
idic systems, and low dielectric 
constant insulators, the mecha-
nism of thin film self-assembly 
remains largely unexplored. 
Understanding and ultimately 
controlling of self-assembly is 
critical in order for it to transi-
tion from largely a laboratory 
practice to a reliable ‘tool’ for 
nanofabrication.
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In this study, time-resolved grazing incidence small angle x-ray scat-
tering (GISAXS) was combined with gravimetric analysis and infrared 
spectroscopy, to structurally and compositionally characterize in situ 
the evaporation-induced self-assembly (EISA) of a homogeneous silica/
surfactant/solvent solution into a highly ordered surfactant-templated 
mesostructure. Using detergent-like molecules of cetyl trimethyl am-
monium bromide (CTAB) as the structure-directing agents, a two-di-
mensional hexagonal thin film with cylinder axes oriented parallel to the 
substrate surface forms from an incipient lamellar (layered) mesophase 
through a correlated micellar intermediate. A comparison with the cor-
responding CTAB/water/alcohol system (prepared without silica) shows 
that the hydrophilic and non-volatile silicic acid components participate 
in self-assembly and, along with the presence of solid-liquid and liquid-
vapor interfaces, significantly influence the self-assembly pathway.

In this study we used time-resolved 
GISAXS combined with gravimetric 
analysis to structurally and com-
positionally characterize in situ 
the EISA process. Solutions were 
dispensed onto a silicon substrate 
positioned horizontally on the 
platform of a weighing balance 
that was confined within a cell, 
allowing controlled solvent evapo-
ration. The liquid spectrometer at 
beamline X22B allowed the x-rays 
to impinge upon the surface at 
grazing incidence, and the scat-

tering was continuously collected 
onto a charge-coupled device cam-
era. In situ stress and attenuated 
total reflection-Fourier transform 
infrared spectroscopy (ATR-FTIR) 
measurements, performed using 
the identical horizontal geometry 
and x-ray reflectivity analysis of 
the final self-assembled films, 
enabled further structural inter-
pretation of the GISAXS results, 
providing greater insight into the 
self-assembly pathway.

Figure 1 shows the temporal 
evolution of starting weight 
percentage for the 0.12 sample 
(where 0.12 is the CTAB-to-Si 
molar ratio), along with that 
calculated for the surfactant, 
CTAB. The self-assembly 
pathway comprises four suc-
cessive stages: (I) isotropic, 
(II) lamellar, (III) correlated 
micellar, and (IV) hexagonal, 
where each is characterized 
quantitatively by the d-spacing 
observed normal to the sub-
strate, and, for the hexagonal 
phase, the in-plane spacing afcr 
(where fcr is the face-centered 
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rectangular lattice representation 
of the hexagonal lattice). Figure 
2 maps the evaporation-induced 
compositional trajectories of the 
three CTAB/silica systems onto 
the bulk water/ethanol/CTAB 
phase diagram. Also plotted is the 
trajectory for the sample prepared 
without silica (WS). Selected cor-
responding GISAXS patterns ob-
tained after the specified times, t 
(seconds), are presented. 

The formation of the lamellar phase 
(Region II in Figure 1, inset b in 
Figure 2) is completely unex-
pected from the bulk phase dia-
gram and is not observed in the 
WS system. Based on orientation, 
we attribute its appearance to the 

Figure 2: Bulk and thin-film ternary phase diagram. The 
evaporation-induced compositional trajectories of the 
three CTAB/silica systems 0.10 0.12,and 0.16 and WS 
systems are mapped onto the bulk water/ethanol/CTAB 
phase diagram, considering the hydrophilic silicic acid 
precursors  to be equivalent to water. For the 0.12 
sample (a) corresponds to the isotropic phase, (b) the 
lamellar, (c & d) the correlated micellar, (e & f) the 
hexagonal and for the WS sample, (g) corresponds to 
isotropic, (h) correlated micellar, (i & j) lamellar and 
correlated micellar, and (k) to crystalline CTAB.

local enrichment of the sol (the 
silica/surfactant/solvent solution) 
at the liquid-vapor interface. We 
also observe a continuous reorga-
nization of both the mesostructure 
and the lattice dimension within 
Regions II-IV (Figure 1) that 
results from the reorganization 
of the surfactant molecules within 
the lamellar or micellar structures 
due to ethanol evaporation. For all 
samples of CTAB and the other sur-
factant systems that were studied, 
we find that the presence or ab-
sence of hydrophilic silica species 
dramatically influences mesophase 
development. Generally, without 
silica, the evaporation of solutions 
like WS results in a crystalline 
surfactant product without form-

ing the mesophase(s) anticipated 
from the bulk phase diagram. This 
apparent kinetic effect presumably 
results from the evaporation of wa-
ter. We suppose that such kinetic 
barriers are avoided for silica-con-
taining systems because the silicic 
acid species serve as non-volatile 
fluids that are as hydrophilic as 
water. 

As a result of this study, we now 
recognize the opportunity to con-
trollably interrupt EISA to derive 
novel intermediate sandwich-like 
structures or fine-tune the d-spac-
ing and its associated properties, 
such as surface area, refractive 
index, and dielectric constant.

Figure 1: The temporal evolution of structure and 
composition for the 0.12 sample


