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Abstract

For any space mission, safety and reliability are the most
important issues. To tackle this problem, we have studied
anomaly detection and fault diagnosis methods for space-
craft systems based on machine learning (ML) and data
mining (DM) technology. In these methods, the knowledge
or model which is necessary for monitoring a spacecraft
system is (semi-)automatically acquired from the spacecraft
telemetry data.

In this paper, we first overview the anomaly detection
/ diagnosis problem in the spacecraft systems and conven-
tional techniques such as limit-check, expert systems and
model-based diagnosis. Then we explain the concept of
ML/DM-based approach to this problem, and introduce sev-
eral anomaly detection / diagnosis methods which have
been developed by us.

1. Introduction

For any space mission, safety and reliability are the most
important issues. Especially, development of advanced
anomaly detection and fault diagnosis methods utilizing the
latest information technologies such as artificial intelligence
is essential for reliable operation of large scale complex
space systems.

Conventionally, anomaly detection and diagnosis meth-
ods based on apriori expert knowledge and deductive rea-
soning process such as expert systems and model-based
reasoning have been principally studied for this purpose.
While these knowledge-intensive approaches have been
proved to perform much better than the classical limit-
checking method, it is often costly and time-consuming to
prepare the knowledge-base or model-base which are re-
quired for them.

On the other hand, in recent years, inductive reasoning

techniques so called data-mining (DM) or machine learning
(ML) technologies have drawn much attention as alterna-
tive approaches to the anomaly detection problems in var-
ious application fields. The authors also have considered
the potential value of the spacecraft telemetry data stored
in ground stations, and studied DM/ML-based anomaly de-
tection and fault diagnosis methods for spacecraft systems.
These methods utilize large amount of past telemetry stored
in the ground station as training data to appropriately update
various parameter values contained in the diagnosis mod-
els which are given by experts, or automatically acquire the
rules, patterns and models regarding the spacecraft systems.
Then, they use the modified or acquired models or rules to
detect and diagnose anomalies by comparing them with ac-
tual on-line telemetry. A significant advantage of this ap-
proach compared with the conventional expert systems and
model-based diagnosis approach is that it does not require
complete and accurate expert knowledge in the form of rule-
base or model-base in advance.

In this paper, we explain the ML/DM-based approach
to the anomaly detection / fault detection issues for space-
craft systems and introduce several specific methods based
on this concept. Relationship with the conventional meth-
ods and other application fields is also discussed. The rest
of this paper is organized as follows. In section 2, we con-
sider how advanced anomaly detection and fault diagnosis
technologies are significant for ensuring the highest level of
safety and reliability which is requested by any spacecraft
system, and review the three major conventional methods
– limit checking, expert systems, and model-based diagno-
sis. In the latter part of this section, we survey the new
approach to the anomaly detection problem based on ma-
chine learning / data-mining methodology, which has been
actively studied in these years. In section 3, we introduce
our studies on ML/DM-based anomaly detection / fault di-
agnosis methods for spacecraft systems. Finally, in section
4, we present some concluding remarks and future direc-
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tions for further study.

2. Spacecraft and Anomaly Detection / Diagno-
sis Problem

2.1. Reliability of Space Systems in Opera-
tion Phase

Space systems such as artificial satellites, launchers,
space stations, etc require the highest level of safety and
reliability. Though this may be obvious, main reasons for it
will include the followings:

• Generally, the development of a space system requires
so much money and time that any fatal failure is not
acceptable.

• Many space systems such as communication satellites,
meteorological satellites, global positioning system are
indispensable for our modern lives.

• As a space system is operating in a remote environ-
ment, it is practically impossible or very hard to repair
it once a severe failure occurs.

On the other hand, it is difficult to eliminate the possi-
bility of malfunction in space systems completely no matter
how carefully they are designed and produced, because they
are so-called large-scale, complex systems like airplanes,
nuclear plants, and so on. In a sense, the history of space ex-
ploration and development has demonstrated indirectly that
this is true.

Therefore, various efforts not only in the design, devel-
opment, and test phases but also in the operation phase are
required to ensure the highest level of safety and reliability.
It is no doubt the development of advanced anomaly detec-
tion and fault diagnosis technologies is a major part of them.
Actually, as will be mentioned below, several attempts to
develop such advanced anomaly detection and fault diagno-
sis methods by applying various information technologies
(IT) and artificial intelligence (AI) have been made.

