Los Alamos National Laboratory
   Lab Home  |   Phone
 
 



Personal tools
Navigation
Log in


Forgot your password?
New user?
telluride poll

How did you find out about the project?

Search Engine
Friend
Publication
Presentation/Workshop

 
Document Actions

Publications

The following is a list of publications and references that are relevant to the Telluride Project.  The list is fairly long so please allow some time for the page to load if you are working on a slower internet connection.

If you would like to download a copy of this list, click here.


[1] L. M. Adams, R. J. Leveque, and D. M. Young. Analysis of the SOR iteration for the 9-point Laplacian. SIAM Journal on Numerical Analysis, 25:1156–1180, 1988.

[2] F. L. Addessio, D. E. Carroll, J. K. Dukowicz, F. H. Harlow, J. N. Johnson, B. A. Kashiwa,

M. E. Maltrud, and H. M. Ruppel. CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Technical Report LA–10613–MS, Los Alamos National Laboratory, 1986.

[3] M. Aftomis, D. Gaitonde, and T. S. Tavares. Behavior of linear reconstruction techniques on unstructured meshes. AIAA Journal, 33:2038–2049, 1995.

[4] AIAA. Guide for the Verification and Validation of Computational Fluid Dynamics Simulations, AIAA-G-077-1998. 1998.

[5] R. E. Alcouffe, A. Brandt, , J. E. Dendy, Jr, and J. W. Painter. The multi-grid method for the diffusion equation with strongly discontinuous ceofficients. SIAM Journal on Scientific Computing, 2:430–454, 1981.

[6] I. Aleinov and E. G. Puckett. Computing surface tension with high-order kernels. In H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 13–18, Lake Tahoe, NV, 1995.

[7] V. Alexiades and A. D. Solomon. Mathematical Modeling of Melting and Freezing Processes. Hemisphere, Washington, DC, 1993.

[8] A. S. Almgren, J. B. Bell, P. Colella, and L. H. Howell. An adaptive projection method for the incompressible Euler equations. In J. L. Thomas, editor, Proceedings of the AIAA Eleventh Computational Fluid Dynamics Conference, pages 530–539, 1993. See also AIAA Paper 93–3345.

[9] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. Technical Report UCRL–JC– 112842, Lawrence Livermore National Laboratory, 1993.

[10] A. S. Almgren, J. B. Bell, and W. G. Szymczak. A numerical method for the incompressible Navier-Stokes equations based on an approximate projection. SIAM Journal on Scientific Computing, 17:358–369, 1996.

[11] A. A. Amsden. The particle-in-cell method for the calculation of the dynamics of compressible fluids. Technical Report LA–3466, Los Alamos National Laboratory, 1969.

[12] A. A. Amsden and F. H. Harlow. Numerical calculation of supersonic wake flow. AIAA Journal, 3:2081–2086, 1965.

[13] A. A. Amsden and F. H. Harlow. The SMAC method: A numerical technique for calculating incompressible fluid flows. Technical Report LA–4370, Los Alamos National Laboratory, 1970.

[14] A. A. Amsden, P. J. O’Rourke, and T. D. Butler. KIVA-II: A computer program for chemically reactive flows with sprays. Technical Report LA–11560–MS, Los Alamos National Laboratory, 1989.

[15] C. Anderson and C. Greengard. On vortex methods. SIAM Journal on Numerical Analysis, 22:413–440, 1985.

[16] E. Andserson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,

S. Hammarling, A. McKenney, S. Ostrouchov, and D. Sorensen. LAPACK Users’ Guide. SIAM, 1992.

[17] L. K. Antanovskii. A phase field model of capillarity. Physics of Fluids, 7:747–753, 1995.

[18] R. C. Arnold and J. Meyer ter Vehn. Inertial confinement fusion driven by heavy-ion beams. Technical Report MPQ-113, Max Planck Institut Fur Quantenoptik, 1986.

[19] S. F. Ashby and R. D. Falgout. A parallel multigrid preconditioned conjugate gradient algorithm for groundwater flow simulations. Nuclear Science and Engineering, 124:145–159, 1996.

[20] N. Ashgriz and J. Y. Poo. FLAIR -flux line-segment model for advection and interface reconstruction. Journal of Computational Physics, 93:449–468, 1991.

[21] Aubert and DeVille. Steady viscous flows by compact differences in boundary-fitted coordinates. Journal of Computational Physics, 49:490, 1983.

[22] M. Avrami. Kinetics of phase change. Journal of chemical physics, 7:1103–1112, 1939.

[23] P. Bach and O. Hassager. An algorithm for the use of the Lagrangian specification in Newtonian fluid mechanics and applications to free surface flow. Journal of Fluid Mechanics, 152:173–210, 1985.

[24] C. Bailey and M. Cross. A finite volume procedure to solve elastic solid mechanics problems in three dimensions on an unstructured mesh. International Journal for Numerical Methods in Engineering, 38:1757–1776, 1995.

[25] P. K. Barr and W. T. Ashurst. An interface scheme for turbulent flame propagation. Technical Report SAND82-8773, Sandia National Laboratories, 1984.

[26] R. Barrett. Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods. SIAM, Philadelphia, PA, 1993.

[27] T. J. Barth. Recent developments in high order K-exact reconstruction on unstructured meshes. Technical Report AIAA–93–0668, AIAA, 1993. Presented at the 31st Aerospace Sciences Meeting and Exhibit.

[28] T. J. Barth. Aspects of unstructured grids and finite-volume solvers for Euler and Navier-Stokes equations, 1995. VKI/NASA/AGARD Special Course on Unstructured Grid Methods for Advection Dominated Flows, AGARD Publication R-787.

[29] T. J. Barth. Parallel CFD algorithms on unstructured meshes, 1995. VKI/NASA/AGARD Lecture Series on Parallel Computing, AGARD Publication R-807.

[30] T. J. Barth and P. O. Frederickson. Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction. Technical Report AIAA–90–0013, AIAA, 1990. Presented at the 28th Aerospace Sciences Meeting and Exhibit.

[31] T. J. Barth and D. C. Jesperson. The design and application of upwind schemes on unstructured meshes. Technical Report AIAA–89–0366, AIAA, 1989. Presented at the 27th Aerospace Sciences Meeting and Exhibit.

[32] I. E. Barton. Comparison of simple-and PISO-type algorithms for transient flows. International Journal for Numerical Methods in Fluids, 26:459–483, 1998.

[33] P. Batten, C. Lambert, and D. M. Causon. Positively conservative high-resolution convection schemes for unstructured elements. International Journal for Numerical Methods in Engineering, 39:1821–1838, 1996.

[34] C. Beckermann and C.Y. Wang. Multiphase/-scale modeling of alloy solidification. Begell House, 1995.

[35] J. Bell, M. Berger, J. S. Saltzman, and M. Welcome. Three dimensional adaptive mesh refinement for hyperbolic conservation laws. SIAM Journal on Scientific Computing, 15:127– 138, 1994.

[36] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method of the incompressible Navier-Stokes equations. Journal of Computational Physics, 85:257–283, 1989.

[37] J. B. Bell, P. Colella, and L. Howell. An efficient second-order projection method for viscous incompressible flow. In D. Kwak, editor, Proceedings of the AIAA Tenth Computational Fluid Dynamics Conference, pages 360–367, 1991. AIAA Paper 91–1560.

[38] J. B. Bell, C. N. Dawson, and G. R. Shubin. An unsplit, higher order Godunov method for scalar conservation laws in multiple dimensions. Journal of Computational Physics, 74:1–24, 1988.

[39] J. B. Bell and D. L. Marcus. A second-order projection method for variable-density flows. Journal of Computational Physics, 101:334–348, 1992.

[40] T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl. Meshless methods: An overview and recent developments. Computer Methods in Applied Mechanics and Engineering, 139:3–47, 1996.

[41] D. J. Benson. Computational methods in Lagrangian and Eulerian hydrocodes. Computer Methods in Applied Mechanics and Engineering, 99:235–394, 1992.

[42] M. J. Berger and P. Colella. Local adaptive mesh refinement for shock hydrodynamics. Journal of Computational Physics, 82:64–84, 1989.

[43] M. J. Berger and J. S. Saltzman. AMR on the CM-2. Applied Numerical Mathematics, 14:239–253, 1994.

[44] Markus Berndt, Konstantin Lipnikov, Mikhail Shashkov, Mary F. Wheeler, and Ivan Yotov. Superconvergence of the velocity in mimetic finite difference methods on quadrilaterals. SIAM Journal on Numerical Analysis, 43(4):1728–1749, 2005.

[45] G. Birkhoff. Helmholtz and Taylor instability. In Symposium on Applied Mathematics, volume 13, pages 55–76, Providence, RI, 1962. American Mathematical Society. Volume XIII.

[46] A. Bj ¨ork. Numerical Methods for Least Squares Problems. SIAM, 1996.

[47] J. P. Boris and D. L. Book. Flux-corrected transport I. SHASTA, A fluid transport algorithm that works. Journal of Computational Physics, 11:38–69, 1973.

[48] A. Bossavit. Computational Electromagnetism: Variational formulations, Complementarity, Edge Elements. Academic Press, San Diego, CA, 1998.

[49] A. A. Bourlioux. A coupled level set volume of fluid algorithm for tracking material interfaces. In H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 15–22, Lake Tahoe, NV, 1995.

[50] R. L. Bowers and J. R. Wilson. Numerical Modeling in Applied Physics and Astrophysics. Jones and Bartlett, 1991.

[51] J. U. Brackbill. On modeling angular momemtum and vorticity in compressible fluid flow. Computer Physics Communications, 100:335–354, 1987.

[52] J. U. Brackbill. The ringing instability in particle-in-cell calculations of low-speed flow. Journal of Computational Physics, 75:469–484, 1988.

[53] J. U. Brackbill. FLIP MHD: A Particle-in-Cell method for magnetohydrodynamics. Journal of Computational Physics, 96:163–192, 1991.

[54] J. U. Brackbill and D. B. Kothe. Dynamical modeling of surface tension. Technical Report LA-UR-96-1706, Los Alamos National Laboratory, 1996.

[55] J. U. Brackbill, D. B. Kothe, and H. M. Ruppel. FLIP: A low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications, 48:25–38, 1988.

[56] J. U. Brackbill, D. B. Kothe, and C. Zemach. A continuum method for modeling surface tension. Journal of Computational Physics, 100:335–354, 1992.

[57] J. U. Brackbill and H. M. Ruppel. FLIP: A method for adaptively zoned, particle-in-cell calculations of fluid flows in two dimensions. Journal of Computational Physics, 65:314– 343, 1985.

[58] J. U. Brackbill and J. S. Saltzman. Adaptive zoning for singular problems in two dimensions. Journal of Computational Physics, 46:342–368, 1982.

[59] A. Brandt. Multi-level adaptive solutions to boundary-value problems. Mathematics of Computation, 31:333–390, 1977.

[60] W. L. Briggs. A Multigrid Tutorial. SIAM, Philadelphia, PA, 1987.

[61] D. L. Brown and M. L. Minion. Performance of underresolved two-dimensional incompressible flow simulations. Journal of Computational Physics, 122:165–183, 1995.

[62] P. N. Brown and Y. Saad. Hybrid Krylov methods for nonlinear systems of equations. SIAM Journal on Scientific Computing, 11:450–481, 1990.

[63] S.G.R. Brown and J.A. Spittle. Computer simulation of grain growth and macrostructure development during solidification. Materials science and technology, 5:362–368, 1989.

[64] D. Burgess, D. Sulsky, and J. U. Brackbill. Mass matrix forumulation of the FLIP particle-in-cell method. Journal of Computational Physics, 103:1–15, 1992.

[65] M. Bussmann, S. Chandra, and J. Mostaghimi. Modeling the splash of a droplet impacting a solid surface. Physics of Fluids, 12(12):3121–3132, 2000.

[66] M. Bussmann, J. Mostaghimi, and S. Chandra. On a three-dimensional volume tracking model of droplet impact. Physics of Fluids, 11(6):1406–1417, 1999.

[67] G. Caginalp. Stefan and Hele-Shaw models as asymptotic limits of the phase-field equations. Physical Review A, 39:5887–5896, 1989.

[68] J. W. Cahn and J. E. Hilliard. Free energy of a nonuniform system. III. Nucleation in a two-component incompressible fluid. Journal of Chemical Physics, 31:688–699, 1959.

[69] X.-C. Cai. A family of overlapping Schwarz algorithms for nonsymmetric and indefinite elliptic problems. In D. E. Keyes, Y. Saad, and D. G. Truhlar, editors, Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering, pages 1–19, Philadelphia, PA, 1995. SIAM.

[70] L. S. Caretto, A. D. Gosman, S. V. Patankar, and D. B. Spalding. Two calculation procedures for steady, three-dimensional with recirculation. In Proceedings of the Third International Conference on Numerical Methods for Fluid Dynamics, Paris, France, 1972.

[71] N.N. Carlson and K. Miller. Design and application of a gradient-weighted moving finite element code I: In one dimension. SIAM Journal on Scientific Computing, 19:728–765, 1998.

[72] P.C. Carman. Fluid flow through granular beds. Trans. Inst. Chem. Engrs., 15:150–166, 1937.

[73] R. L. Carpenter, K. K. Droegemeier, P. R. Woodward, and C. E. Hane. Application of the piecewise parabolic method (PPM) to meteorological modeling. Monthly Weather Review, 118:586–612, 1990.

[74] H.S. Carslaw and J.C. Jaeger. Conduction of Heat in Solids. McGraw-Hill, New York, second edition, 1959.

[75] V. Casulli and D. Greenspan. Pressure method for the numerical solution of transient compressible fluid flows. International Journal for Numerical Methods in Fluids, 4:1001–1012, 1984.

[76] C.Chan, J. Mazumder, and M.M. Chen. A two-dimensional transient model for convection in laser melted pool. mettransa, 15A:2175–2184, 1984.

[77] K. S. Chan, K. A. Pericleous, and M. Cross. Numerical simulation of flows encountered during mold-filling. Applied Mathematical Modelling, 15:624–631, 1991.

[78] S. Chandra and C. T. Avedisian. On the collision of a droplet with a solid surface. Proceedings of the Royal Society of London, Series A, 432:13–41, 1991.

[79] S. Chandrasekhar. Hydrodynamic and Hydromagnetic Stability. Dover, 1981.

[80] Y.C. Chang, T.Y. Hou, B. Merriman, and S. Osher. A level set formulation of eulerian interface capturing methods for incompressible fluid flows. Journal of Computational Physics, 124:449–464, 1996.

[81] Ch. Charbon, A. Jacot, and M. Rappaz. Three-dimensional probabilistic modelling of equiaxed eutectic solidification in the presence of convection. Materials science and engineering, 173:143–148, 1993.

[82] Ch. Charbon and R. LeSar. A 2d stochastic micro-macro model of equiaxed eutectic solidification. Modelling and simulation in materials science and engineering, 5:1–13, 1997.

[83] M.K. Chen and P.W. Voorhees. The dynamics of transient ostwald ripening. Modelling and simulation in materials science and engineering, 1:591–612, 1993.

[84] S. Chen, D. B. Johnson, and P. E. Raad. Velocity boundary conditions for the simulation of free surface fluid flow. Journal of Computational Physics, 116:262–276, 1995.

[85] D. R. Chenoweth and S. Paolucci. Natural convection in an enclosed vertical air layer with large horizontal temperature differences. Journal of Fluid Mechanics, 169:173–210, 1986.

[86] I-L. Chern, J. Glimm, O. McBryan, B. Plohr, and S. Yaniv. Front tracking for gas dynamics. Journal of Computational Physics, 62:83–110, 1986.

[87] G. Chessire and W. D. Henshaw. Composite overlapping meshes for the solution of partial differential equations. Journal of Computational Physics, 90:1–65, 1990.

[88] Y.-L. Chiang, B. van Leer, and K. G. Powell. Simulation of unsteady inviscid flow on an adaptively refined cartesian grid. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0443.

[89] Seok Ki Choi, Ho Yun Nam, and Mann Cho. Use of the momentum interpolation method for numerical solution of incompressible flows in complex geometries: Choosing cell face velocities. Numerical Heat Transfer, Part B, 23:21–41, 1993.

[90] A. J. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational Physics, 2:12–26, 1967.

[91] A. J. Chorin. Numerical solution of the Navier-Stokes equations. Mathematics of Computation, 22:745–762, 1968.

[92] A. J. Chorin. On the convergence of discrete approximations to the Navier-Stokes equations. Mathematics of Computation, 23:341–353, 1969.

[93] A. J. Chorin. Flame advection and propagation algorithms. Journal of Computational Physics, 35:1–11, 1980.

[94] A. J. Chorin. Computational Fluid Mechanics: Selected Papers. Academic Press, 1989.

[95] A. J. Chorin and G. Marsden. A Mathematical Introduction to Fluid Mechanics. Springer-Verlag, 1993.

[96] P. Chow, C. Bailey, M. Cross, and K.A. Pericleous. Integrated numerical modelling of the complete casting process. In 7th Conference on modeling of casting, welding and advanced solidification processes, September 1995.

[97] B. C. Clark. Science, engineering, and enabling technologies required to support Mars exploration. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA– 92–0482.

[98] T. W. Clyne and W. Kurz. Solute redisribution during solidification with rapid solid state diffusion. Metallurgical Transactions A, 12:965–971, 1981.

[99] P. Colella. A direct Eulerian MUSCL scheme for gas dynamics. SIAM Journal on Scientific Computing, 6:104–117, 1985.

[100] P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computational Physics, 87:171–200, 1990.

[101] P. Colella, L. F. Henderson, and E. G. Puckett. A numerical study of shock wave refractions at a gas interface. Technical Report AIAA 89–1973–CP, AIAA, 1989. Presented at the 9th AIAA CFD Conference.

[102] P. Colella and P. Woodward. The piecewise parabolic method (PPM) for gas-dynamical simulations. Journal of Computational Physics, 54:174–201, 1984.

[103] R. Courant, E. Issacson, and M. Rees. On the solution of nonlinear hyperbolic differential equations by finite differences. Communications on Pure and Applied Mathematics, 5:243– 255, 1952.

[104] A. V. Coward, Y. Y. Renardy, M. Renardy, and J. R. Richards. Temporal evolution of periodic disturbances in two-layer couette flow. Journal of Computational Physics, 132:346–361, 1997.

[105] J. Crank. Free and Moving Boundary Problems. Oxford University Press, 1984.

[106] V. Cristini, J. Blawzdziewicz, and M. Loewenberg. Drop breakup in three-dimensional viscous flows. Physics of Fluids, 10(8):1781–1783, 1998.

[107] S. J. Cummins and M. Rudman. An SPH projection method. Journal of Computational Physics, 152:584–607, 1999.

[108] B. J. Daly. Numerical study of two fluid Rayleigh-Taylor instability. Physics of Fluids, 10:297–307, 1967.

[109] B. J. Daly and W. E. Pracht. Numerical study of density-current surges. Physics of Fluids, 11:15–30, 1968.

[110] A. W. Date. Solution of navier-stokes equations on non-staggered grid. International Journal of Heat and Mass Transfer, 36:1913–1922, 1993.

[111] A. W. Date. Complete pressure correction algorithm for solution of incompressible navierstokes equations on a nonstaggered grid. Numerical Heat Transfer, Part B, 29:441–458, 1996.

[112] A. W. Date. Solution of navier-stokes equations on nonstaggerd grid at all speeds. Numerical Heat Transfer, Part B, 33:451–467, 1998.

[113] S. F. Davis. A simplified TVD finite difference scheme via artificial viscosity. SIAM Journal on Scientific Computing, 8:1–18, 1987.

[114] S. F. Davis. Simplified second-order Godunov-type methods. SIAM Journal on Scientific Computing, 9:445–473, 1988.

[115] J. W. Dawson. Particle simulation of plasmas. Reviews in Modern Physics, 55:403–447, 1983.

[116] F. de la Vallee Poussin. An accelerated relaxation algorithm for the iterative solution of elliptic equations. SIAM Journal on Numerical Analysis, 2:340–351, 1968.

[117] R. DeBar. Fundamentals of the KRAKEN code. Technical Report UCIR–760, Lawrence Livermore National Laboratory, 1974.

[118] F. R. DeJarnette. Mars explorations advances: Missions to Mars. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0485.

[119] J.E. Dendy. Black box multigrid. Journal of Computational Physics, 48:366, 1982.

[120] J.E. Dendy. Black box multigrid for nonsymmetric problems. Appl. Math. Comput., 13:261, 1983.

[121] Jr. J. E. Dennis and R. B. Schnabel. Numerical Methods for Unconstrained Optimization and Nonlinear Equations. Prentice-Hall, Inc., 1983.

[122] H. A. Van der Vorst. Bi-CGSTAB:a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J. Sci. Stat. Comput., 13:631–644, 1992.

[123] N. V. Deshpande. Fluid mechanics of bubble growth and collapse in a thermal ink-jet printhead. In SPSE/SPIES Electronic Imaging Devices and Systems Symposium, January 1980.

[124] K. D. Devine and J. E. Flaherty. Parallel adaptive hp-refinement techniques for conservation laws. Applied Numerical Mathematics, 20:367–386, 1996.

[125] D. DeZeeuw and K. G. Powell. An adaptively refined Cartesian mesh solver for the Euler equations. Journal of Computational Physics, 104:56–68, 1993.

[126] Xu Dong, J.W. Evans, and D.P. Cook. Physical modeling (by particle image velocimetry) and mathematical modeling of metal delivery devices for em and dc casting of aluminum. Light Metals: Proceeding of Sessions, 1997. presented at 1997 126th TMS Annual Meeting, Orlando FL.

[127] J. K. Dukowicz. New methods for conservative rezoning (remapping) for general quadrilateral meshes. Technical Report LA–10112–C, Los Alamos National Laboratory, 1984.

[128] J. K. Dukowicz and J. W. Kodis. Accurate conservative remapping (rezoning) for arbitrary Lagrangian-Eulerian computations. SIAM Journal on Scientific Computing, 8:305–321, 1987.

[129] L. J. Durlofsky, B. Engquist, and S. Osher. Triangle based adaptive stencils for the solution of hyperbolic conservation laws. Journal of Computational Physics, 98:64–73, 1992.

[130] A. S. Dvinsky and J. K. Dukowicz. Null-space-free methods for the incompressible Navier-Stokes equations on non-staggered curvilinear grids. Computers and Fluids, 22:685–696, 1993.

[131] R. C. Dykhuizen. Stability of finite difference representations of partial differential equations–a two step process. Journal of Computational Physics, 70:262–268, 1987.

[132] W. E and C. W. Shu. A numerical resolution study of high order essentially non-oscillatory schemes applied to incompressible flow. Journal of Computational Physics, 110:39–48, 1994.

[133] J. W. Eastwood. Particle simulation methods in plasma physics. Computer Physics Communications, 43:89–106, 1986.

[134] E.R.G. Eckert and Jr. Robert M. Drake. Analysis of Heat and Mass Transfer. McGraw-Hill, New York, 1985.

[135] B. K. Edgar and P. r. Woodward. Diffraction of a shock wave by a wedge: Comparison of PPM simulations with experiment. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0696.

[136] J. Eggers. Nonlinear dynamics and breakup of free-surface flows. Reviews of Modern Physics, 69:865–929, 1997.

[137] H. Esaka and W. Kurz. Columnar dendrite growth: experiments on tip growth. Journal of crystal growth, 72:578–584, 1985.

[138] M. W. Evans and F. H. Harlow. The particle-in-cell method for hydrodynamic calculations. Technical Report LA–2139, Los Alamos National Laboratory, 1957.

[139] M. A. Leschziner F. S. Lien. A general non-orthogonal collocated finite volume algorithm for turbulent flow at all speeds incorporating second-moment turbulence-transport closure, part 1: Computational implementation. Comput. Methods Appl. Mech. Engrg., 14:123–148, 1994.

[140] R.J. Feller and C. Beckermann. Modeling of multiphase transport during solidification of metal-matrix particulate composites. In Transport phenomena in materials processing and manufacturing 1996 (ASME International Mechanical Engineering Congress and Exposition), Atlanta, GA, November 1996.

[141] R. Ferrell, B. Lally, and J. Turner. The PGSLib package, now named Diablo95, is available at http://diablo95.sourceforge.net/.

[142] R. C. Ferrell, D. B. Kothe, and J. A. Turner. PGSLib: A library for portable, parallel, unstructured mesh simulations. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 14–17, 1997.

[143] D.W. Ferrera, J.H. Doyle, and M.R. Harvey. Gallium coring profiles for plutonium-1weight percent gallium alloys. Technical Report 1800, Dow Chemical U.S.A. Rocky Flats Division, 1972.

[144] J. H. Ferziger and M. Peric. Computational Methods for Fluid Dynamics. Springer-Verlag, 1996.

[145] M. C. Flemings. Solidification Processing. McGraw-Hill, New York, NY, 1974.

[146] C. A. J. Fletcher. Computational Techniques for Fluid Dynamics: Volume I. Springer-Verlag, 1988.

[147] C. A. J. Fletcher. Computational Techniques for Fluid Dynamics: Volume II. Springer-Verlag, 1988.

[148] J. M. Floryan and H. Rasmussen. Numerical methods for viscous flows with moving boundaries. Applied Mechanics Reviews, 42:323–340, 1989.

[149] D.R. Fokkema, G.L.G. Sleijpen, and H.A. Van Der Vorst. Accelerated inexact newton schemes for large systems of nonlinear equations. SIAM Journal on Scientific Computing, 19:657–674, 1998.

[150] P.S. Follansbee and U.F. Kocks. A constitutive description of the deformation of copper based on the use of the mechanical threshold stress as an internal state variable. Acta Metallurgica, 36:81–93, 1988.

[151] M. M. Francois, S. J. Cummins, E. D. Dendy, D. B. Kothe, J. M. Sicilian, and M. W. Williams. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. Journal of Computational Physics, 2005. to appear, also Los Alamos Technical Report LA-UR-05-0674.

[152] R.W. Freund. A transpose-free quasi-minimal residual algorithm for non-hermitian linear systems. SIAM J. Sci. Comput., 14:470–482, 1993.

[153] M. J. Fritts and J. P. Boris. The Lagrangian solution of transient problems in hydrodynamics using a triangular mesh. Journal of Computational Physics, 31:173–215, 1979.

[154] M. J. Fritts, W. P. Crowley, and H. E. Trease. The Free Lagrange Method. Springer-Verlag, New York, 1985. Lecture Notes in Physics, Volume 238.

[155] Y.D. Fryer, C. Bailey, M. Cross, and C.H. Lai. A control volume procedure for solving the elastic stress-strain equations on an unstructured mesh. Applied Mathematical Modelling, 15:639–645, 1991.

[156] B. Fryxell, E. M¨

uller, and D. Arnett. Instabilities and clumping in SN 1987a. I. Early evolution in two dimensions. Astrophysical Journal, 367:619–634, 1991.

[157] J. Fukai, Z. Zhao, D. Poulikakos, C. M. Megaridis, and O. Miyatake. Modeling of the deformation of a liquid droplet impinging upon a flat surface. Physics of Fluids A, 5(11):2588– 2599, 1993.