2.2. Conventional Approaches

In this section, we review three representative conven-
tional approaches to the anomaly detection and fault diag-
nosis problem in space systems. They are (i) (classical)
limit checking, (ii) expert systems, and (iii) model-based
diagnosis.

2.2.1 Limit Checking

Limit checking (also known as limit check and limit sens-
ing) is the most fundamental and still the most widely used

anomaly detection technique for spacecraft systems. Its ba-
sic function is to monitor whether various sensor values
such as bus currency, voltage, angular velocity, temperature,
and so on are within pre-determined ranges which are spec-
ified by upper and lower limits, and issue a warning if any
of them is violated. Usually, limit checking is performed on
a selected number of numeric telemetry series, rather than
on all (up to several hundred) series.

While the limit values are initially decided by designers
and engineers, they are often adjusted by operators’ hands
on orbit. Another popular extension to the basic limit check-
ing is to use multiple sets of upper and lower limits on a
variable depending upon the operational mode of the sys-
tem, the level of urgency, and so on.

There seem to be two major reasons why the limit check-
ing is still playing a central role in the space system oper-
ation. One is its simplicity, which means it is easy for hu-
man operators to implement a system, apply it to the space-
craft, and understand the detection results. The other is its
achievement that a number of anomalies or malfunctions
have been actually detected by this method.

However, the simplicity of limit checking means there
are inevitable limitations at the same time. First, there exist
a number of anomalies or their symptoms which cannot be
detected just by monitoring whether sensor values are be-
tween upper and lower limits. In other words, some class
of anomalies occur without violating the limits on the vari-
ables. This will be reasonable when considering the lack of
representational power of limit checking. Another signifi-
cant problem with limit checking is that it is laborious and
costly for engineers and operators to pre-determine or adjust
the limit values appropriately taking various conditions into
account. If the limit values are inappropriate, it will either
fail to detect any anomaly at all, or issue a great number of
false alarms, which makes the operators insensitive to real
anomalies.

To overcome these difficulties of the classical limit
checking, a variety of machine learning methods (espe-
cially, non-linear regression methods) have been utilized re-
cently. A famous example of them is ELMER which was
developed by DeCoste[3], in which appropriate sets of limit
values are automatically learned from past telemetry data.
In section 3, we will describe another adaptive limit check-
ing technique based on relevance vector regression method.

2.2.2 Expert Systems

The emergence and development of expert systems (a.k.a.,
rule-based systems, and knowledge-based systems) would
be one of the most significant achievements of artificial
intelligence (AI) in its early days. In the research of di-
agnosis systems for spacecraft, a number of expert sys-
tems were studied and developed mainly in 80s and early



90s[17, 2, 1, 15]. The principle common to all of them is to
infer causes of anomalies using sets of rules that specify re-
lationships between symptoms and failures. The set of rules
is called knowledge-base and carefully prepared by domain
experts.

While some of the above mentioned expert systems are
based on nothing more than a table lookup[2], the other sys-
tems are employing more sophisticated mechanisms such
as certainty factors (CF)[1, 15] and frame-based knowledge
representation[17]. A noteworthy example of an expert
system for spacecraft operation is ISACS-DOC (Intelligent
Satellite Control Software DOCtor)[13]developed by ISAS
and JAXA, which has been employed in a series of space-
craft for deep space exploration mission such as GEOTAIL,
NOZOMI and HAYABUSA for more than ten years.

Obviously, expert systems outperform the limit checking
in representational power and diagnosis capability. They
have, however, their own problems. For example, they are
unable to deal with “unknown” anomalies, because it is re-
quired that all possible failures and symptoms are enumer-
ated and the relationships between them are described in
advance. Besides, they have difficulties in keeping the con-
sistency of the knowledge-base when some design changes
take places in the middle of system development, and in de-
termining appropriate CF values when the number of possi-
ble symptoms increases.

2.2.3 Model-based Diagnosis

Model-based anomaly detection and diagnosis methods for
spacecraft systems have been also actively studied[19, 8, 5,
4, 14], along with expert systems which were mentioned
above. Their fundamental principle is to detect anomalies
and reason about the causes by comparing simulation re-
sults obtained from some computational models with ac-
tual behavior of the target systems. A pioneering work in
this approach is Livingstone[19], which was originally de-
veloped as a part of ReactiveAgent and tested on NASA’s
DeepSpaceOne (DS-1) mission.