[158] D. E. Fyfe, E. S. Oran, and M. J. Fritts. Surface tension and viscosity with Lagrangian hydrodynamics on a triangular mesh. Journal of Computational Physics, ??:??–??, 1988.

[159] W. R. Gage and C. L. Mader. Three-dimensional Cartesian particle-in-cell calculations. Technical Report LA-3422, Los Alamos National Laboratory, 1965.

[160] D. M. Gao. A three-dimensional hybrid finite element-volume tracking model for mould filling in casting processes. International Journal for Numerical Methods in Fluids, 29:877– 895, 1999.

[161] H.R. Gardner. Physical and mechanical metallurgy studies on delta stabilized plutonium-gallium alloys. Technical Report 13, Battelle-Northwest Laboratory, 1965.

[162] S. H. Garrioch and B. R. Baliga. A multidimensional advection technique for PLIC volume-of-fluid methods. In Proceedings of the Fifth Annual Conference of the Computational Fluid Dynamics Society of Canada, pages 11(3)–11(8), University of Victoria, Victoria, British Columbia, 1997.

[163] P. H. Gaskell and K. C. Lau. Curvature-compensated convective transport: SMART, a new boundedness-preserving transport algorithm. International Journal for Numerical Methods in Fluids, 8:617–641, 1988.

[164] P. H. Gaskell and K. C. Lau. Unsteady flow: A curvature compensated approache. In C. Taylor, P. Gresho, R. L. Sani, and J Ha¨

user, editors, Numerical Methods in Laminar and Turbulent Flow: Volume 6, pages 51–61, 1989.

[165] I. R. Gatland. A weight-watcher’s guide to least-squares fitting. Computers in Physics, 7(3):280–285, 1993.

[166] A. S. Geller, S. H. Lee, and L. G. Leal. Motion of a particle normal to a deformable surface. Journal of Fluid Mechanics, 169:27–69, 1986.

[167] D. Gidaspow. Multiphase Flow and Fluidization. Academic Press, New York, 1994.

[168] R. A. Gingold and J. J. Monaghan. Smoothed particle hydrodynamics: Theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181:375–389, 1977.

[169] J. Glimm, , C. Klingenberg, O. McBryan, B. Plohr, D. Sharp, and S. Yaniv. Front tracking and two-dimensional Riemann problems. Advances in Applied Mathematics, 6:259–290, 1985.

[170] J. Glimm, J. Grove, B. Lindquist, O. A. McBryan, and G. Tryggvason. The bifurcation of tracked scalar waves. SIAM Journal on Scientific Computing, 9:61–79, 1988.

[171] J. Glimm and O. A. McBryan. A computational model for interfaces. Advances in Applied Mathematics, 6:422–435, 1985.

[172] A. G. Godfrey, C. R. Mitchell, and R. W. Walters. Practical aspects of spatially high accurate methods. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92– 0054.

[173] S. K. Godunov. Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Matematicheski Sbornik, 47:271–306, 1959.

[174] S. K. Godunov, A. W. Zabrodyn, and G. P. Prokopov. A computational scheme for two-dimensional nonstationary problems of gas dynamics and calculation of the flow from a shock wave approaching steady-state. USSR Journal of Computational Mathematics and Mathematical Physics, 1:1187–1219, 1961.

[175] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins University Press, 1989.

[176] J. W. Goodrich, K. E. Gustafson, and K. Halasi. Hopf bifurcation in the driven cavity. Journal of Computational Physics, 90:219–261, 1990.

[177] D. Gottlieb. Strang-type difference schemes for multidimensional problems. SIAM Journal on Numerical Analysis, 9:650–660, 1972.

[178] D. Gottlieb and S. A. Orzag. Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia, PA, 1977.

[179] R.D. Green. The effect of cooling rate on the grain size of magnesium casting alloys. In Transactions of the American Foundrymen’s Society (sixty-second annual meeting), Cleveland, 1958.

[180] P. M. Gresho. On the theory of semi-implicit projection methods for viscous incompressible flow and its implementation via a finite element method that also introduces a nearly consistent mass matrix. part 1: Theory. International Journal for Numerical Methods in Fluids, 11:587–620, 1990.

[181] P. M. Gresho. Incompressible fluid dynamics: Some fundamental formulation issues. Annual Review of Fluid Mechanics, 23:413–453, 1991.

[182] P. M. Gresho. Some current CFD issues relavent to the incompressible Navier–Stokes equations. Computer Methods in Applied Mechanics and Engineering, 87:201–252, 1991.

[183] P. M. Gresho. Some interesting issues in incompressible fluid dynamics, bothin the continuum and in numerical simulation. Advances in Applied Mechanics, 28:45–140, 1992.

[184] P. M. Gresho and R. L. Sani. On pressure boundary conditions for the incompressible Navier– Stokes equations. International Journal for Numerical Methods in Fluids, 7:1111–1145, 1987.

[185] M. Griebel, T. Neunhoeffer, and H. Regler. Algebraic multigrid methods for the solution of the Navier-Stokes equations in complicated geometries. International Journal for Numerical Methods in Fluids, 26:281–301, 1998.

[186] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with the Message Passing Interface. The MIT Press, Cambridge, MA, 1994.

[187] D. Gupta, S. Chakraborty, and A.K. Lahiri. Asymmetry and oscillation of the fluid flow pattern in a continuous casting mould: a water model study. ISIJ, 37(7):654–658, 1997.

[188] K. E. Gustafson. Four principles of vortex motion. In K. E. Gustafson and J. A. Sethian, editors, Vortex Methods and Vortex Motion, pages 95–142, 1991.

[189] K. E. Gustafson and K. Halasi. Vortex dynamics of cavity flows. Journal of Computational Physics, 64:279–319, 1986.

[190] K. E. Gustafson and K. Halasi. Cavity flow dynamics at higher Reynolds number and higher aspect ratio. Journal of Computational Physics, 70:271–283, 1987.

[191] H. Haj-Hariri, Q. Shi, and A. Borhan. Effect of local property smearing on global variables: Implication for numerical simulations of multiphase flows. Physics of Fluids, Part A, 6:2555– 2557, 1994.

[192] M. L. Hall, W. J. Rider, and M. W. Cappiello. Thermohydraulic modeling of nuclear thermal rockets: The KLAXON code. In NTSE–92 Nuclear Technologies for Space Exploration, pages 530–539, 1992.

[193] Michael L. Hall and Jim E. Morel. Diffusion Discretization Schemes in Augustus: A New Hexahedral Symmetric Support Operator Method. In Proceedings of the 1998 Nuclear Explosives Code Developers Conference (NECDC), Las Vegas, NV, October 25–30 1998. LA-UR–98-3146.

[194] Michael L. Hall, Jim E. Morel, and Mikhail J. Shashkov. A Local Support Operator Diffusion Discretization Scheme for Hexahedral Meshes. Technical Report LA-UR–99-5834, Los Alamos National Laboratory, October 21 1999.

[195] F. H. Harlow. Hydrodynamic problems involving large fluid distortions. Journal of the Association for Computing Machinery, 4:137–142, 1957.

[196] F. H. Harlow. The particle-in-cell method for numerical solution of problems in fluid dy

namics. Experimental, Arithmetic, High Speed Computing and Mathematics, XV:269–288,

1963.

[197] F. H. Harlow. The particle-in-cell computing method for fluid dynamics. Methods in Computational Physics, 3:319–343, 1964.

[198] F. H. Harlow. Two-dimensional hydrodynamic calculations. Technical Report LA-2301, Los Alamos National Laboratory, 1969.

[199] F. H. Harlow. PIC and its progeny. Computer Physics Communications, 48:1–11, 1988.

[200] F. H. Harlow and A. A. Amsden. Numerical calculation of almost incompressible flow. Journal of Computational Physics, 3:80–93, 1968.

[201] F. H. Harlow and A. A. Amsden. A simplified MAC technique for incompressible fluid flow calculations. Journal of Computational Physics, 6:322–325, 1970.

[202] F. H. Harlow and A. A. Amsden. A numerical fluid dynamics calculation method for all flow speeds. Journal of Computational Physics, 8:197–213, 1971.

[203] F. H. Harlow and A. A. Amsden. Numerical calculation of multiphase fluid flow. Journal of Computational Physics, 17:19–52, 1975.

[204] F. H. Harlow, A. A. Amsden, and J. R. Nix. Relativistic fluid dynamics calculations with the particle-in-cell technique. Journal of Computational Physics, 20:119–129, 1976.

[205] F. H. Harlow and D. O. Dickman. Numerical study of the motion of variously-shaped slabs accelerated by a hot gas. Technical Report LA-2256, Los Alamos National Laboratory, 1959.

[206] F. H. Harlow and M. W. Evans. A machine calculation method for hydrodynamics problems. Technical Report LAMS–1956, Los Alamos National Laboratory, 1955.

[207] F. H. Harlow and B. D. Meixner. Rise through the atmosphere of a hot bubble. Technical Report LAMS-2770, Los Alamos National Laboratory, 1962.

[208] F. H. Harlow and W. E. Pracht. Formation and penetration of high-speed collapse jets. Physics of Fluids, 9:1951–1959, 1966.

[209] F. H. Harlow and J. P. Shannon. Distortion of a splashing liquid drop. Science, 157:547–550, 1967.

[210] F. H. Harlow and J. P. Shannon. The splash of a liquid drop. Journal of Applied Physics, 38:3855–3866, 1967.

[211] F. H. Harlow, J. P. Shannon, and J. E. Welch. Liquid waves by computer. Science, 149:1092– 1093, 1965.

[212] F. H. Harlow and J. E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid with a free surface. Physics of Fluids, 8:2182–2189, 1965.

[213] F. H. Harlow and J. E. Welch. Numerical study of large-amplitude free-surface motions. Physics of Fluids, 9:842–851, 1966.

[214] A. Harten. The artificial compression method for computation of shocks and contact discon

tinuities. I. single conservation laws. Communications on Pure and Applied Mathematics,

30:611–638, 1977.

[215] A. Harten. High resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 49:357–393, 1983.

[216] A. Harten, B. Engquist, S. Osher, and S. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes, III. Journal of Computational Physics, 71:231–303, 1987.

[217] A. Harten, P. D. Lax, and B. van Leer. On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Review, 25:35–61, 1983.

[218] A. Harten and S. Osher. Uniformly high-order accurate nonoscillatory schemes. I. SIAM Journal on Numerical Analysis, 24:279–309, 1987.

[219] J.P. Hayes. Computer Architecture and Organization. McGraw-Hill, New York, second edition, 1988.

[220] W. D. Henshaw. A fourth-order accurate method for the incompressible Navier-Stokes equations on overlapping grids. Journal of Computational Physics, 113:13–25, 1994.

[221] W.D. Hillis and G.L. Steele. Data parallel algorithms. Communications of the ACM, 29(12):1170–1183, 1986.

[222] R. Hiptmair. Multigrid method for Maxwell’s equations. SIAM Journal on Numerical Analysis, 36(1):204–225, 1998.

[223] C. Hirsch. Numerical Computation of Internal and External Flows: Volume 1. Wiley-Interscience, 1988.

[224] C. Hirsch. Numerical Computation of Internal and External Flows: Volume 2. Wiley-Interscience, 1988.

[225] C. W. Hirt, A. A. Amsden, and J. L. Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 14:227–253, 1974.

[226] C. W. Hirt, J. L. Cook, and T. D. Butler. A Lagrangian method for calculating the dynamics

of an incompressible fluid with a free surface. Journal of Computational Physics, 5:103–124,

1970.

[227] C. W. Hirt and F. H. Harlow. A general corrective procedure for the numerical solution of initial-value problems. Journal of Computational Physics, 2:114–119, 1967.

[228] C. W. Hirt and B. D. Nichols. A computational method for free surface hydrodynamics. Journal of Pressure Vessel Technology, 103:136–140, 1981.

[229] C. W. Hirt and B. D. Nichols. Volume of Fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics, 39:201–225, 1981.

[230] K. S. Holian, S. J. Mosso, D. A. Mandell, and R. Henninger. MESA: A 3-D computer code for armor/anti-armor applications. Technical Report LA–UR–91-569, Los Alamos National Laboratory, 1991.

[231] R. S. Hotchkiss. Simulation of tank draining phenomena with the NASA SOLA-VOF code. Technical Report LA–8163–MS, Los Alamos National Laboratory, 1979.

[232] T.Y. Hou. Numerical solutions to free boundary problems. Acta Numerica, pages 335–415, 1995.

[233] T.Y. Hou, J.S. Lowengrub, and M.J. Shelley. Removing the stiffness from interfacial flows with surface tension. Journal of Computational Physics, 114:312–338, 1994.

[234] T.Y. Hou, J.S. Lowengrub, and M.J. Shelley. Boundary integral methods for multicomponent fluids and multiphase materials. Journal of Computational Physics, 169(2):302–362, 2001.

[235] L. H. Howell. A multilevel adaptive projection method for unsteady incompressible flow. In N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, pages 243–257, Copper Mountain, CO, 1993.

[236] H. T. Huynh. Accurate upwind methods for the Euler equations. SIAM Journal on Numerical Analysis, 32:1565–1619, 1995.

[237] J. M. Hyman. Numerical methods for tracking interfaces. Physica D, 12:396–407, 1984.

[238] IEEE. IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 610.12-1990. Institute of Electrical and Electronics Engineeers, New York, 1991.

[239] Frank P. Incropera and David P. De Witt. Fundamentals of Heat and Mass Transfer, 2nd edition. John Wiley & Sons, New York, 1985.

[240] R. I. Issa. Solution of implicitly discretized fluid flow equations by operator splitting. Journal of Computational Physics, 62:40–65, 1986.

[241] M. Shashkov J. Hyman, J. Morel and S. Steinberg. Mimetic finite difference methods for diffusion equations. Computational Geosciences, 6:333–352, 2002.

[242] M.E. Glicksman J. Lipton and W. Kurz. Equiaxed dendrite growth in alloys at small supercooling. Metallurgical transactions A, 18:341–345, 1987.

[243] D. Jacqmin. An energy approach to the continuum surface method. Technical Report 96– 0858, AIAA, 1996. Presented at the 34th Aerospace Sciences Meeting.

[244] D. Jacqmin. A variational approach to deriving smeared interface surface tension models. In

V. Venkatakrishnan, M. D. Salas, and S. R. Chakravarthy, editors, Workshop on Barriers and Challenges in Computational Fluid Dynamics, pages 231–240, Boston, MA, 1998. Kluwer Academic Publishers.

[245] Y. N. Jeng and J. L. Chen. Truncation error analysis of the finite volume method for a model steady convective equation. Journal of Computational Physics, 100:64–76, 1992.

[246] Carl B. Jenssen and Per A. Weinerfelt. Parallel implicit time-accurate Navier-Stokes computations using coarse grid correction. AIAA Journal, 36:946–951, 1998.

[247] X. Jiao and M.T. Heath. Common-refinement-based data transfer between non-matching meshes in multiphysics simulations. International Journal for Numerical Methods in Engineering, 61:2402–2427, 2004.

[248] G. Jin and M. Braza. A nonreflecting outlet boundary condition for incompressible unsteady Navier-Stokes calculations. Journal of Computational Physics, 107:239–253, 1993.

[249] K.A. Johnson. Homogenization of gallium-stabilized delta-phase plutonium. Technical Report 2989, Los alamos Scientific Laboratory, University of California, 1964.

[250] W.A. Johnson and R.F. Mehl. Reaction kinetics in processes of nucleation and growth. In

Transactions of the American Institute of Mining and Metallurgical Engineers, Iron and Steel Division, volume 135, pages 416–458, DETROIT, MI, 1939.

[251] D. Juric. Direct numerical simulation of solidification microstructures affected by fluid flow. In Modeling of Casting, Welding, and Advanced Solidification Processes VIII, New York, 1998. TMS Publishers.

[252] D. Juric and G. Tryggvason. A front-tracking method for dendritic solidification. Journal of Computational Physics, 123:127–148, 1996.

[253] D. Juric and G. Tryggvason. Numerical simulations of phase change in microgravity. Heat Transfer in Microgravity Systems, 332:33–44, 1996.

[254] D. Juric and G. Tryggvason. Computations of boiling flows. Technical Report LA–UR–97– 1145, Los Alamos National Laboratory, 1997. Accepted for publication in the International Journal of Multiphase Flow.

[255] B. A. Kashiwa, N. T. Padial, R. M. Rauenzahn, and W. B. VanderHeyden. A cell-centered ICE method for multiphase flow simulations. Technical Report LA–UR–93-3922, Los Alamos National Laboratory, 1993.

[256] S. Kawata and K. Niu. Effect of nonuniform implosion of target on fusion parameters. Journal of the Japanese Physical Society, 53:3416–3426, 1984.

[257] F. X. Keller, J. Li, A. Vallet, D. Vandromme, and S. Zaleski. Direct numerical simulations of interface breakup and atomization. In ICLASS-94, Rouen, France, 1994.

[258] D.S. Kershaw. The incomplete Cholesky-conjugate gradient method for the iterative solution of systems of linear equations. Journal of Computational Physics, 26:43–65, 1978.

[259] R. Kettler. Analysis and comparison of relaxation schemes in robust multigrid and preconditioned conjugate gradient methods. In W. Hackbusch and U. Trottenberg, editors, Multigrid Methods, pages 502–534, 1982.

[260] R. Kettler and J. A. Meijerink. A multigrid method and a combined multigrid-conjugate gradient method for elliptic problems with strongly discontinuous coefficients. Technical Report 604, Shell Corporation, Rijswijk, The Netherlands, 1981.

[261] J. Kim and P. Moin. Application of a fractional step method to incompressible Navier-Stokes equations. Journal of Computational Physics, 59:308–323, 1985.

[262] S.-O. Kim and H. C. No. Second-order model for free surface convection and interface recontruction. International Journal for Numerical Methods in Fluids, 26:79–100, 1998.

[263] D. A. Knoll, R. Ferrell, D. B. Kothe, B. Lally, K. Lam, and J. Turner. A parallel, two-level solver for 3-d unstructured grid elliptic problems. Technical Report LA–UR–99–4580, Los Alamos National Laboratory, 1999.

[264] D. A. Knoll, D. B. Kothe, and B. Lally. A new nonlinear solution method for phase change problems. Numerical Heat Transfer, Part B, 35:436–459, 1999.

[265] D.A. Knoll, G. Lapenta, and J.U. Brackbill. A multilevel field solver for implicit kinetic, plasma simulation. Los Alamos National Laboratory Report LA-UR-98-2159, to appear in J. Comput. Phys., 1998.

[266] R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D, 63:410–423, 1993.

[267] D. Kothe, D. Juric, K. Lam, and B. Lally. Numerical recipes for mold filling simulation. In Modeling of Casting, Welding, and Advanced Solidification Processes VIII, New York, 1998. TMS Publishers.

[268] D. B. Kothe. PAGOSA: A massively-parallel, multi-material hydrodynamics model for three-dimensional high-speed flow and high-rate deformation. Technical Report LA–UR–92–4306, Los Alamos National Laboratory, 1992.

[269] D. B. Kothe. Computer simulation of metal casting processes: A new approach. Technical Report LALP–95–197, Los Alamos National Laboratory, 1995.

[270] D. B. Kothe. Perspective on Eulerian finite volume methods for incompressible interfacial flows. In H. Kuhlmann and H. Rath, editors, Free Surface Flows, pages 267–331, New York, NY, 1998. Springer-Verlag.

[271] D. B. Kothe, J. U. Brackbill, and C. K. Choi. Implosion symmetry of heavy-ion-driven inertial confinement fusion targets. Physics of Fluids B, 2:1898–1906, 1990.

[272] D. B. Kothe, R. C. Ferrell, J. A. Turner, and S. J. Mosso. A high resolution finite volume method for efficient parallel simulation of casting processes on unstructured meshes. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 14–17, 1997.

[273] D. B. Kothe and R. C. Mjolsness. RIPPLE: A new model for incompressible flows with free surfaces. AIAA Journal, 30:2694–2700, 1992.

[274] D. B. Kothe, R. C. Mjolsness, and M. D. Torrey. RIPPLE: A computer program for incompressible flows with free surfaces. Technical Report LA–12007–MS, Los Alamos National Laboratory, 1991.

[275] D. B. Kothe and W. J. Rider. Comments on modelling interfacial flows with volume-of-fluid methods. Technical Report LA–UR–3384, Los Alamos National Laboratory, 1994.

[276] D. B. Kothe and W. J. Rider. Practical considerations for interface tracking methods. In

H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 638–643, Lake Tahoe, NV, 1995.

[277] D. B. Kothe and W. J. Rider. Constrained minimization for monotonic reconstruction. In

D. Kwak, editor, Proceedings of the Thirteenth AIAA Computational Fluid Dynamics Conference, pages 955–964, 1997. AIAA Paper 97–2036.

[278] D. B. Kothe, W. J. Rider, S. J. Mosso, J. S. Brock, and J. I. Hochstein. Volume tracking of interfaces having surface tension in two and three dimensions. Technical Report AIAA 96–0859, AIAA, 1996. Presented at the 34rd Aerospace Sciences Meeting and Exhibit.

[279] D. B. Kothe, M. W. Williams, K. L. Lam, D. R. Korzekwa, P. K. Tubesing, and E. G. Puckett. A second order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3-d unstructured meshes. Technical Report FEDSM99–7109, ASME, 1999. Presented at the 3rd ASME/JSME Joint Fluids Engineering Conference.

[280] D.B. Kothe, R.C. Mjolsness, and M.D. Torrey. RIPPLE: A computer program for incompressible flows with free surfaces. Technical Report LA-12007-MS, LANL, 1991.

[281] D.B. Kothe, M.W. Williams, K.L. Lam, D.R. Korzekwa, P.K. Tubesing, and E.G. Puckett. A second-order accurate, linearity-preserving volume tracking algorithm for free surface flows on 3-D unstructured meshes. In Proceedings of the 3rd ASME/JSME Joint Fluids Engineering Conference, 1999.

[282] S. Kou and Y.H. Wang. Computer simulation of convection in moving arc weld pools. mettransa, 17A:2271–2277, 1986.

[283] W. Kurz and D.J. Fisher. Fundamentals of Solidification. Trans Tech Publications, Inc, fourth edition, 1998.

[284] D. Lackner-Russo and P. Mulser. A macroscopic PIC code for beam-target interaction studies. Technical Report PLF-32, Max Planck Gesellschaft zur Foerderung der Wissenschaften, 1980.

[285] B. Lafaurie, C. Nardone, R. Scardovelli, S. Zaleski, and G. Zanetti. Modelling merging and fragmentation in multiphase flows with SURFER. Journal of Computational Physics, 113:134–147, 1994.

[286] M. Lai, J. B. Bell, and P. Colella. A projection method for combustion in the zero Mach number limit. In J. L. Thomas, editor, Proceedings of the AIAA Eleventh Computational Fluid Dynamics Conference, pages 776–783, 1993. See also AIAA Paper 93–3369.

[287] M. F. Lai. A Projection Method for Reacting Flow in the Zero Mach Number Limit. PhD thesis, University of California at Berkeley, 1993.

[288] B. Lally, R. Ferrell, D. Knoll, D. Kothe, and J. Turner. Parallel two-level additive-Schwarz preconditioning on 3D unstructured meshes for solution of solidification problems. In

T. Manteuffel and S. McCormick, editors, Proceedings of the Eighth Copper Mountain Conference on Iterative Methods, Copper Mountain, CO, 1998.

[289] K. L. Lam. Verification of telluride phase change algorithm -eutectic alloy solidification. Technical Report LA-UR-01-4584, Los Alamos National Laboratory, 2001.

[290] L. D. Landau and E. M. Lifshitz. Fluid Mechanics. Pergamon Press, 1987.

[291] C. Laney and D. Caughey. Extremum control II: Semidiscrete approximations to conservation laws. Technical Report 91–0632, AIAA, 1991. Presented at the 29th Aerospace Sciences Meeting.

[292] C. Laney and D. Caughey. Extremum control III: Fully-discrete approximations to conservation laws. In D. Kwak, editor, Proceedings of the AIAA Tenth Computational Fluid Dynamics Conference, pages 81–94, 1991. AIAA Paper 91–1534.

[293] B. E. Launder and D. B. Spalding. The numerical computation of turbulent flows. Computer Methods in Applied Mechanics and Engineering, 3:269–289, 1974.

[294] P. D. Lax and B. Wendroff. Systems of conservation laws. Communications on Pure and Applied Mathematics, 13:217–237, 1960.

[295] P. D. Lax and B. Wendroff. Difference schemes for hyperbolic equations with high order of accuracy. Communications on Pure and Applied Mathematics, 17:381–398, 1964.

[296] J. N. Leboeuf, T. Tajima, and J. M. Dawson. A magnetohydrodynamic particle code for fluid simulation of plasmas. Journal of Computational Physics, 31:379–408, 1979.

[297] S. K. Lele. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103:16–42, 1992.

[298] A. Leonard. Vortex methods for flow simulation. Journal of Computational Physics, 37:289– 335, 1980.

[299] A. Leonard. Computing three-dimensional incompressible flows with vortex elements. Annual Review of Fluid Mechanics, 17:523–559, 1985.

[300] B. P. Leonard. Simple high-accuracy resolution program for convective modelling of discontinuities. International Journal for Numerical Methods in Fluids, 8:1291–1318, 1988.

[301] B. P. Leonard. The ULTIMATE convective difference scheme applied to unsteady one-dimensional advection. Computer Methods in Applied Mechanics and Engineering, 88:17– 74, 1991.

[302] B. P. Leonard and S. Mokhtari. Beyond first-order upwinding the ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection. International Journal for Numerical Methods in Engineering, 30:729–766, 1990.

[303] B. P. Leonard and H. S. Niknafs. Sharp monotonic resolution of discontinuities without clipping of narrow extrema. Computers and Fluids, 19:141–154, 1991.

[304] M. Lesieur. Turbulence in Fluids. Kluwer Academic Publishers, 1997.

[305] R. J. Leveque. Numerical Methods for Conservation Laws. Birkh¨

auser, 1990.

[306] R. J. Leveque. High-resolution conservative algorithms for advection in incompressible flow. SIAM Journal on Numerical Analysis, 33:627–665, 1996.

[307] R. J. Leveque and Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM Journal on Numerical Analysis, 31:1019–1044, 1994.

[308] R. W. Lewis, S. E. Navti, and C. Taylor. A mixed Lagrangian-Eulerian approach to modelling fluid flow during mould filling. International Journal for Numerical Methods in Fluids, 25:931–952, 1997.

[309] J. Li and Y. Renardy. Direct simulation of unsteady axisymmetric core-annular flow with high viscosity ratio. Journal of Fluid Mechanics, 391:123–149, 1999.

[310] J. Li and Y. Renardy. Shear-induced rupturing of a viscous drop in a bingham liquid. Journal of Non-Newtonian Fluid Mechanics, 95(2-3):235–251, 2000.

[311] J. Li, Y. Renardy, and M. Renardy. Numerical simulation of breakup of a viscous drop in simple shear flow through a volume-of-fluid method. Physics of Fluids, 12(2):269–282, 2000.