Most of the early model-based diagnosis systems in-
cluding Livingstone are based on qualitative models and
reasoning[5, 4, 14]. In recent years, however, an alterna-
tive approach based on hybrid probabilistic models and rea-
soning has drawn much attention[8], in which a spacecraft
system is represented by a stochastic model containing both
discrete and continuous variables and its behavior is sim-
ulated by a Monte Carlo simulation based state estimation
method called particle filter. A major factor in its popular-
ity will be the dramatic advances in computer performance,
as characterized by Moore’s law.

Our anomaly detection and diagnosis method based on
Dynamic Bayesian Networks (DBNs) which is explained
in section 3 can also be classified into the latter category,

though it has an advanced learning capability of estimating
unknown parameters in the model from past data.

2.3. Anomaly Detection and Diagno-
sis Based on Machine Learning /
Datamining Technologies

The conventional anomaly detection and fault diagno-
sis techniques reviewed above are driven by apriori ex-
pert knowledge such as sets of limit values, rule-bases, and
model-bases. In other words, they are based on deductive
reasoning processes.

On the other hand, an alternative approach to the
anomaly detection problem based on machine learning
(ML) or data mining (DM) has drawn much attention re-
cently in a variety of areas. The basic idea of this ap-
proach is to acquire the system behavior models necessary
for anomaly detection and diagnosis from past data (semi-
)automatically, rather than from human experts. There are
two main factors behind this trend:

• It is very laborious and costly to prepare and main-
tain by hand the complete and accurate expert knowl-
edge such as rule-base and model-base, which are in-
dispensable for the deductive approach.

• It becomes relatively easy to obtain, store and process
a vast amount of sensor data, through the recent ad-
vances in technology.

In the research community of machine learning and
datamining, a number of researchers are increasingly in-
terested in applying the ML/DM technology to a variety
of anomaly detection problems in the real world. For
example, applications to detection of emerging disease
outbreak[11], failure detection of computer networks[21],
prediction of train wheel failures[22], fraud detection in
stock market[12], and our work on spacecraft anomaly
detection[7] have been reported in The Eleventh ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining (KDD-05). In this conference, a spe-
cial workshop named “Data Mining Methods for Anomaly
Detection” was also held.

In these studies, not only classical machine learning
methods such as supervised learning and clustering but
also other closely related methods such as outlier detection,
change-point detection, kernel theory and so on are utilized.

3. Proposed Methods

3.1. Overview

In this section, we introduce four ML/DM-based
anomaly detection and diagnosis methods for spacecraft



systems we have developed. Among them, the first two
studies are considered as “data-driven” anomaly detection
methods which require almost no apriori expert knowledge.
The third one, on the other hand, is regarded as “hybrid” ap-
proach in which probabilistic inference (deductive process)
is integrated with statistical estimation of unknown param-
eters using past data (inductive process). The last one is a
visualization method of telemetry data (rather than an au-
tonomous detection/diagnosis method) that is intended to
support human operators in monitoring the large amount of
telemetry data.

3.2. Data-driven Approach 1: Adaptive
Limit Checking with Relevance Vec-
tor Regression

As was mentioned in section 2.2.1, limit checking is still
utilized as the primary method of monitoring and fault de-
tection in the operation of spacecraft systems because of its
simplicity and reasonable performance.

Taking this fact into consideration, we developed an ad-
vanced limit checking method with the capability of learn-
ing appropriate limit values from past telemetry data[6].
The learning is performed by the Relevance Vector Ma-
chine (RVM). RVM (also known as Sparse Bayesian Learn-
ing) is a kernel-based regression and classification method
which was originally introduced by Tipping[18]. In our
method, RVM is used to learn a prediction model of upper
and lower limit values for each target variable (i.e., teleme-
try series) from past normal data. Then, obtained models
are used in the subsequent operations to predict appropri-
ate ranges of the target variables and detect anomalies on-
line. Although another kernel-based classification and re-
gression method called Support Vector Machine (SVM) is
more widely known than RVM at the moment, we consider
RVM is more suitable for limit checking, because it is able
to predict the probability density distribution or range of a
target variable whereas SVM gives only a point estimation.