[312] I.M. Lifshitz and V.V. Slyozov. The kinetics of precipitation from supersaturated solid solutions. Journal of physics and chemistry of solids, 19(1):35–50, 1961.

[313] D. R. Liles and W. H. Reed. A semi-implicit method for two-phase fluid dynamics. Journal of Computational Physics, 26:390–407, 1978.

[314] C. Liu, Z. Liu, and S. McCormick. An efficient multigrid scheme for elliptic equations with discontinuous coefficients. Communications in Applied Numerical Methods, 8:621– 631, 1992.

[315] H. Liu, E. J. Lavernia, and R. H. Rangel. Numerical investigation of micropore formation during substrate impact of molten droplets in plasma spray processes. Atomization and Sprays, 4:369–384, 1994.

[316] X.-D. Liu. A maximum principle satisfying modification of triangle based adaptive stencils for the solution of scalar hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 30:701–716, 1993.

[317] N. Lock, M. Jaeger, M. Medale, and R. Occelli. Local mesh adaptation technique for front tracking problems. International Journal for Numerical Methods in Fluids, 28(4):719–736, 1998.

[318] R. L ¨ohner. Some useful renumbering strategies for unstructured grids. International Journal for Numerical Methods in Engineering, 36:3259–3270, 1993.

[319] R. L ¨ohner. Mesh adaptation in fluid mechanics. Engineering Fracture Mechanics, 50:819– 847, 1995.

[320] M. S. Longuet-Higgins and E. D. Cokelet. The deformation of steep surface waves on water,

i. a numerical method of computation. Proceedings of the Royal Society of London A, 350:1– 26, 1976.

[321] C. L. Mader. The Two-Dimensional hydrodynamic hot spot. Technical Report LA-3077, Los Alamos National Laboratory, 1964.

[322] J. H. Mahaffy. A stability-enhancing two step method for fluid flow calculations. Journal of Computational Physics, 46:329–341, 1982.

[323] K.W. Mahin, K. Hanson, and J.W. Morris JR. Comparative analysis of the cellular and johnson-mehl microstructures through computer simulation. Acta metallurgica, 28:443–453, 1980.

[324] A. Majda and J. A. Sethian. The derivation and numerical solution of the equations for zero Mach number combustion. Combustion Science and Technology, 42:185–205, 1985.

[325] A. J. Majda. Vorticity, turbulence and acoustics in fluid flow. SIAM Review, 33:349–388, 1991.

[326] S. Majumdar. Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids. Numerical Heat Transfer, 13:125–132, 1988.

[327] F. A. Mansfield and D. Whitfield. Investigation of solution operators for the two-dimensional unsteady Euler equations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0050.

[328] B. M. Marder. GAP -a PIC-type fluid code. Mathematics of Computation, 29:434–446, 1975.

[329] L. G. Margolin and J. J. Pyun. A method for treating hourglass patterns. In C. Taylor, W. G. Habashi, and M. M. Hafez, editors, Numerical Methods in Laminar and Turbulent Flow, pages 149–160, 1987.

[330] V. Maronnier, M. Picasso, and J. Rappaz. Numerical simulation of free surface flows. Journal of Computational Physics, 155(2):439–455, 1999.

[331] V. Maronnier, M. Picasso, and J. Rappaz. Numerical simulation of three-dimensional free surface flows. International Journal for Numerical Methods in Fluids, 42:697–716, 2003.

[332] J.C. Martin and W.J. Moyce. An experimental study of the collapse of liquid columns on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London, Series A, 244:312–324, 1952.

[333] F. Mashayek and N. Ashgriz. A spline-flux method for simulating free surface flows. Journal of Computational Physics, 122:367–379, 1995.

[334] F. Mashayek and N. Ashgriz. A spline-flux method for simulating free surface flows. Journal of Computational Physics, 122:367–379, 1995.

[335] R.A. Masumura and C.S. Pande. Stochastic theory of grain growth in two dimensions. In Solidification 1998 (The Minerals, Metals and Materials Society), San Antonio, TX, February 1998.

[336] D. J. Mavripilis. Directional agglomeration multigrid techniques for high reynolds number viscous flows. AIAA Paper, 98-0612, 1998.

[337] D. J. Mavripilis and V. Venkatakrishnan. A 3D agglomeration multigrid solver for the Reynolds-averaged Navier-Stokes equations on unstructured meshes. Intl. J. Numer. Meths. Fluids, 23:527–544, 1996.

[338] R. L. McCrory, R. L. Morse, and K. A. Taggart. Growth and saturation of instability of spherical implosions driven by laser or charged particle beams. Nuclear Science and Engineering, 64:163–176, 1977.

[339] R.M. McDavid and J.A. Dantzig. Design sensitivity and finite element analysis of free surface flows with application to optimal design of casting rigging systems. ijnmf, 28:419–442, 1998.

[340] D.A. McQuarrie. Statistical Mechanics. Harper and Row, 1976.

[341] M. Medale and M. Jaeger. Numerical simulation of incompressible flows with moving interfaces. International Journal for Numerical Methods in Fluids, 24:615–638, 1997.

[342] R. Mehrabian. Rapid solidification. International Materials Reviews, 27:185–208, 1982.

[343] J.L. Meijering. Interface area, edge length, and number of vertices in crystal aggregates with random nucleation. Philips research report, 8:270–290, 1953.

[344] A. Meister. Comparison of different Krylov subspace methods embedded in an implicit finite volume scheme for the computation of viscous and inviscid flow fields on unstructured grids. Journal of Computational Physics, 140:311–345, 1998.

[345] R. Menikoff and B. J. Plohr. The Riemann problem for fluid flow of real materials. Reviews of Modern Physics, 61:75–130, 1989.

[346] J. C. Meza and R. S. Tuminaro. A multigrid preconditioner for the semiconductor equations. SIAM Journal on Scientific Computing, 17:118–132, 1996.

[347] P. Michaleris, D. A. Tortorelli, and C. A. Vidal. Tangent operators and design sensitivity formulations for transient nonlinear coupled problems with applications to elasto-plasticity. International Journal for Numerical Methods in Engineering, 37:2471–2499, 1994.

[348] G. H. Miller and E. G. Puckett. “A High-Order Godunov Method for Multiple Condensed Phases”, the Journal of Computational Physics in press.

[349] K. Miller. Nonlinear Krylov and moving nodes in the method of lines. Journal of Computational and Applied Mathematics, 183(2):275–287, 2005.

[350] T. F. Miller and F. W. Schmidt. Use of pressure-weighted interpolation method for the solution of the incompressible navier-stokes equations on a nonstaggered grid system. Numerical Heat Transfer, 14:213–233, 1988.

[351] W.N. Miner and F.W. Schonfeld. The Plutonium Handbook. Gordon and Breach, Science publishers, 1967.

[352] M. L. Minion. Two Methods for the Study of Vortex Patch Evolution on Locally Refined Grids. PhD thesis, University of California, Berkeley, 1994.

[353] M. L. Minion. A note on the stability of Godunov projection methods. Technical Report 95–002, Courant Mathematics and Computing Laboratory, New York University, 1995.

[354] M. L. Minion. On the stability of Godunov projection methods for incompressible flow. Journal of Computational Physics, 123:435–449, 1996.

[355] M. L. Minion and D. L. Brown. Performance of under-resolved two-dimensional incompressible flow simulations, II. Journal of Computational Physics, 138:734–765, 1997.

[356] J. J. Monaghan. Particle methods for hydrodynamics. Computer Physics Reports, 3:71–124, 1985.

[357] J. J. Monaghan. Smoothed particle hydrodynamics. Annual Reviews in Astronomy and Astrophysics, 30:543–574, 1992.

[358] J. J. Monaghan. Simulating free surface flows with SPH. Journal of Computational Physics, 110:399–406, 1994.

[359] J.E. Morel, J.E. Dendy, M.L. Hall, and S.W. White. A cell-centered Lagrangian-mesh diffusion differencing scheme. Journal of Computational Physics, 103:286, 1992.

[360] Jim E. Morel, Michael L. Hall, and Mikhail J. Shashkov. A Local Support-Operators Diffusion Discretization Scheme for Hexahedral Meshes. Journal of Computational Physics, 170(1):338–372, June 2001.

[361] N. B. Morley, A. A. Gaizer, and M. A. Abdou. Estimates of the effect of a plasma momentum flux on the free surface of a thin film of liquid metal. In ISFNT-3: Third International Symposium on Fusion Nuclear Technology, 1994.

[362] J. P. Morris, P. J. Fox, and Y. Zhu. Modeling low Reynolds number incompressible flows using SPH. Journal of Computational Physics, 136:214–226, 1997.

[363] D. E. Morton. Numerical Simulation of an Impacting Drop. PhD thesis, The University of Melbourne, Australia, 1997.

[364] S. Mosso and S. Clancy. A geometrically derived priority system for youngs’ interface reconstruction. Technical Report LA–CP–95–81, Los Alamos National Laboratory, 1994.

[365] S. J. Mosso, B. K. Swartz, D. B. Kothe, and S. P. Clancy. Recent enhancements of volume-tracking algorithms for irregular grids. Technical Report LA-CP-96-227, Los Alamos National Laboratory, 1996.

[366] S. J. Mosso, B. K. Swartz, D. B. Kothe, and R. C. Ferrell. A parallel, volume-tracking algorithm for unstructured meshes. In P. Schiano, A. Ecer, J. Periaux, and N. Satofuka, editors, Parallel Computational Fluid Dynamics: Algorithms and Results Using Advanced Computers, pages 368–375, Capri, Italy, 1997. Elsevier Science.

[367] J. David Moulton, Joel E. Dendy Jr., and James M. Hyman. The black box multigrid numerical homogenization algorithm. Journal of Computational Physics, 142:80, 1998.

[368] W. Mulder, S. Osher, and J. A. Sethian. Computing interface motion in compressible gas dynamics. Journal of Computational Physics, 100:209–228, 1992.

[369] E. M¨

uller, B. Fryxell, and D. Arnett. Instability and clumping in SN 1987A. Astronomy and Astrophysics, 251:505–514, 1991.

[370] W.W. Mullins and R.F. Sekerka. Morphological stability of a particle growing by diffusion or heat flow. Journal of applied physics, 34:323–329, 1963.

[371] C.-D. Munz. On the numerical dissipation of high resolution schemes for hyperbolic conservation laws. Journal of Computational Physics, 77:18–39, 1988.

[372] F. Muttin, T. Coupez, M. Bellet, and J. L. C. Chenot. Lagrangian finite element analysis of time dependent viscous free surface flow using an automatic remeshing technique. International Journal for Numerical Methods in Engineering, 36:2001–2015, 1993.

[373] L. Nastac and D.M. Stefanescu. Computational modeling of nbc/laves formation in inconel 718 equiaxed castings. Metallurgical and materials transactions A), 28:1582–1587, 1997.

[374] J. Ni and C. Beckermann. A volume-averaged two-phase model for transport phenomena during solidification. Metall. Trans. B, 22B:349–361, 1991.

[375] B. D. Nichols and C. W. Hirt. Methods for calculating multi-dimensional, transient free surface flows past bodies. Technical Report LA–UR–75–1932, Los Alamos National Laboratory, 1975.

[376] B.D. Nichols, C.W. Hirt, and R.S. Hotchkiss. SOLA-VOF: A solution algorithm for transient fluid flow with multiple free boundaries. Technical Report LA-8355, LASL, 1980.

[377] R.A. Nicolaides. On multiple grid and related techniques for solving discrete elliptic systems.

J. Comput. Phys., 19:418–431, 1975.

[378] A. Nishiguchi and T. Yabe. Finite-sized fluid particle in a nonuniform moving grid. Journal of Computational Physics, 47:297–302, 1982.

[379] A. Nishiguchi and T. Yabe. A second-order fluid particle scheme. Journal of Computational Physics, 52:390–413, 1983.

[380] W. F. Noh. CEL: A time-dependent, two-space-dimensional, coupled Euler-Lagrange code. Methods in Computational Physics, 3:117–179, 1964.

[381] W. F. Noh and P. R. Woodward. SLIC (simple line interface method). In A. I. van de Vooren and P. J. Zandbergen, editors, Lecture Notes in Physics 59, pages 330–340, 1976.

[382] H. O. Nordmark. Rezoning for higher order vortex methods. Journal of Computational Physics, 97:366–397, 1991.

[383] M. L. Norman and K.-H. A Winkler. 2-D Eulerian hydrodynamics with fluid interfaces. In K.-H. A Winkler and M. L. Norman, editors, Astrophysical Radiation Hydrodynamics, pages 187–221, 1986.

¨[384] H. Oks¨

uzoglu.˘State vector splitting for the Euler equations of gasdynamics. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0326.

[385] W. Oldfield. A quantitative approach to casting solidification: freezing of cast iron. Transactions of the American Society for Metals, 59:945–961, 1966.

[386] Carl F. Ollivier-Gooch. Quasi-eno schemes for unstructured meshes based on unlimited data-dependent least-squares reconstruction. Journal of Computational Physics, 133:6–17, 1997.

[387] E. S. Oran and J. P. Boris. Numerical Simulation of Reactive Flow. Elsivier, 1987.

[388] G.M. Oreper, T.W. Eager, and J. Szekely. Convection in arc weld pools. Weld. J. Res. Suppl., pages 307s–312s, 1983.

[389] J. O’Rourke. Computational Geometry in C. Cambridge, 1993.

[390] S. Osher and R.P. Fedkiw. Level set methods: An overview and some recent results. Journal of Computational Physics, 169(2):463–502, 2001.

[391] S. Osher and J. A. Sethian. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulation. Journal of Computational Physics, 79:12–49, 1988.