Figure1(upper) shows actual pitch rate of ETS-VII which
was a testing satellite of JAXA (solid line) and upper and
lower limits (break lines) predicted by the proposed method.
The the change of likelihood is also shown in the bottom.
The predicted range is much tighter than ordinary constant
limit values, which means the false negative rate can be dra-
matically reduced. We reported the results of another ex-
periment applying this method to a rendezvous simulation
of orbital transfer vehicle with ISS. In this experiment, it
was demonstrated that this method is able to detect differ-
ent types of thruster failures quickly.

On the automated learning of limit values, several simi-
lar studies have been reported. ELMER[3] learns the upper
and lower limits of a target variable by linear functions with
respect to heuristic features. In our previous work[20], we
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Figure 1. Pitch Rate of ETS-VII and Limit Val-
ues Predicted By Proposed Method (Top :
Actual Pitch Rate, Bottom : Likelihood)

proposed another learning method of limit values using re-
gression tree, in which an appropriate range of a target vari-
able is predicted with respect to other symbolic variables
(or status variables).

3.3. Data-driven Approach 2: Anomaly De-
tection from Telemetry with Kernel
Principal Component Analysis

In this study, we developed another data-driven anomaly
detection method which requires almost no apriori expert
knowledge. This method is based on Kernel Principal Com-
ponent Analysis (Kernel PCA)[16]. While the detail of this
method is explained in [7], we present the basic idea here.

First, if a spacecraft system is made stationary by a
proper feedback control law, we can assume that some static
cause-effect relationships exist among the observation vari-
ables consisting the telemetry data. For example, when
we consider only the orbit and attitude motion, the static
cause-effect relationships should be represented by a set of
equations of motion with fixed parameters. This implies
that the behavior of a (controlled) spacecraft system is con-
strained on a intrinsic low-dimensional manifold, no matter
how high the dimension of observation space is, or no mat-
ter how many series the telemetry contains. Now consider
some significant anomaly occurs to the system, then we can
expect the shape of manifold to be also changed, because
the cause-effect relationships are affected by the anomaly.
The key idea in the proposed method is to map non-linearly
the telemetry (or observation data) of each time segment
into a high dimensional feature space by the polynomial
kernel, and detect the system anomaly or transformation of
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the manifold as a change in principal directions of the data.

We tested this method on the data set of rendezvous
simulation of orbital transfer vehicle mentioned above, and
confirmed that it was able to detect several different kinds
of anomalies in the thrusters. Figure 2 shows an example
of the results. The bottom figure shows the ratio of actual
output of Thruster 9 to the expected output. (Note that the
actual outputs of thrusters are unobservable. ) As can be
seen from this figure, a fault occurs at time 250[sec] and the
thruster output goes down to zero sharply, then repeats rises
and falls. The top figure shows the transition of anomaly
metric used in the proposed method. This anomaly metric is
defined as the change of directions of principal axes in the
kernel feature space. We can see that this method detects
the fault when the anomaly metric exceeds a threshold. The
threshold is semi-automatically determined by the statisti-
cal criterion, assuming that the principal directions in nor-
mal operation follow the von Mises-Fisher distribution. For
comparison, detection result with the adaptive limit check-
ing by RVM mentioned previously is also shown in the mid-
dle figure. Though both methods successfully detected the
anomaly in this case, there were several anomaly patterns
which the kernel PCA method was successful with but the
adaptive limit checking was not.

3.4. Model-Data Hybrid Approach :
Anomaly Detection and Diagnosis
with Dynamic Bayesian Networks

As discussed in section 2.2.3, a common major problem
in the conventional model-based diagnosis methods is that
the system models, whether qualitative or quantitative, are
required to be complete and accurate in advance.

To cope with this problem, we have developed a hybrid
approach which combines a deductive anomaly detection /
diagnosis process based on probabilistic inference and an
inductive model estimation process based on learning from
past telemetry data[9]. More specifically, the behavior of
spacecraft is modeled by a kind of probabilistic graphical
model called Dynamic Bayesian Network(DBN), whereas
unknown parameters and structures contained in the model
are learned from the telemetry in normal operation.