[392] H. Paill`

ere, K. G. Powell, and D. De Zeeuw. A wave-model-based refinement criterion for adaptive-grid computation of compressible flows. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0322.

[393] S. Paolucci. On filtering of sound for the Navier-Stokes equations. Technical Report SAND82-8257, Sandia National Laboratories, 1982.

[394] S. Paolucci. Direct numerical simulation of two-dimensional turbulent natural convection in an enclosed cavity. Journal of Fluid Mechanics, 215:229–262, 1990.

[395] S. Paolucci and D. R. Chenoweth. Transition to chaos in a differentially heated vertical cavity. Journal of Fluid Mechanics, 201:379–410, 1989.

[396] S. V. Patankar. Numerical Heat Transfer and Fluid Flow. Hemisphere, 1980.

[397] G. Patnaik, R. H. Guirguis, J. P. Boris, and E. S. Oran. A barely implicit correction for flux-corrected transport. Journal of Computational Physics, 71:1–20, 1987.

[398] R. B. Pember, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell, and M. Lai. A higher-order projection method for the simulation of unsteady turbulent nonpremixed combustion in an industrial burner. Technical Report UCRL–JC–118634, Lawrence Livermore National Laboratory, 1994.

[399] W.G. Penny and C.K. Thornhill. The dispersion, under gravity, of a column of fluid supported on a rigid horizontal plane. Philosophical Transactions of the Royal Society of London, Series A, 244:285–311, 1952.

[400] M. Peric, R. Kessler, and G. Scheuerer. Comparison of finite-volume numerical methods with staggered and colocated grids. Computers and Fluids, 16:389–403, 1988.

[401] K. A. Pericleous, K. S. Chan, and M. Cross. Free surface flow and heat transfer in cavities: The SEA algorithm. Numerical Heat Transfer, Part B, 27:487–507, 1995.

[402] J. S. Perry, K. G. Budge, M. K. W. Wong, and T. G. Trucano. RHALE: A 3-D MMALE code for unstructured grids. In ASME, editor, Advanced Computational Methods for Material Modeling, AMD-Vol. 180/PVP-Vol. 268, pages 159–174, 1993.

[403] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25:220–252, 1977.

[404] R. Peyret and T. D. Taylor. Computational Methods for Fluid Flow. Springer-Verlag, 1983.

[405] J. E. Pilliod, Jr. An analysis of piecewise linear interface reconstruction algorithms for volume-of-fluid methods. Master’s thesis, University of California at Davis, 1992.

[406] M. Z. Pindera, H. Q. Yang, A. J. Przekwas, and K. Tucker. Assessment of modern methods of numerical simulations of high speed flows. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0052.

[407] D.A. Porter and K.E. Easterling. Phase Transformations in Metals and Alloys. Chapman and Hall, 1981.

[408] K. G. Powell. A tree-based adaptive scheme for the solution of the equations of gas dynamics and magnetohydrodynamics. Applied Numerical Mathematics, 14:327–352, 1994.

[409] C. Pozrikidis. Boundary Integral and Singularity Methods for Linearized Viscous Flow. Cambridge University Press, 1992.

[410] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes in Fortran. Cambridge, 1986.

[411] G. R. Price, G. T. Reader, R. D. Rowe, and J. D. Bugg. A piecewise parabolic interface calculation for volume tracking. In Proceedings of the Sixth Annual Conference of the Computational Fluid Dynamics Society of Canada, University of Victoria, Victoria, British Columbia, 1998.

[412] G. R. Price and R. D. Rowe. An extended piecewise linear volume-of-fluid algorithm for reconstruction of thin interfaces. In Proceedings of the Fifth Annual Conference of the Computational Fluid Dynamics Society of Canada, pages 11(9)–11(14), University of Victoria, Victoria, British Columbia, 1997.

[413] E. G. Puckett. A volume of fluid interface tracking algorithm with applications to computing shock wave rarefraction. In Proceedings of the 4th International Symposium on Computational Fluid Dynamics, pages 933–938, 1991.

[414] E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider. A second-order projection method for tracking fluid interfaces in variable density incompressible flows. Journal of Computational Physics, 130:269–282, 1997.

[415] E. G. Puckett and J. S. Saltzman. A 3-D adaptive mesh refinement algorithm for multimaterial gas dynamics. Technical Report LA–UR–91–2745, Los Alamos National Laboratory, 1991. to Appear in Physica D.

[416] E. G. Puckett and J. S. Saltzman. A 3D adaptive mesh refinement algorithm for multimaterial gas dynamics. Physica D, 60:84–93, 1992.

[417] J. J. Quirk. A parallel adaptive grid algorithm for computational shock hydrodynamics. Applied Numerical Mathematics, 20:427–453, 1996.

[418] J. J. Quirk and S. Karni. On the dynamics of a shock-bubble interaction. Journal of Fluid Mechanics, 318:129–163, 1996.

[419] G. D. Raithby and G. E. Schneider. Numerical solution of problems in incompressible fluid flow: Treatment of the velocity-pressure coupling. Numerical Heat Transfer, 2:417–440, 1979.

[420] J. M. Rallison and A. Acrivos. A numerical study of the deformation and burst of a viscous drop in an extensional flow. Journal of Fluid Mechanics, 89:191–200, 1978.

[421] R. Rannacher. On the numerical solution of the incompressible Navier-Stokes equations. Zeitschrift fur Angewandte Mathematik und Mechanik, 73:203–216, 1994.

[422] M. Rappaz and Ch.-A. Gandin. Probabilistic modelling of microstructure formation in solidification processes. Acta metallurgica, 41(2):345–360, 1993.

[423] M. Rappaz and P. Thevoz. Solute diffusion model for equiaxed dendritic growth: analytical solution. Acta Metallurgica, 35:2929–2933, 1987.

[424] M. Raw. A coupled algebraic multigrid method for the 3D Navier-Stokes equations. In

W. Hackbusch and G. Wittum, editors, Fast solvers for flow problems, number 49 in Notes on Numerical Fluid Mechanics, pages 204–215. Vieweg, 1995.

[425] A. V. Reddy, D. B. Kothe, C. Beckermann, R. C. Ferrell, and K. L. Lam. High resolution finite volume parallel simulations of mould filling and binary solidification on unstructured 3D meshes. In Solidification Processing 1997: Proceedings of the Fourth Decennial International Conference on Solidification Processing, pages 83–87, The University of Sheffield, Sheffield, UK, July 7–10, 1997.

[426] M. Renardy, Y. Renardy, and J. Li. Numerical simulation of moving contact line problems using a volume-of-fluid method. Journal of Computational Physics, 2001. to appear.

[427] Y. Renardy and J. Li. Comment on ’a numerical study of periodic disturbances on two-layer couette flow’. Physics of Fluids, 11(10):3189–3190, 1999.

[428] Y. Renardy and J. Li. Numerical simulation of two-fluids flows of viscous immiscible liquids.

In Proceedings of the IUTAM Symposium on Nonlinear Waves in Multiphase Flow. Kluwer

Academic Publishers, 2000.

[429] Y. Renardy and J. Li. Numerical study of flows of two immiscible liquids at low reynolds number. SIAM Review, 42:417–439, 2000.

[430] Y. Renardy and J. Li. Merging of drops to form bamboo waves. International Journal on Multiphase Flow, 27(5):753–763, 2001.

[431] Y. Renardy, M. Renardy, and V. Cristini. A new volume-of-fluid formulation for surfactants

and simulations of drop deformation under shear at a low viscosity ratio. European Journal

of Mechanics B -Fluids, 2001. under revision.

[432] C. M. Rhie and W. L. Chow. A numerical study of the turbulent flow past an isolated airfoil with trailing edge separation. AIAA Journal, 21:1525–1532, 1983.

[433] C.M. Rhie and W.L. Chow. Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA Journal, 21(11):1525–1532, 1983.

[434] J. R. Richards, A. N. Beris, and A. M. Lenhoff. Steady laminar flow of liquid-liquid jets at high Reynolds numbers. Physics of Fluids, Part A, 5:1703–1717, 1993.

[435] J. R. Richards, A. M. Lenhoff, and A. N. Beris. Dynamic breakup of liquid-liquid jets. Physics of Fluids, Part A, 6:2640–2655, 1994.

[436] R. D. Richtmyer. A survey of difference methods for non-steady gas dynamics. Technical Report NCAR Tech Note 63–2, NCAR, 1963.

[437] R. D. Richtmyer and K. W. Morton. Difference Methods for Initial Value Problems. Wiley-Interscience, 1967.

[438] W. J. Rider. The Design of High-Resolution Upwind Shock-Capturing Methods. PhD thesis, University of New Mexico, 1992.

[439] W. J. Rider. A comparison of TVD Lax-Wendroff schemes. Communications in Numerical Methods in Engineering, 9:147–155, 1993.

[440] W. J. Rider. Advanced numerical techniques for thermal-hydraulics. In 1993 ASME/ANS National Heat Transfer Meeting, 1993.

[441] W. J. Rider. Extension of high-resolution schemes to multiple dimensions. Technical Report AIAA 93–0877, AIAA, 1993. Presented at the 31st Aerospace Sciences Meeting and Exhibit.

[442] W. J. Rider. On improvements to symmetric TVD algorithms: Method development. Technical Report AIAA–93–3300, AIAA, 1993. Presented at the 11th AIAA CFD Conference.

[443] W. J. Rider. Stability of semi-and nearly-implicit schemes for thermal-hydraulics. In 1993 ASME/ANS National Heat Transfer Meeting, 1993.

[444] W. J. Rider. Approximate projection methods for incompressible flow: Implementation, variants and robustness. Technical Report LA–UR–94–2000, Los Alamos National Laboratory, 1994.

[445] W. J. Rider. The robust formulation of approximate projection methods for incompressible flows. Technical Report LA–UR–94–3015, Los Alamos National Laboratory, 1994.

[446] W. J. Rider. Filtering nonsolenoidal modes in numerical solutions of incompressible flows. Technical Report LA–UR–94–3014, Los Alamos National Laboratory, 1998. Accepted for publication in the International Journal for Numerical Methods in Fluids.

[447] W. J. Rider and D. B. Kothe. A marker particle method for interface tracking. In H. A. Dwyer, editor, Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, pages 976–981, Lake Tahoe, NV, 1995.

[448] W. J. Rider and D. B. Kothe. Stretching and tearing interface tracking methods. Technical Report AIAA 95–1717, AIAA, 1995. Presented at the 12th AIAA CFD Conference.

[449] W. J. Rider and D. B. Kothe. Reconstructing volume tracking. Journal of Computational Physics, 141:112–152, 1998.

[450] W. J. Rider, D. B. Kothe, S. J. Mosso, J. H. Cerruti, and J. I. Hochstein. Accurate solution algorithms for incompressible multiphase fluid flows. Technical Report AIAA 95–0699, AIAA, 1995. Presented at the 33rd Aerospace Sciences Meeting and Exhibit.

[451] W. J. Rider, D. B. Kothe, E. G. Puckett, and I. D. Aleinov. Accurate and robust methods for variable density incompressible flows with discontinuities. In V. Venkatakrishnan, M. D. Salas, and S. R. Chakravarthy, editors, Workshop on Barriers and Challenges in Computational Fluid Dynamics, pages 213–230, Boston, MA, 1998. Kluwer Academic Publishers.

[452] W. J. Rider and D. R. Liles. A generalized flux-corrected transport algorithm. I: A finite difference formulation. Technical Report LA–UR–90–3725, Los Alamos National Laboratory, 1992.

[453] W. J. Rider and S. B. Woodruff. High-order solute tracking in two-phase thermal hydraulics. In H. A. Dwyer, editor, Proceedings of the Fourth International Symposium on Computational Fluid Dynamics, pages 957–962, 1991.

[454] William J. Rider and Dana A. Knoll. Time step size selection for radiation diffusion calculations. Journal of Computational Physics, 152:790–795, 1999.

[455] W.J. Rider and D.B. Kothe. Reconstructing volume tracking. Journal of Computational Physics, 141(2):112–152, 1998.

[456] T. D. Riney. Solution of visco-plastic equations for axisymmetric hypervelocity impact. Technical Report R62SD95, General Electric Space Sciences Laboratory, 1962.

[457] T. D. Riney. Theoretical hypervelocity impact calculations using the PICWICK code. Technical Report R64SD13, General Electric Space Sciences Laboratory, 1964.

[458] P. J. Roache. Computational Fluid Dynamics. Hermosa, 1976.

[459] P. L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. Journal of Computational Physics, 43:357–372, 1981.

[460] P. L. Roe. Some contributions to the modelling of discontinuous flows. In B. Engquist, editor, Lectures in Applied Mathematics, volume 22, pages 163–193, 1985.

[461] P. L. Roe. Some contributions to the modelling of discontinuous flows. In B. Engquist, editor, Lectures in Applied Mathematics, volume 22, pages 163–193, 1985.

[462] R. B. Rood. Numerical advection algorithms and their role in atmospheric transport and chemistry models. Reviews of Geophysics, 25:71–100, 1987.

[463] M. Rosenfeld and D. Kwak. Time-dependent solutions of viscous incompressible flows in moving co-ordinates. International Journal for Numerical Methods in Fluids, 13:1311–1328, 1991.

[464] L. Rosenhead. The point vortex approximation of a vortex sheet. Proceedings of the Royal Society of London, Series A, 134:170–192, 1932.

[465] R.W. Ruddle. The running and gating of castings. In Institute fo Metals Monograph Report Series, No. 19, 1956.

[466] M. Rudman. Volume tracking methods for interfacial flow calculations. International Journal for Numerical Methods in Fluids, 24:671–691, 1997.

[467] M. Rudman. A volume-tracking method for incompressible multifluid flows with large density variations. International Journal for Numerical Methods in Fluids, 28:357–378, 1998.

[468] G. Ryskin and L. G. Leal. Numerical solution of free-boundary problems in fluid mechanics. Journal of Fluid Mechanics, 148:1–17, 1984.

[469] H.J. Saabas and B.R. Baliga. Co-located equal order control-volume finite element method for multidimensional, incompressible, fluid flow -part i: Formulation. Numerical Heat Transfer, Part B, 26:381–407, 1994.

[470] Y. Saad. Iterative Methods for Sparse Linear Systems. PWS Publishing Company, 1996.

[471] Y. Saad and M.H. Schultz. GMRES: A generalized minimal residual algorithm for solving non-symetric linear systems. SIAM J. Sci. Stat. Comput., 7:856, 1986.

[472] T.O. Saetre, O. Hunderi, and E. Nes. Computer simulation of primary recrystallisation mi

crostructures: the effects of nucleation and growth kinetics. Acta metallurgica, 28:443–453,

1980.

[473] R. Sanders and A. Weiser. High resolution staggered mesh approach for nonlinear hyperbolic systems of conservation laws. Journal of Computational Physics, 101:314–329, 1992.

[474] Turgut Sarpkaya. Vorticity, free surface, and surfactants. Annual Review of Fluid Mechanics, 28:83–128, 1996.

[475] G. P. Sasmal and J. I. Hochstein. Marangoni convection with a curved and deforming free surface in a cavity. Journal of Fluids Engineering, 116:577–582, 1994.

[476] R. Scardovelli and S. Zaleski. Direct numerical simulation of free-surface and interfacial flow. Annual Review of Fluid Mechanics, 31:567–603, 1999.

[477] R.J. Schaefer and M.E. Glicksman. Fully time-dependent theory for the growth of spherical crystal nuclei. Journal of crystal growth, 5:44–58, 1969.

[478] E. Scheil and H. Wurst. Messung der raumlichen kristallgrobe. Zeitschrift Fur Metallkunde, 28:340–340, 1936.

[479] S. Schiaffino and A. A. Sonin. Formation and stability of liquid and molten beads on a solid surface. Journal of Fluid Mechanics, 343:95–110, 1997.

[480] S. Schiaffino and A. A. Sonin. Molten droplet deposition and solidification at low weber numbers. Physics of Fluids, 9:3172–3187, 1997.

[481] S. Schiaffino and A. A. Sonin. Motion and arrest of a molten contact line on a cold surface: An experimental study. Physics of Fluids, 9:2217–2226, 1997.

[482] S. Schiaffino and A. A. Sonin. On the theory for the arrest of an advancing molten contact line on a cold solid of the same material. Physics of Fluids, 9:2227–2233, 1997.

[483] W. Sch ¨onauer and R. Weiss. An engineering approach to generalized conjugate gradient methods and beyond. Applied Numerical Mathematics, 19:175–206, 1995.

[484] J. A. Sethian. Curvature and the evolution of fronts. Comunications in Mathematical Physics, 101:487–499, 1985.

[485] J. A. Sethian. Level Set Methods. Cambridge University Press, 1996.

[486] A. Settari and K. Aziz. A generalization of the additive correction methods for the iterative solution of matrix equations. SIAM J. Numer. Anal., 10:506–521, 1973.

[487] N. Shamsundar and E. Rooz. Numerical methods for moving boundary problems. In W. J.

Minkowycz, E. M. Sparrow, G. E. Schneider, and R. H. Pletcher, editors, Handbook of Nu

merical Heat Transfer, pages 747–786, New York, 1988. Wiley.

[488] M. Shashkov. Conservative Finite-Difference Methods on General Grids. CRC Press, 1996.

[489] M. Shashkov, B. Swartz, and B. Wendroff. Local reconstruction of a vector field from its normal components on the faces of grid cells. Journal of Computational Physics, 139:406– 409, 1998.

[490] D.Y. Sheng and L. Jonsson. Investigation of transient fluid flow and heat transfer in a continuous casting tundish by numerical analysis verified with nonisothermal water model experiments. mettransb, 30(5):979–985, 1999.

[491] J. R. Shewchuk. An introduction to the conjugate gradient method without the agonizing pain. Technical Report CMU-CS-94-125, Carnegie Mellon University, 1994.

[492] Q. Shi and H. Haj-Hariri. The effects of convection on the motion of deformable drops. Technical Report AIAA 94–0834, AIAA, 1994. Presented at the 32nd Aerospace Sciences Meeting and Exhibit.

[493] T. M. Shih, C. H. Tan, and B. C. Hwang. Effects of grid staggering on numerical schemes. International Journal for Numerical Methods in Fluids, 9:193–212, 1989.

[494] C.-W. Shu. Total-variation-diminishing time discretizations. SIAM Journal on Scientific Computing, 9:1073–1084, 1988.

[495] C.-W. Shu. Numerical experiments on the accuracy of ENO and modifed ENO schemes. Journal of Scientific Computing, 5:127–151, 1990.

[496] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, 77:439–471, 1988.

[497] C.-W. Shu and S. Osher. Efficient implementation of essentially non-oscillatory shock-capturing schemes II. Journal of Computational Physics, 83:32–78, 1989.

[498] C.-W. Shu, T. A. Zang, G. Erlebacher, D. Whitaker, and S. Osher. High-order ENO schemes applied to two-and three-dimensional compressible flow. Applied Numerical Mathematics, 9:45–71, 1992.

[499] W. Shyy. Computational Modeling for Fluid Flow and Interfacial Transport. Elsevier Science, 1994.

[500] W. Shyy, S. S. Thakur, H. Ouyang, J. Liu, and E. Blosch. Computational Techniques for Complex Transport Phenomena. Cambridge University Press, 1997.

[501] W. Shyy, H. Udaykumar, M. Rao, and R. Smith. Computational Fluid Dynamics with Moving Boundaries. Taylor and Francis, 1996.

[502] B. Sirrell, M. Holliday, and J. Campbell. The benchmark test 1995. In M. Cross and J. Campbell, editors, Modeling of Casting, Welding, and Advanced Solidification Processes VII, pages 915–933, New York, 1996. TMS Publishers.

[503] W. C. Skamarock and J. B. Klemp. The stability of time-split numerical methods for the hydrostatic and the nonhydrostatic elastic equations. Monthly Weather Review, 120:2109– 2127, 1992.

[504] R. D. Smith, J. K. Dukowicz, and R. C. Malone. Parallel ociean general circulation modeling. Physica D, 60:38–61, 1992.

[505] P. K. Smolarkiewicz. The multi-dimensional Crowley advection scheme. Monthly Weather Review, 110:1968–1983, 1982.

[506] P. K. Smolarkiewicz. A fully multidimensional positive definite advection transport algorithm with small implicit diffusion. Journal of Computational Physics, 54:325–362, 1984.

[507] P. K. Smolarkiewicz and L. G. Margolin. Variational elliptic solver for atmospheric applications. Los Alamos National Laboratory, Applied Mathematics and Computer Science:527– 551, 1994.

[508] P. K. Smolarkiewicz and L. G. Margolin. Variational elliptic solver for atmospheric applications. Technical Report LA–12712–MS, Los Alamos National Laboratory, 1994.

[509] P. K. Smolarkiewicz and L. G. Margolin. MPDATA: A finite-difference solver for geophysical flows. Journal of Computational Physics, 140:459–480, 1998.

[510] M. Snir, S.W. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI: The Complete Reference. The MIT Press, Cambridge, MA, 1996.

[511] G. A. Sod. Numerical Methods in Fluid Dynamics. Cambridge, 1985.

[512] F. Sotiropoulos and S. Abdallah. The discrete continuity equation in primitive variable solutions of incompressible flow. Journal of Computational Physics, 95:212–227, 1991.

[513] A. Starobin, A. Kuprat, M. Stan, and S. Swaminarayan. Numerical coupling of a macro-scale casting simulation code and meso-scale equiaxed dendritic growth models. In Proceedings of 2004 ASME Heat Transfer / Fluids Engineering Summer Conference, Charlotte, NC, USA, July 2004.

[514] D.M. Stefanescu. Critical review of the second generation of solidification models for castings: macro transport–transformation kinetics codes. In Modeling of casting, welding and advanced solidification processes VI (The Minerals, Metals and Materials Society), GENOA, AUG 1993.

[515] R.A. Stoehr and C. Wang. Advances in fluid flow, heat transfer and solidification modeling and applications to actual foundry applications. In M. Rappaz, M.R. Ozgu, and K.W. Mahin, editors, Modeling of Casting, Welding and Advanced Solidification Processes, pages 725– 735, Warrendale, PA, 1988. The Minerals, Metals, and Materials Society.

[516] J. M. Straka, R. B. Wilhelmson, L. J. Wicker, J. R. Anderson, and K. K. Droegemeier. Numerical solutions of a non-linear density current: A benchmark solution and comparisons. International Journal for Numerical Methods in Fluids, 17:1–22, 1993.

[517] G. Strang. On the construction and comparison of difference schemes. SIAM Journal on Numerical Analysis, 5:506–517, 1968.

[518] G. Strang. Linear Algebra and Its Applications. Harcourt Brace Jovanovich, 1976.

[519] G. Strang. Introduction to Applied Mathematics. Wellesley-Cambridge, 1986.

[520] J. C. Strikwerda. Finite difference methods for the Stokes and Navier–Stokes equations. SIAM Journal on Scientific Computing, 5:56–68, 1984.

[521] J. C. Strikwerda. Finite Difference Schemes and Partial Differential Equations. Wadswork and Brooks/Cole, 1989.

[522] A. Suresh and H. T. Huynh. Numerical experiments on a new class of nonoscillatory schemes. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0421.

[523] M. Sussman, A.S. Almgren, J.B. Bell, P. Colella, L.H. Howell, and M.L. Welcome. An adaptive level set approach for incompressible two-phase flows. Technical Report LBNL40327, Lawrence Berkeley National Laboratory, 1997.

[524] M. Sussman and P. Smereka. Axisymmetric free boundary problems. Journal of Fluid Mechanics, 341:269–294, 1997.

[525] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Technical Report CAM 93–18, UCLA, 1993.

[526] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible two-phase flow. Journal of Computational Physics, 114:146–159, 1994.

[527] C.R. Swaminathan and V.R. Voller. Towards a general numerical scheme for solidification systems. International journal of heat and mass transfer, 40(12):2859–2868, 1997.

[528] B. Swartz. The second-order sharpening of blurred smooth borders. Mathematics of Computation, 52:675–714, 1989.

[529] P. K. Sweby. High-resolution schemes using flux limiters for hyperbolic conservation laws. SIAM Journal on Numerical Analysis, 21:995–1011, 1984.

[530] P. K. Sweby. Flux limiters. In F. Angrand, A. Dervieux, J. A. Desideri, and R. Glowinski, editors, Numerical Methods for the Euler Equations of Fluid Dynamics, pages 48–65, 1985.

[531] P. K. Sweby. High resolution TVD schemes using flux limiters. In B. Engquist, editor, Lectures in Applied Mathematics, volume 22, pages 289–309, 1985.

[532] P. Szabo and O. Hassager. Simulation of free surfaces in 3-D with the arbitrary Lagrange Euler method. International Journal for Numerical Methods in Fluids, 38:717–734, 1995.

[533] K.-Y. Szema, S. R. Chakravarthy, K. Peppi, and C. M. Rowell. Application of a UNIVERSE-series code for inviscid flow over complex 3-dimensional configurations. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0150.

[534] W. G. Szymczak, J. C. W. Rogers, J. M. Solomon, and A. E. Berger. A numerical algorithm for hydrodynamic free boundary problems. Journal of Computational Physics, 106:319–336, 1993.

[535] C. K. W. Tam and J. C. Webb. Dispersion-relation-preserving finite difference schemes for computational acoustics. Journal of Computational Physics, 107:262–281, 1993.

[536] O. Tatebe. The multigrid preconditioned conjugate gradient method. In N. D. Melson, T. A. Manteuffel, and S. F. McCormick, editors, Proceedings of the Sixth Copper Mountain Conference on Multigrid Methods, pages 621–634, Copper Mountain, CO, 1993.

[537] E. Y. Tau. A second-order projection method for the incompressible Navier-Stokes equations in arbitary domains. Journal of Computational Physics, 115:147–152, 1994.

[538] G.A. Taylor, C. Bailey, and M. Cross. Solution of the elastic / visco-plastic constitutive equations: A finite volume approach. Applied Mathematical Modelling, 19:746–760, 1995.

[539] R. Temam. Sur l’approximation de la solution des ´equations de Navier-Stokes par la m´ethod des pas fractionnaires (I). Archives for Rational Mechanics and Analysis, 32:135–153, 1969.

[540] R. Temam. Sur l’approximation de la solution des ´ethod

equations de Navier-Stokes par la m´des pas fractionnaires (II). Archives for Rational Mechanics and Analysis, 33:377–385, 1969.

[541] R. Temam. Navier-Stokes Equations. North-Holland Publishing Company, 1977.

[542] R. Temam. Remark on the pressure boundary condition for the projection method. Theoretical and Computational Fluid Dynamics, 3:181–184, 1991.

[543] P. Thevoz, J.L. Desbiolles, and M. Rappaz. Modeling of equiaxed microstructure formation in casting. Metallurgical transactions A, 20:311–322, 1989.

[544] T. G. Thomas, D. C. Leslie, and J. J. R. Williams. Free surface simulations using a conservative 3D code. Journal of Computational Physics, 116:52–68, 1995.

[545] J. F. Thompson, Z. U. A. Warsi, and C. W. Mastin. Numerical Grid Generation. Elsevier Science, New York, 1985.