The Dynamic Bayesian Network (DBN)[10] is an ex-
tension of the Bayesian Network (BN) intended to model
a variety of dynamical systems. The DBN can be re-
garded as a generalized state space model that contains
the Kalman filter (KF) and Hidden Markov Model (HMM)
as special cases. It is especially suitable for model-
ing “hybrid systems” which contain both continuous vari-
ables (e.g.,velocity, attitude angle, etc.) and discrete vari-
ables (e.g.,operation modes, statuses of instruments, etc.)
Besides, efficient approximation algorithms for the in-
ference on DBNs such as junction-tree algorithm, Rao-
Blackwellized Particle Filter have been developed so far. In
our method, uncertain parameters and structures in the DBN
are learned from past telemetry data in normal operation by
a modified version of EM (Expectation-Maximization) al-
gorithm.

We applied this method to the data of rendezvous simu-
lation mentioned before, and examined its validity. Figure 3
shows a DBN which models the orbit and attitude motions
of the spacecraft. Shaded nodes in this network represent
unobservable variables. The DBN performs the anomaly
detection and diagnosis by sequentially estimating the un-
observable variables from observable variables (represented
as white nodes) In this experiment, too, we assumed several
different patterns of anomalies in the thrusters of vehicle.
For example, in Case 1(Figure 4) which is a simplest pat-
tern, the ratio of actual Thruster 4 output to expected out-
put begins to go down at time 250[sec] then falls to 0 af-
ter 60 seconds. In Case 2(Figure 5), a more complicated
pattern is assumed in which the output ratio of Truster 9
abruptly falls to zero at time 250[sec] and then repeatedly
rises and falls with an interval of 60 seconds. Figures 6 and
7 show the outputs of all thrusters estimated by the DBN in
the two cases. Again, please note that they are not observ-
able. As can be seen from these figures, anomalies of the
right thrusters are successfully detected, though estimated
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outputs of other thrusters are slightly affected in the latter
case.

3.5. Telemetry Visualization Based on
Change-point Detection

In the three studies above, our purpose of using various
ML/DM techniques was to develop telemetry monitoring
systems that directly detect anomalies in the spacecraft sys-
tems. Another promising application of the ML/DM tech-
nologies is to provide the operators with useful informa-
tion by summarizing and visualizing the large amount of
data, and to assist them in understanding the health status
of the spacecraft and discovering symptoms of anomalies.
In the last case study, we introduce a telemetry visualiza-
tion method which extracts only important patterns in the
high-dimensional time-series data. Of course, a specific
definition of “important patterns” depends on a number of
factors including spacecraft systems, operation modes, skill
and knowledge of operators, and so on. In general, however,
it is reasonable to assume “change points” where the char-
acteristics of the time-series change drastically contain im-
portant information, because they are likely to correspond
to some actual changes or events occurred in the system.
Based on this idea, the proposed visualization method first



extracts all change-points in each series of telemetry, then
displays the results for all series after sorting them so that
highly associated series are placed in neighborhood. We uti-
lized the locally stationary autoregressive model and spec-
tral ordering method for the detection of change-points and
ordering of the series, respectively. We applied this method
to the telemetry of a commercial communication satellite
owned by Space Communication Corporation (SCC). Fig-
ure 8 shows the telemetry for a day as it is. On the other
hand, Figure 9 shows the result of change-points detection
and ordering of series. In addition, Figure 10 shows the
strengths of associations among the series in a matrix form.
As a result of ordering, there appear several partially over-
lapping blocks in this figure. We consider that this means
there are several process groups which are loosely coupled.
The block pattern like Figure 10 varies day by day. We are
now investigating how effective this visualization method
is.

4. Conclusion

In this paper, we discussed the anomaly detection and
diagnosis problem in the space system operation, reviewed
conventional approaches to it, and introduced a new ap-
proach based on machine learning and datamining tech-
nologies. The key idea of this approach is to maximally
utilize past telemetry data for acquiring system behavior
models that can be used for anomaly detection, compensat-
ing for the lack of apriori expert knowledge, and providing
useful information for operators’ decision making.

While the methods described in section 3 have shown
promising performance so far, there are still problems for
practical use. For example, a significant issue is how we
can guarantee the reliability and generality of the acquired
information from data. Effective and intuitive ways of pre-
senting outputs from the detection / diagnosis systems must
be also considered, because a ML/DM technique is often
used as a “black-box”. Though there is no absolute answer
to these questions, we believe that development of systems
promoting interaction between experts (or their knowledge)
and information derived from data is a right direction.
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Figure 9. Visualization Result Based on
Change-Point Detection for The Data of Fig-
ure 8
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