[546] K. Toh. MTV Plot Data Format, Version 1.4, January 1994. Distributed with the Plotmtv code.

[547] X. Tong, C. Beckermann, and A. Karma. Phase field simulation of dendritic growth with convection. In B. Thomas and C. Beckermann, editors, Modeling of Casting, Welding, and Advanced Solidification Processes VIII, New York, 1998. TMS Publishers.

[548] P. A. Torpey. Prevention of air ingestion in a thermal ink-jet device. In Proceedings of the 4th International Congress on Advances in Non-Impact Print Technologies, March 1988.

[549] M.D. Torrey, R.C. Mjolsness, and L.R. Stein. NASA-VOF3D: A three-dimensional computer program for incompressible flows with free surfaces. Technical Report LA–11009–MS, Los Alamos National Laboratory, 1987.

[550] J. A. Trapp and R. A. Riemke. A nearly-implicit hydrodynamic numerical scheme for two-phase flow. Journal of Computational Physics, 66:62–82, 1986.

[551] G. Tryggvason, B. Bunner, O. Ebrat, and W. Tauber. Computations of multiphase flow by a finite difference/front tracking method. I. Multi-fluid flows. In Lecture Notes for the 29th Computational Fluid Dynamics Lecture Series, Karman Institute for Fluid Mechanics, Belgium, February 23–27, 1998.

[552] G. Tryggvason, B. Bunner, A. Esmaeeli, D. Juric, N. Al-Rawahi, W. Tauber, J. Han, S. Nas, and Y.-J. Jan. A front tracking method for the computations of multiphase flow. Journal of Computational Physics, 169(2):708–759, 2001.

[553] W. Tsai and D. K. P. Yue. Computation of nonlinear free-surface flows. Annual Review of Fluid Mechanics, 28:249–278, 1996.

[554] J. A. Turner, R. C. Ferrell, and D. B. Kothe. JTpack90: A parallel, object-based Fortran 90 linear algebra package. In Proceedings of the Eighth SIAM Conference on Parallel Processing for Scientific Computing, Minneapolis, MN, March 14–17, 1997.

[555] John A. Turner. JTPACK90 (LA-CC-95-6) -A Fortran 90 Collection of Linear Algebra Routines. Los Alamos National Laboratory, 1996.

[556] C. P. Tzanos. Central difference-like approximations for the solution of the convection-diffusion equation. Numerical Heat Transfer, Part B, 17:97–112, 1990.

[557] H. S. Udaykumar and W. Shyy. A grid-supported marker particle scheme for interface tracking. Numerical Heat Transfer, Part B, 27:127–153, 1995.

[558] E.E. Underwood. Quantitative Stereology. Addison-Wesley, Philippines, 1970.

[559] S. O. Unverdi and G. Tryggvason. A front-tracking method for viscous, incompressible, multi-fluid flows. Journal of Computational Physics, 100:25–37, 1992.

[560] S. O. Unverdi and G. Tryggvason. Computations of multi-fluid flows. Physica D, 60:70–83, 1992.

[561] C. v. L. Kietzmann, J. P. Van Der Walt, and Y. S. Morsi. A free-front tracking algorithm for a control-volume-based Hele-Shaw method. International Journal for Numerical Methods in Engineering, 41:253–269, 1998.

[562] G. D. van Albada, B. van Leer, and W. W. Roberts. A comparative study of computational methods in cosmic gas dynamics. Astronomy and Astrophysics, 108:76–84, 1982.

[563] J. P. van Doormal and G. D. Raithby. Enhancements of the simple method for predicting incompressible fluid flows. Numerical Heat Transfer, 7:147–163, 1984.

[564] B. van Leer. Towards the ultimate conservative difference scheme. III. Upstream-centered finite-difference schemes for ideal compressible flow. Journal of Computational Physics, 23:263–275, 1977.

[565] B. van Leer. Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection. Journal of Computational Physics, 23:276–299, 1977.

[566] B. van Leer. Towards the ultimate conservative difference scheme. V. A second-order sequel to Godunov’s method. Journal of Computational Physics, 32:101–136, 1979.

[567] B. van Leer. Multidimensional explicit difference schemes for hyperbolic conservation laws. In R. Glowinski and J.-L. Lions, editors, Computing Methods in Applied Sciences and Engineering VI, pages 493–497, 1984.

[568] B. van Leer. On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM Journal on Scientific Computing, 5:1–20, 1984.

[569] B. van Leer. Upwind-difference methods for aerodynamic problems governed by the Euler equations. In B. Engquist, editor, Lectures in Applied Mathematics, volume 22, pages 327– 336, 1985.

[570] R. Varga. Matrix Iterative Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1962.

[571] A. Varonos and G. Bergeles. Development and assessment of a variable-order non-oscillatory scheme for convection term discretization. International Journal for Numerical Methods in Fluids, 26:1–16, 1998.

[572] A. E. P. Veldman. “Missing” boundary conditions? discretize first, substitute next, and combine later. SIAM Journal on Scientific Computing, 11:82–91, 1990.

[573] V. Venkatakrishnan. On the accuracy of limiters and convergence to steady state solutions. Technical Report 93–0880, AIAA, 1993. Presented at the 31st Aerospace Sciences Meeting.

[574] V. Venkatakrishnan. Convergence to steady state solutions of the Euler equations on unstructured grids with limiters. Journal of Computational Physics, 118:120–130, 1995.

[575] M. Vinokur. An analysis of finite-difference and finite-volume formulations of conservation laws. Journal of Computational Physics, 81:1–52, 1989.

[576] V. R. Voller. A similarity solution for the solidification of multicomponent alloy. Advances in Numerical Heat Transfer, 1:341–375, 1996.

[577] V. R. Voller. An overview of numerical methods for phase change problems. Advances in Numerical Heat Transfer, 1:341–375, 1996.

[578] V. R. Voller. The development of a numerical scheme for solidification of an alloy. Can. J. Met. Quart., 37:169–177, 1998.

[579] V.R. Voller. An overview of numerical methods for phase change problems. Advances in Numerical Heat Transfer, 1:341–375, 1996.

[580] H. Walther and P.R. Sahm. Simulating and modeling the filling of a mold. In A.F. Giamei and G.J. Abbaschian, editors, Modeling and Control of Casting and Welding Processes, pages 635–644, Warrendale, PA, 1988. The Minerals, Metals, and Materials Society.

[581] C.Y. Wang and C. Beckermann. A multiphase solute diffusion model for dendritic solidification. Metallurgical Transactions A, 24:2787–2802, 1993.

[582] C.Y. Wang and C. Beckermann. A unified solute diffusion model for columnar and equiaxed dendritic alloy solidification. Materials science and engineering A, 171:199–211, 1993.

[583] H. P. Wang and H. S. Lee. Numerical techniques for free and moving boundary problems. In C. L. Tucker, editor, Fundamentals of Computer Modeling for Polymer Processing, pages 369–401, New York, 1989. Hanser Publishers.

[584] S. L. Wang, R. F. Sekerka, A. A. Wheeler, B. T. Murray, S. R. Coriell, and G. B McFadden. Thermodynamically consistent phase-field models for solidification. Physica D, 69:189–200, 1993.

[585] M. S. Warren and J. K. Salmon. Astrophysical n-body simulations using hierachical tree data structures. Supercomputing 92, 87:570–576, 1992.

[586] M. S. Warren and J. K. Salmon. A parallel hashed oct-tree n-body algorithm. Supercomputing 93, 87:570–576, 1992.

[587] M. S. Warren and J. K. Salmon. A portable parallel particle program. Computer Physics Communications, 87:266–290, 1995.

[588] C. E. Weatherburn. On differential invariants in geometry of surfaces, with some applications to mathematical physics. Quarterly Journal of Mathematics, 50:230–269, 1927.

[589] P. Wesseling. An Introduction to Multigrid Methods. Wiley, 1992.

[590] C. K. Westbrook. A generalized ICE method of chemically reactive flows in combustion systems. Journal of Computational Physics, 29:67–80, 1978.

[591] A. A. Wheeler, B. T. Murray, and R. J. Schaefer. Computation of dendrites using a phase-field model. Physica D, 66:243–262, 1993.

[592] D. C. Wilcox. Turbulence Modeling for CFD. DCW Industries, Inc., 1993.

[593] M. W. Williams. Numerical Methods for Tracking Interfaces with Surface Tension in 3-D mold filling processes. PhD thesis, University of California, Davis, 2000.

[594] M. W. Williams, D. B. Kothe, and E. G. Puckett. Approximating interface topologies with applications to interface tracking algorithms. Technical Report 99–1076, AIAA, 1999. Presented at the 37th Aerospace Sciences Meeting.

[595] M. W. Williams, D. B. Kothe, and E. G. Puckett. Convergence and accuracy of kernel-based continuum surface tension models. In W. Shyy, editor, Fluid Dynamics at Interfaces, pages 347–356, Cambridge, MA, 1999. Cambridge University Press.

[596] T. L. Williams. An implicit surface tension model. Master’s thesis, Memphis State University, 1993.

[597] T. L. Wilson. Stretched grid generation. Technical Report Memo N-6-88-773, Los Alamos National Laboratory, 1988.

[598] F. Wolff and R. Viskanta. Solidification of a pure metal at a vertical wall in the presence of liquid superheat. International journal of heat and mass transfer, 31(8):1735–1744, 1988.

[599] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54:115–173, 1984.

[600] P. Woodward and P. Colella. The numerical simulation of two-dimensional fluid flow with strong shocks. Journal of Computational Physics, 54:115–173, 1984.

[601] P. R. Woodward. Simulation of the Kelvin–Helmholtz instability of a supersonic slip surface with the Piecewise–Parabolic Method (PPM). In F. Angrand, A. Dervieux, J. A. Desideri, and R. Glowinski, editors, Numerical Methods for the Euler Equations of Fluid Dynamics, pages 493–508, 1985.

[602] P. R. Woodward. Piecewise-parabolic methods for astrophysical fluid dynamics. In K.-H. A Winkler and M. L. Norman, editors, Astrophysical Radiation Hydrodynamics, pages 245– 326, 1986.

[603] T. Yabe. Unified solver CIP for solid, liquid, and gas. Computational Fluid Dynamics Review, 1998. To appear.

[604] T. Yabe and F. Xiao. Description of complex and sharp interface with fixed grids in incompressible and compressible fluids. Computers in Mathematics Applications, 29:15–25, 1995.

[605] N. N. Yanenko. The Method of Fractional Steps. Springer-Verlag, 1971.

[606] H. Yang. An artificial compression method for ENO schemes: The slope modification method. Journal of Computational Physics, 89:125–160, 1990.

[607] J.L. Yeh, W.S. Hwang, and C.L. Chou. Three-dimensional mathematical modeling of fluid flow in slab tundishes and its verification with water model experiments. jmep, 1:625–636, 1992.

[608] R. W. Yeung. Numerical methods in free-surface flows. Annual Review of Fluid Mechanics, 14:395–442, 1982.

[609] D. L. Youngs. Time-dependent multi-material flow with large fluid distortion. In K. W. Morton and M. J. Baines, editors, Numerical Methods for Fluid Dynamics, pages 273–285, 1982.

[610] D. L. Youngs. An interface tracking method for a 3D Eulerian hydrodynamics code. Technical Report 44/92/35, AWRE, 1984.

[611] T. Zacharia, A.H. Eraslan, and K.K. Aidun. Modeling n0n-autogenous welding. Weld. J. Res. Suppl., pages 18s–27s, 1988.

[612] S. T. Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31:335–362, 1979.

[613] S. T. Zalesak. A physical interpretation of the Richtmyer two-step Lax-Wendroff scheme and its generalization to higher spatial order. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations V, pages 491–496, 1984.

[614] S. T. Zalesak. A preliminary comparison of modern shock-capturing schemes: Linear advection. In R. Vichnevetsky and R. S. Stepleman, editors, Advances in Computer Methods for Partial Differential Equations, volume 6, pages 15–22. IMACS, 1987.

[615] S. Zaleski, J. Li, and S. Succi. Two-dimensional Navier-Stokes simulation of deformation and breakup of liquid patches. Physical Review Letters, 75:244–247, 1995.

[616] Y. Zang, R. L. Street, and J. R. Koseff. A non-staggered grid, fractional step method for time-dependent incompressible Navier-Stokes equations in curvilinear coordinates. Journal of Computational Physics, 114:18–33, 1994.

[617] G. P. Zank and W. H. Matthaeus. Nearly incompressible hydrodynamics and heat conduction. Physical Review Letters, 64:1243–1246, 1990.

[618] G. P. Zank and W. H. Matthaeus. The equations of nearly incompressible fluids. I. Hydrodynamics, turbulence and waves. Physics of Fluids, Part A, 3:1703–1717, 1993.

[619] D. De Zeeuw and K. G. Powell. Euler calculations of axisymmetric under-expander jets by an adaptive-refinement method. In 30th Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 1992. AIAA–92–0321.

[620] J. Zhu and J. Sethian. Projection methods coupled to level set interface techniques. Journal of Computational Physics, 102:128–138, 1992.

[621] Y. Zhu, P. J. Fox, and J. P. Morris. A pore-scale numerical model for flow through porous media. International Journal for Numerial Analytical Methods in Geomechanics, 23:881– 904, 1999.

[622] O. C. Zienkiewicz. The Finite Element Method. McGraw-Hill, New York, NY, 1977.

[623] Z. Zinamon, E. Nardi, and E. Peleg. Two-Dimensional calculation of electron-beam target interaction. Physical Review Letters, 34:1262–1266, 1975.


« February 2009 »
Su Mo Tu We Th Fr Sa
1234567
891011121314
15161718192021
22232425262728
 

Powered by Plone CMS, the Open Source Content Management System

This site conforms to the following standards: