SIAM J. Sc1. COMPUT. (© 2007 Society for Industrial and Applied Mathematics
Vol. 30, No. 1, pp. 205-231

EFFICIENT MATLAB COMPUTATIONS WITH SPARSE AND
FACTORED TENSORS*

BRETT W. BADER' AND TAMARA G. KOLDA?

Abstract. In this paper, the term tensor refers simply to a multidimensional or N-way array,
and we consider how specially structured tensors allow for efficient storage and computation. First,
we study sparse tensors, which have the property that the vast majority of the elements are zero.
We propose storing sparse tensors using coordinate format and describe the computational efficiency
of this scheme for various mathematical operations, including those typical to tensor decomposition
algorithms. Second, we study factored tensors, which have the property that they can be assembled
from more basic components. We consider two specific types: A Tucker tensor can be expressed
as the product of a core tensor (which itself may be dense, sparse, or factored) and a matrix along
each mode, and a Kruskal tensor can be expressed as the sum of rank-1 tensors. We are interested
in the case where the storage of the components is less than the storage of the full tensor, and we
demonstrate that many elementary operations can be computed using only the components. All of
the efficiencies described in this paper are implemented in the Tensor Toolbox for MATLAB.

Key words. sparse multidimensional arrays, multilinear algebraic computations, tensor decom-
positions, Tucker model, parallel factors (PARAFAC) model, MATLAB classes, canonical decompo-
sition (CANDECOMP)

AMS subject classifications. 15A69, 68P05, 65F50

DOI. 10.1137/060676489

1. Introduction. Tensors, by which we mean multidimensional or N-way ar-
rays, are used today in a wide variety of applications, but many issues of computa-
tional efficiency have not yet been addressed. In this article, we consider the problem
of efficient computations with sparse and factored tensors, whose dense/unfactored
equivalents would require too much memory.

Our particular focus is on the computational efficiency of tensor decompositions,
which are being used in an increasing variety of fields in science, engineering, and
mathematics. Tensor decompositions date back to the late 1960s with work by Tucker
[51], Harshman [19], and Carroll and Chang [9]. Recent decades have seen tremendous
growth in this area with a focus towards improved algorithms for computing the
decompositions [13, 12, 58, 50]. Many innovations in tensor decompositions have
been motivated by applications in chemometrics [3, 31, 8, 44]. More recently, these
methods have been applied to signal processing [10, 11], image processing [52, 54,
57, 53], data mining [43, 46, 1, 45], scientific computing [6], and elsewhere [26, 36].
Though this work can be applied in a variety of contexts, we concentrate on operations
that are common to tensor decompositions, such as the Tucker [51] and canonical
decomposition (CANDECOMP), and parallel factors (PARAFAC) models [9, 19].

*Received by the editors December 1, 2006; accepted for publication (in revised form) July 11,
2007; published electronically December 7, 2007. This work was funded by Sandia National Labora-
tories, a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for
the United States Department of Energy’s National Nuclear Security Administration under contract
DE-AC04-94AL85000.

http://www.siam.org/journals/sisc/30-1/67648.html

T Applied Computational Methods Department, Sandia National Laboratories, Albuquerque, NM
87185-1318 (bwbader@sandia.gov).

fMathematics, Informatics, and Decision Sciences Department, Sandia National Laboratories,
Livermore, CA 94551-9159 (tgkolda@sandia.gov).

205

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

206 BRETT W. BADER AND TAMARA G. KOLDA

For the purposes of our introductory discussion, we consider a third-order tensor
= RI xJIXK

Storing every entry of X requires IJK storage. A sparse tensor is one where the
overwhelming majority of the entries are zero. Let P denote the number of nonzeros
in X. Then we say X is sparse if P < IJK. Typically, only the nonzeros and their
indices are stored for a sparse tensor. We discuss several possible storage schemes
and select coordinate format as the most suitable for the types of operations required
in tensor decompositions. Storing a tensor in coordinate format requires storing P
nonzero values and N P corresponding integer indices, for a total of (IV 4 1) P storage.

In addition to sparse tensors, we study two special types of factored tensors that
correspond to the Tucker [51] and CANDECOMP/PARAFAC [9, 19] models. The
Tucker format stores a tensor as the product of a core tensor and a factor matrix
along each mode [25]. For example, if X is a third-order tensor that is stored as the
product of a core tensor G of size R x S x T with corresponding factor matrices, then
we express it as

s
X=[9;A,B,C], whichmeans z;;, = Z Z Zgrst airbjscr for all 4,4, k.

r=1s=1t=1

If1,J,K > R,S, T, then forming X explicitly requires more memory than is needed
to store only its components. The storage for the factored form with a dense core
tensor is RST + IR+ JS+ KT. However, the Tucker format is not limited to the case
where G is dense and smaller than X. It could be the case that G is a large, sparse
tensor so that R, S, T > I,J, K but the total storage is still less than IJK. Thus,
more generally, the storage for a Tucker tensor is STORAGE(G) + IR+ JS + KT. The
Kruskal format stores a tensor as the sum of rank-1 tensors [25], which corresponds
to the CANDECOMP /PARAFAC models. For example, if X is a third-order tensor
that is stored as the sum of R rank-1 tensors, then we express it as

R
X=[X;A,B,C], which means z;j; = Z)‘T airbjrciy for all 4,5, k.

r=1

As with the Tucker format, when I, J, K > R, forming X explicitly requires more
memory than storing just its factors, which require only (I + J + K + 1)R storage.

These storage formats and the techniques in this article are implemented in the
MATLAB Tensor Toolbox, version 2.1 [5].

1.1. Related work and software. MATLAB (version 2006a) provides dense
multidimensional arrays and operations for elementwise and binary operations. Ver-
sion 1.0 of our MATLAB Tensor Toolbox [4] extends MATLAB’s core capabilities
to support operations such as tensor multiplication and matricization. The previous
version of the toolbox also included objects for storing Tucker and Kruskal factored
tensors but did not support mathematical operations on them beyond conversion to
unfactored format. MATLAB cannot store sparse tensors except for sparse matri-
ces which are stored in compressed sparse column (CSC) format [16]. Mathematica,
an alternative to MATLAB, also supports multidimensional arrays, and there is a
Mathematica package for working with tensors that accompanies the book [41]. In
terms of sparse arrays, Mathematica stores its SparseArray’s in compressed sparse
row (CSR) format and claims that its format is general enough to describe arbitrary

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 207

order tensors.! Maple has the capacity to work with sparse tensors using the array
command and supports mathematical operations for manipulating tensors that arise
in the context of physics and general relativity. Both Mathematica and Maple are
geared to symbolic computation, and so their multidimensional array support is also
in that vein. MATLAB, on the other hand, is generally considered more suited to
numerical computations.

There are three well known packages for (dense) tensor decompositions. The
N-way toolbox for MATLAB by Andersson and Bro [2] provides a suite of efficient
functions and alternating least squares algorithms for decomposing dense tensors into
a variety of models including Tucker and CANDECOMP/PARAFAC. The Multilin-
ear Engine by Paatero [38] is a FORTRAN code based on on the conjugate gradi-
ent algorithm that also computes a variety of multilinear models. The commerical
PLS_Toolbox [55] provides a number of multidimensional models with an emphasis
towards their application in chemometrics. All three packages can handle missing
data and constraints (e.g., nonnegativity) on the models.

A few other software packages for tensors are available that do not explicitly tar-
get tensor decompositions. A collection of highly optimized, template-based tensor
classes in C++ for general relativity applications has been written by Landry [30]
and supports functions such as binary operations and internal and external contrac-
tions. The tensors are assumed to be dense, though symmetries are exploited to
optimize storage. The most closely related work to this article is the HUJI Tensor
Library (HTL) by Zass [56], a C++ library for dealing with tensors using templates.
HTL includes a SparseTensor class that stores index/value pairs using a standard
template library (STL) map. HTL addresses the problem of how to optimally sort
the elements of the sparse tensor (discussed in more detail in section 3.1) by letting
the user specify how the subscripts should be sorted. It does not appear that HTL
supports general tensor multiplication, but it does support inner product, addition,
elementwise multiplication, and more. We also briefly mention MultiArray [15], which
provides a general array class template that supports multiarray abstractions and can
be used to store dense tensors.

Because it directly informs our proposed data structure, related work on storage
formats for sparse matrices and tensors is deferred to section 3.1.

1.2. Outline of article. In section 2, we review notation and matrix and tensor
operations that are needed in the paper. In section 3, we consider sparse tensors,
motivate our choice of coordinate format, and describe how to make operations with
sparse tensors efficient. In section 4, we describe the properties of the Tucker tensor
and demonstrate how they can be used for efficient computations. In section 5, we
do the same for the Kruskal tensor. In section 6, we discuss inner products and
elementwise multiplication between the different types of tensors. Finally, in section
7, we conclude with a discussion on the Tensor Toolbox, our implementation of these
concepts in MATLAB.

2. Notation and background. We follow the notation of Kiers [23], except
that tensors are denoted by boldface Euler script letters, e.g., X, rather than using
underlined boldface X. Matrices are denoted by boldface capital letters, e.g., A;
vectors are denoted by boldface lowercase letters, e.g., a; and scalars are denoted by
lowercase letters, e.g., a. MATLAB-like notation specifies subarrays. For example,

let X be a third-order tensor. Then X;.., X.;., and X..;, denote the horizontal, lateral,

1Visit the Mathematica website (www.wolfram.com) and search on “SparseArray Data Format.”

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

208 BRETT W. BADER AND TAMARA G. KOLDA

and frontal slices, respectively. Likewise, X.;i, X;:k, and X;;. denote the column, row,
and tube fibers, respectively. A single element is denoted by x;;,. As an exception,
provided that there is no possibility for confusion, the rth column of a matrix A is
denoted as a,. Generally, indices are taken to run from 1 to their capital version,
ie,i=1,..., 1. All of the concepts in this section are discussed at greater length by
Kolda [25]. For sets we use calligraphic font, e.g., R = {ry,72,...,7p}. We denote a
set of indices by Ix = {1, L1y, ..., 11 }.

2.1. Standard matrix operations. The Kronecker product of matrices A €
R/ and B € REXF ig

anB a2B -+ a1;B
A®B= anB axpB - axs/B GRIKX‘]L.
ale aIQB a[JB

The Khatri-Rao product [35, 40, 8, 44] of matrices A € R'*X and B € R7*K is
A@Bz[a1®b1 a2®b2 aK®bK]ERIJXK.

The Hadamard (elementwise) product of matrices A and B is denoted by A «B. See,
e.g., [44] for properties of these operators.

2.2. Vector outer product. The symbol o denotes the vector outer product.
Let a(™ € R for all n = 1,...,N. Then the outer product of these N vectors is an
N-way tensor, defined elementwise as

(a(l)oa@)O-noa(N)) o :agll)ag)---agg) for 1 <4, < I,,neN.
21%22...1N
Sometimes the symbol ® is used rather than the symbol o (see, e.g., [24]).

2.3. Matricization of a tensor. Matricization, sometimes called unfolding or
flattening, is the rearrangement of the elements of a tensor into a matrix. Let X €
RI1xI2xXIN he an order-N tensor. The modes N = {1,..., N} are partitioned into
R ={ry,...,r5}, the modes that are mapped to the rows, and € = {cy,...,ca}, the
remaining modes that are mapped to the columns. Recall that In denotes the set
{L,...,In}. Then the matricized tensor is specified by

X(rxe:1y) ERVK, with J=][I, and K=]]IL.
neR nec

Specifically, (X(RXG:IN))jk = Ty iy, With

L -1 M m—1
j =1+ Z (ire - 1) H ITe’] and Kk =1+ Z [(ic"‘ - 1) H Icm/‘| '
=1

=1 m=1 m’=1
Other notation is used in the literature. For example, X ({12}x(3,...,N}:1,) 1S more
typically written as

I1IpxI3ly...1
X 12 304 N or X(11[2X13[4..‘IN)'

The main nuance in our notation is that we explicitly indicate the tensor dimensions
In. This matters in some situations; see, e.g., (4.3).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 209

Two special cases have their own notation. If R is a singleton, then the fibers of
mode n are aligned as the columns of the resulting matrix; this is called the mode-n
matricization. The result is denoted by

(2.1) Xy = X(®rxe:1y), With R={n} and C={1,...,n—1,n+1,...,N}.

Different authors use different orderings for C; see, e.g., [12] versus [23]. If R = N,
the result is a vector and is denoted by

(22) VGC(:X:) = X(NX(D cIn)-

Just as there is row and column rank for matrices, it is possible to define the
mode-n rank for a tensor, which is called the n-rank [12]. The n-rank of a tensor X
is defined as

rank,, (X) = rank (X)) .

This is not to be confused with the notion of tensor rank, which is defined in section
2.6.

2.4. Norm and inner product of a tensor. The inner (or scalar) product of
two tensors X,Y € RIt*12XXIn ig defined as

I I In
(X,Y) = vec(X) Tvec(Y) = Z Z Z Liyig...in Yirig..in s
i1=liz=1 iy=1

and the Frobenius norm is defined as usual: || X|> = (X, X).

2.5. Tensor multiplication. The n-mode matrix product [12] defines multipli-
cation of a tensor with a matrix in mode n of the tensor. Let X € RI1xI2XXIn an(d
A € R7>*In Then

Y=X x, A e]RllX"'XIn_1><J><In+1><..A><[N
is defined most easily in terms of the mode-n unfolding;:
(2.3) Yy = AX ().

The n-mode vector product defines multiplication of a tensor with a vector in
mode n. Let X € RItx[2XXIN and a € R, Then

y =X %X, a c Rll Xeoo X Ty XLy XX I N
- n

is a tensor of order (N — 1), defined elementwise as

In
(E)il--<ivz—1in+1-<~i1\l = Z Liyig...in Qiy, -

in=1

More general concepts of tensor multiplication can be defined; see [4].

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

210 BRETT W. BADER AND TAMARA G. KOLDA

2.6. Tensor decompositions. As mentioned in the introduction, there are
two standard tensor decompositions that are considered in this paper. Let X €
RIxI2xxIn The Tucker decomposition [51] approximates X as

(24) :x:’,-::gxlU(l) XQU(Q)"'XNU(N),

where G € R71x2xXIn and UM € RIn¥In for all n = 1,...,N. If J, = rank,(X)
for all n, then the approximation is exact and the computation is trivial. More
typically, an alternating least squares (ALS) approach is used for the computation;
see [27, 47, 13]. The Tucker decomposition is not unique, but measures can be taken
to correct this [20, 21, 22, 48]. Observe that the right-hand side of (2.4) is a Tucker
tensor, to be discussed in more detail in section 4.

The CANDECOMP /PARAFAC decomposition was simultaneously developed as
the canonical decomposition of Carroll and Chang [9] and the parallel factors model
of Harshman [19]; it is henceforth referred to as CP per Kiers [23]. It approximates
the tensor X as

R
(2.5) XQZAT vilov®@o...ovW)
r=1

for some integer R > 0, with, forr =1,... R, A, ERandvgn) cRMforn=1,...,N.

The scalar multiplier A, is optional and can be absorbed into one of the factors, e.g.,
VY). The rank of X is defined as the minimal R such that X can be exactly reproduced
[28]. The right-hand side of (2.5) is a Kruskal tensor, which is discussed in more detail
in section 5.

The CP decomposition can also be computed via an ALS algorithm; see, e.g.,
[44, 50]. Here we briefly discuss a critical part of the CP-ALS computation that can
and should be specialized to sparse and factored tensors. Without loss of generality,
we assume A, = 1 for all r = 1,..., R. The CP model can be expressed in matrix
form as

Xy = VO (VM @ 0 VO oV o g V<1>>T,

A%
where V(") = [vgn) e vgzn)] forn =1,...,N. If we fix everything but V(™ then

solving for it is a linear least squares problem. The pseudoinverse of the Khatri-Rao
product W has special structure [7, 49]:

Wi — (V<N> ©- o VO oyl o g V(l)) 7!, where

Z = (VOTVD)i (VODTY D) o (VOEDTY 0D) s (VIITYN)

RInxE ig defined as

The least squares solution is given by V(") = YZ' where Y €
(2.6) Y =X, (V“V) © Vet oy eg.. . g V<1>) .

For CP-ALS on large-scale tensors, the calculation of Y is an expensive operation and
needs to be specialized. We refer to (2.6) as the “matricized-tensor-times-Khatri-Rao-
product,” or MTTKRP for short.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 211

2.7. MATLAB details. Here we briefly describe the MATLAB code for the
functions discussed in this section. The Kronecker and Hadamard matrix products
are called by kron(A,B) and A.*B, respectively. The Khatri-Rao product is provided
by the Tensor Toolbox and called by khatrirao(A,B).

Higher-order outer products are not directly supported in MATLAB but can be
implemented. For instance, X = ao b o ¢ can be computed with standard functions
via

X = reshape(kron(kron(c,b),a),I,J,K),

where I, J, and K are the lengths of the vectors a, b, and c, respectively. Using the
Tensor Toolbox and the properties of the Kruskal tensor, this can be done via

X = full(ktensor(a,b,c)).

Tensor n-mode multiplication is implemented in the Tensor Toolbox via the ttm
and ttv commands for matrices and vectors, respectively. Implementations for dense
tensors were already available in the previous version of the toolbox as discussed in
[4]. We describe implementations for sparse and factored forms in this paper.

Matricization of a tensor is accomplished by permuting and reshaping the ele-
ments of the tensor. Consider the example below.

rand(5,6,4,2); R =[2 3]; C = [4 1];

= size(X); J = prod(I(R)); K = prod(I(C));

reshape (permute (X, [R C]),J,K); % convert X to matrix Y

ipermute (reshape(Y,[I(R) I(C)]),[R C]); % convert back to tensor

N < H >
I

In the Tensor Toolbox, this functionality is supported transparently via the tenmat
class, which is a generalization of a MATLAB matrix. The class stores additional
information to support conversion back to a tensor object as well as to support mul-
tiplication with another tenmat object for subsequent conversion back into a tensor
object. These features are fundamental to supporting tensor multiplication. Suppose
that a tensor X is stored as a tensor object. To compute A = X(zyxe:1y), Use A
= tenmat (X,R,C); to compute A = Xj,), use A = tenmat(X,n); and to compute
A =vec(X), use A = tenmat (X, [1:N]), where N is the number of dimensions of the
tensor X. The tenmat class was already implemented in the previous version of the
toolbox under the name tensor_as_matrix and is described in detail in [4]. Support
for sparse matricization is handled with sptenmat, which is described in section 3.3.

In the Tensor Toolbox, the inner product and norm functions are called via
innerprod(X,Y) and norm(X), respectively. Efficient implementations for the sparse
and factored versions are discussed in the sections that follow.

The MTTKRP in (2.6) is computed via mttkrp(X, {V1,...,VN}, n), where n
is a scalar that indicates in which mode to matricize X and which matrix to skip,
i.e., V(™ If X is dense, the tensor is matricized, the Khatri-Rao product is formed
explicitly, and the two are multiplied together. Efficient implementations for the
sparse and factored versions are discussed in the sections that follow.

3. Sparse tensors. A sparse tensor is a tensor where most of the elements are
zero; in other words, it is a tensor where efficiency in storage and computation can
be realized by storing and working with only the nonzeros. We consider storage in
section 3.1, operations in section 3.2, and MATLAB details in section 3.3.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

212 BRETT W. BADER AND TAMARA G. KOLDA

3.1. Sparse tensor storage. We consider the question of how to efficiently
store sparse tensors. As background, we review the closely related topic of sparse
matrix storage in section 3.1.1. We then consider two paradigms for storing a tensor:
compressed storage in section 3.1.2 and coordinate storage in section 3.1.3.

3.1.1. Review of sparse matrix storage. Sparse matrices frequently arise in
scientific computing, and numerous data structures have been studied for memory
and computational efficiency, in serial and parallel. See [39] for an early survey of
sparse matrix indexing schemes; a contemporary reference is [42, section 3.4]. Here
we focus on two storage formats that can extend to higher dimensions.

The simplest storage format is coordinate format, which stores each nonzero along
with its row and column index in three separate one-dimensional arrays, which Duff
and Reid [14] called “parallel arrays.” For a matrix A of size I x J with nnz(A)
nonzeros, the total storage is 3-nnz(A), and the indices are not necessarily presorted.

More common are CSR and CSC formats, which appear to have originated in [18].
The CSR format stores three one-dimensional arrays: an array of length nnz(A) with
the nonzero values (sorted by row), an array of length nnz(A) with corresponding
column indices, and an array of length I + 1 that stores the beginning (and end) of
each row in the other two arrays. The total storage for CSR is 2 - nnz(A) + I + 1.
The CSC format, also known as the Harwell-Boeing format, is analogous except that
rows and columns are swapped; this is the format used by MATLAB [16].2 The
CSR/CSC formats are often cited for their storage efficiency, but our opinion is that
the minor reduction of storage is of secondary importance. The main advantage
of CSR/CSC formats is that the nonzeros are necessarily grouped by row/column,
which means that operations that focus on rows/columns are more efficient while
other operations become more expensive, such as element insertion and matrix trans-
pose.

3.1.2. Compressed sparse tensor storage. Numerous higher-order analogues
of CSR and CSC exist for tensors. Just as in the matrix case, the idea is that the
indices are somehow sorted by a particular mode (or modes).

For a third-order tensor X of size I x J x K, one straightforward idea is to
store each frontal slice X..; as a sparse matrix in, say, CSC format. The entries are
consequently sorted first by the third index and then by the second index.

Another idea, proposed by Lin, Liu, and Chung [34, 33], is to use extended Kar-
naugh map representation (EKMR). In this case, a three- or four-dimensional tensor
is converted to a matrix (see section 2.3) and then stored using a standard sparse
matrix scheme, such as CSR or CSC. For example, if X is a three-way tensor of size
I'xJx K, then the EKMR scheme stores X {1}x{2,3}), Which is a sparse matrix of size
I x JK. EKMR stores a fourth-order tensor as X ({1 4}x¢2,3})- Higher-order tensors
are stored as a one-dimensional array (which encodes indices from the leading n — 4
dimensions using a Karnaugh map) pointing to n — 4 sparse four-dimensional tensors.

Lin, Chung, and Liu [33] compare the EKMR scheme to the method described
above, i.e., storing two-dimensional slices of the tensor in CSR or CSC format. They
consider two operations for the comparison: tensor addition and slice multiplication.
The latter operation is multiplying subtensors (matrices) of two tensors A and B,
such that C.., = A..;B..;, which is matrix-matrix multiplication on the horizontal
slices. In this comparison, the EKMR scheme is more efficient.

2Search on “sparse matrix storage” in MATLAB Help or at the website www.mathworks.com.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 213

Despite these promising results, our opinion is that compressed storage is, in
general, not the best option for storing sparse tensors. First, consider the problem
of choosing the sort order for the indices, which is really what a compressed format
boils down to. For matrices, there are only two cases: rowwise or columnwise. For
an N-way tensor, however, there are IN! possible orderings on the modes. Second,
the code complexity grows with the number of dimensions. It is well known that
CSC/CSR formats require special code to handle rowwise and columnwise operations;
for example, two distinct codes are needed to calculate Ax and ATx. The analogue
for an Nth-order tensor would be a different code for A X, n for n = 1,...,N.
General tensor-tensor multiplication (see [4] for details) would be hard to handle.
Third, we face the potential of integer overflow if we compress a tensor in a way that
leads to one dimension being too big. For example, in MATLAB, indices are signed
32-bit integers, and so the largest such number is 23! — 1. Storing a tensor X of size
2048 x 2048 x 2048 x 2048 as the (unfolded) sparse matrix X ;) means that the number
of columns is 233 and consequently too large to be indexed within MATLAB. Finally,
as a general rule, the idea that the data are sorted by a particular mode becomes less
and less useful as the number of modes increases. Consequently, we opt for coordinate
storage format, discussed in more detail below.

Before moving on, we note that there are many cases where specialized storage
formats such as EKMR can be quite useful. In particular, if the number of tensor
modes is relatively small (third- or fourth-order) and the operations are specific, e.g.,
only operations on frontal slices, then formats such as EKMR are likely a good choice.

3.1.3. Coordinate sparse tensor storage. As mentioned previously, we focus
on coordinate storage in this paper. For a sparse tensor X of size I} X Is X -+- X Iy
with nnz(X) nonzeros, this means storing each nonzero along with its corresponding
index. The nonzeros are stored in a real array of length nnz(X), and the indices are
stored in an integer matrix with nnz(7X) rows and N columns (one per mode). The
total storage is (N + 1) - nnz(X). We make no assumption on how the nonzeros are
sorted. To the contrary, in section 3.2, we show that for certain operations we can
entirely avoid sorting the nonzeros.

The advantage of coordinate format is its simplicity and flexibility. For instance,
the operation of insertion costs O(nnz(X)), which is due to the need to check whether
the element already exists or not. Moreover, the operations are independent of how the
nonzeros are sorted, meaning that the functions need not be specialized for different
mode orderings.

3.2. Operations on sparse tensors. As motivated in the previous section, we
consider only the case of a sparse tensor stored in coordinate format. We consider a
sparse tensor

(3.1) X € RIv¥f2xxIn stored as v € R and 8 € RP*V,

where P = nnz(X), v is a vector storing the nonzero values of X, and S stores the
subscripts corresponding to the pth nonzero as its pth row. For convenience, the
subscript of the pth nonzero in dimension n is denoted by s, . In other words, the
pth nonzero is

= Vp.

x
Sp1sSpgsSpy

Duplicate subscripts are not allowed.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

214 BRETT W. BADER AND TAMARA G. KOLDA

3.2.1. Assembling a sparse tensor. To assemble a sparse tensor, we require
a list of nonzero values and the corresponding subscripts as input. Here we consider
the issue of resolving duplicate subscripts in that list. Typically, we simply sum the
values at duplicate subscripts; for example,

(2,3,4,5) 3.4
(2,3,5,5) 4.7 — (2,3,4,5) 4.5
(2,3,4,5) 1.1 (2,3,5,5) 4.7.

If any subscript resolves to a value of zero, then that value and its corresponding
subscript are removed.

Summation is not the only option for handling duplicate subscripts on input. We
can use any rule to combine a list of values associated with a single subscript, such
as max, mean, standard deviation, or even the ordinal count, as shown here:

(2,3,4,5) 3.4
(2,3,5,5) 47 — E???g f
(2,3,4,5) 1.1 3,9,5) 1.

Overall, the work of assembling a tensor reduces to finding all of the unique
subscripts and applying a reduction function (to resolve duplicate subscripts). The
amount of work for this computation depends on the implementation but is no worse
than the cost of sorting all of the subscripts, i.e., O(Plog P), where P = nnz(X).

3.2.2. Arithmetic on sparse tensors. Consider two same-sized sparse tensors
X and Y, stored as (v, Sx) and (vy, Sy) as defined in (3.1). To compute Z = X+Y,
we create

vy, = {:’:ﬂ and Sg = Ez] .

To produce Z, the nonzero values vg and corresponding subscripts Sg are assembled
by summing duplicates (see section 3.2.1). Clearly, nnz(%) < nnz(X) + nnz(Y). In
fact, nnz(%) =0if Y = -X.

It is possible to perform logical operations on sparse tensors in a similar fashion.
For example, computing Z = X AY (“logical and”) reduces to finding the intersection
of the nonzero indices for X and Y. In this case, the reduction formula is that the
final value is 1 (true) only if the number of elements is at least two; for example,
suppose the tensor X has the first two elements in the list below and the tensor Y has
the third, then

2,3,4,5
(2,3,5,5) 4.7 — (2,3,4,5) 1 (true).
2,3,4,5

For “logical and,” nnz(%) < nnz(X) 4+ nnz(Y). Some logical operations, however,
do not produce sparse results. For example, Z = —X (“logical not”) has nonzeros
everywhere that X has a zero.

Comparisons can also produce dense or sparse results. For instance, if X and Y
have the same sparsity pattern, then Z = (X < Y) is such that nnz(%) < nnz(X).
Comparison against a scalar can produce a dense or sparse result. For example,
Z = (X > 1) has no more nonzeros than X, whereas Z = (X > —1) has nonzeros
everywhere that X has a zero.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 215
3.2.3. Norm and inner product for a sparse tensor. Consider a sparse

tensor X as in (3.1) with P = nnz(X). The work to compute the norm is O(P) and
does not involve any data movement:

X =

The inner product of two same-sized sparse tensors X and Y involves finding
duplicates in their subscripts, similar to the problem of assembly (see section 3.2.1).
The cost is no worse than the cost of sorting all of the subscripts, i.e., O(Plog P),
where P = nnz(X) + nnz(Y).

3.2.4. n-mode vector multiplication for a sparse tensor. Coordinate stor-
age format is amenable to the computation of a tensor times a vector in mode n. We
can do this computation in O(nnz(X)) time, though this does not account for the cost
of data movement, which is generally the most time-consuming part of this operation.
(The same is true for sparse matrix-vector multiplication.)

Consider

y:x;nay

where X is as defined in (3.1) and the vector a is of length I,,. For each p=1,..., P,
nonzero v, is multiplied by a,, and added to the (sp,,...,8p, 1, 8p, 15+ -»Spy) €l
ement of Y. Stated another way, we can convert a to an “expanded” vector b € R”
such that

bp =as, forp=1,..., P.

Next we can calculate a vector of values ¥ € R so that
Vv=vsxb.
We create a matrix S that is equal to S with the nth column removed. Then the
nonzeros v and subscripts S can be assembled (summing duplicates) to create Y.
Observe that nnz(Y) < nnz(X), but the number of dimensions is also reduced by
one, meaning that the final result is not necessarily sparse even though the number
of nonzeros cannot increase.
We can generalize the previous discussion to multiplication by vectors in multiple

modes. For example, consider the case of multiplication in every mode:

a=X %, al ... >_<Na(N).

Define “expanded” vectors b(™) € RF for n = 1,..., N such that

bé") zang forp=1,...,P.

We then calculate w = v+ b x...xb(M) and the final scalar result is o = 211;1 Wp.
Observe that we calculate all of the n-mode products simultaneously rather than in
sequence. Hence, only one “assembly” of the final result is needed.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

216 BRETT W. BADER AND TAMARA G. KOLDA

3.2.5. n-mode matrix multiplication for a sparse tensor. The computa-
tion of a sparse tensor times a matrix in mode n is straightforward. To compute

g:xanv

we use the matricized version in (2.3), storing X(,,) as a sparse matrix. As one might
imagine, CSR format works well for mode-n unfoldings, but CSC format does not
because there are so many columns. For CSC, use the transposed version of the
equation, i.e.,

T T T
Yl =X[, AT

Unless A has special structure (e.g., diagonal), the result is dense. Consequently, this
works only for relatively small tensors (and is why we have glossed over the possibility
of integer overflow when we convert X to X(,)). The cost boils down to that of
converting X to a sparse matrix, doing a matrix-by-sparse-matrix multiplication, and
converting the result into a (dense) tensor Y. Multiple n-mode matrix multiplications
are performed sequentially.

3.2.6. General tensor multiplication for sparse tensors. For tensor-tensor
multiplication, the modes to be multiplied are specified. For example, if we have two
tensors X € R3*4¥5 and Y € R**3%2%2 we can calculate:

Z=(X,Y)1221) € R5*2x2,

which means that we multiply modes 1 and 2 of X with modes 2 and 1 of Y. Here we
refer to the modes that are being multiplied as the “inner” modes and the other modes
as the “outer” modes because, in essence, we are taking inner and outer products along
these modes. Because it takes several pages to explain tensor-tensor multiplication,
we have omitted it from the background material in section 2 and instead refer the
interested reader to [4].

In the sparse case, we have to find all of the matches of the inner modes of X
and Y, compute the Kronecker product of the matches, associate each element of the
product with a subscript that comes from the outer modes, and then resolve dupli-
cate subscripts by summing the corresponding nonzeros. Depending on the modes
specified, the work can be as high as O(PQ), where P = nnz(X) and @ = nnz(Y),
but can be closer to O(Plog P + Qlog @) depending on which modes are multiplied
and the structure on the nonzeros.

3.2.7. Matricized sparse tensor times Khatri—-Rao product. Consider the
calculation of the matricized tensor times a Khatri-Rao product in (2.6). We compute
this indirectly using the n-mode vector multiplication, which is efficient for large,
sparse tensors (see section 3.2.4), by rewriting (2.6) as

v =X X3 vfnl) ce X1 vs,"_l) X1 v,(f”“l) e XN vfﬂN) forr=1,2,...,R.
In other words, the solution W is computed column by column. The cost equates to
computing the product of the sparse tensor with N — 1 vectors R times.

3.2.8. Computing X(n)X{n) for a sparse tensor. Generally, the product

Z = X(n)X(Tn) € RI»*In can be computed directly by storing X(n) as a sparse matrix.
As in section 3.2.5, we must be wary of CSC format, in which case we should actually
store A = X-(rn) and then calculate Z = ATA. The cost is primarily the cost of

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 217

converting to a sparse matrix format (e.g., CSC) plus the matrix-matrix multiplication
to form the dense matrix Z € R»*I» However, the matrix X (n) is of size

m#n

which means that its column indices may overflow the integers if the tensor dimensions
are very big.

3.2.9. Collapsing and scaling on sparse tensors. We present the concepts
of collapsing and scaling on tensors to extend well-known (and mostly unnamed)
operations on matrices.

For a matrix, one might want to compute the sum of all elements in each row,
or the maximum element in each column, or the average of all elements, and so on.
To the best of our knowledge, these sorts of operations do not have a name, so we
call them collapse operations—we are collapsing the object in one or more dimensions
to get some statistical information. Conversely, we often want to use the results of a
collapse operation to scale the elements of a matrix. For example, to convert a matrix
A to a row-stochastic matrix, we compute the collapsed sum in mode 1 (rowwise) and
call it z and then scale A by multiplying each row in A by the corresponding element
in the vector (1/z).

We can define similar operations in the N-way context for tensors. For collapsing,
we define the modes to be collapsed and the operation (e.g., sum, max, number of
elements, etc.). Likewise, scaling can be accomplished by specifying the modes to
scale.

Suppose, for example, that we have an I x J x K tensor X and want to scale each
frontal slice so that its largest entry is one. First, we collapse the tensor in modes 1
and 2 using the max operation. In other words, we compute the maximum of each
frontal slice, i.e.,

zp =max{zr |t=1,...,Jand j=1,...,J} fork=1,... K.

This is accomplished in coordinate format by considering only the third subscript
corresponding to each nonzero and doing assembly with duplicate resolution (see
section 3.2.1) via the appropriate collapse operation (in this case, max). Then the
scaled tensor can be computed elementwise by

Tijk

ik = .
Yij h

This computation can be completed by “expanding” z to a vector of length nnz(X)
as was done for the sparse-tensor-times-vector operation in section 3.2.4.

3.3. MATLAB details for sparse tensors. MATLAB does not natively sup-
port sparse tensors. In the Tensor Toolbox, sparse tensors are stored in the sptensor
class, which stores the size as an integer N-vector along with the vector of nonzero
values v and corresponding integer matrix of subscripts S from (3.1).

We can assemble a sparse tensor from a list of subscripts and corresponding values,
as described in section 3.2.1. By default, we sum repeated entries, though we allow
the option of using other functions to resolve duplicates. To this end, we rely on the
MATLAB accumarray function, which takes a list of subscripts, a corresponding list

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

218 BRETT W. BADER AND TAMARA G. KOLDA

of values, and a function to resolve the duplicates (sum, by default). To use this with
large-scale sparse data is complex. We first calculate a codebook of the @) unique
subscripts (using the MATLAB unique function), use the codebook to convert each
N-way subscript to an integer value between 1 and @), call accumarray with the integer
indices, and then use the codebook to map the final result back to the corresponding
N-way subscripts.

MATLAB relies heavily on linear indices for any operation that returns a list
of subscripts. For example, the find command on a sparse matrix returns linear
indices (by default) that can be subsequently converted to row and column indices.
For tensors, we are wary of linear indices due to the possibility of integer overflow
discussed in section 3.1.2. Specifically, linear indices may produce integer interflow if
the product of the dimensions of the tensor is greater than or equal to 232, e.g., a four-
way tensor of size 2048 x 2048 x 2048 x 2048. Thus, our versions of subscripted reference
(subsref) and assignment (subsasgn) as well as our version of find explicitly use
subscripts and do not support linear indices.

We do, however, support the conversion of a sparse tensor to a matrix stored in
coordinate format via the class sptenmat. This matrix can then be converted into a
MATLAB sparse matrix via the command double.

All operations are called in the same way for sparse tensors as they are for dense
tensor, e.g., Z = X + Y. Logical operations always produce sptensor results, even if
they would be more efficiently stored as dense tensors. To convert to a dense tensor,
call full(X).

The three multiplication operations may produce dense results: tensor-times-
tensor (ttt), tensor-times-matrix (ttm), and tensor-times-vector (ttv). In the case
of ttm, since it is often called repeatedly for multiplication in multiple modes, any
intermediate product may be dense, and the remaining calls will be to the dense
version of ttm. For general tensor multiplication, which reduces to sparse matrix-
matrix multiplication, we take measures to avoid integer overflow by instead finding
the unique subscripts and using only that many rows/columns in the matrices that
are multiplied. This is similar to how we use accumarray to assemble a tensor.

Generating a random sparse tensor is complicated because it requires generating
the locations of the nonzeros as well as the nonzeros. Thus, the Tensor Toolbox
provides the command sptenrand (sz,nnz) to produce a sparse tensor. It is analogous
to the command sprand to produce a random sparse matrix in MATLAB with two
exceptions. First, the size is passed in as a single (row vector) input. Second, the last
argument can be either a percentage (as in sprand) or an explicit number of nonzeros
desired. We also provide a function sptendiag to create a superdiagonal tensor.

4. Tucker tensors. Consider a tensor X € R/1*72X-xIn guch that
(4.1) X=[G5;UD, U . UM]=Gx; UV x, UD ... xy UM,
where G € R/1%/2% XN g the core tensor and U € RIn*/n for n = 1,..., N. This
is the format that results from a Tucker decomposition [51] and is therefore termed
a Tucker tensor. We use the shorthand notation [G; UM U ... UM from [25],

but other notation can be used. For example, Lim [32] proposes that the covariant
aspect of the multiplication be made explicit by expressing (4.1) as

(U<1>,U<2>,...,U<N>) .S

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 219

As another example, Grigorascu and Regalia [17] emphasize the role of the core tensor
in the multiplication by expressing (4.1) as

x=UuOiu®§.. fum,

which is called the weighted Tucker product; the unweighted version has G = J, the
identity tensor. Regardless of the notation, the properties of a Tucker tensor are the
same.

4.1. Tucker tensor storage. Storing X as a Tucker tensor can have major ad-
vantages in terms of memory requirements. In its explicit form, X requires storage of

N N
H I, versus STORAGE(S) + Z L, J,
n=1 n=1

elements for the factored form. Thus, the Tucker tensor factored format is clearly
advantageous if STORAGE(SG) is sufficiently small. This certainly is the case if

N N
(42) 17 <1
n=1 n=1

However, there is no reason to assume that the core tensor G is dense; on the contrary,
G might itself be sparse or factored. For instance, the authors of [37, 48] have studied
methods to impose structure on G. The next section discusses computations on X in
its factored form, making minimal assumptions about the format of G.

4.2. Tucker tensor properties. It is common knowledge (dating back to [51])
that matricized versions of the Tucker tensor (4.1) have a special form; specifically,
T

(43) X(rxe:s) = (U(”) @ ®U<”)) G(rxe: Ix) (U(CM) @ ®U(Cl)) ;

where R = {rq,...,r.} and C = {c1,...,car}. Note that the order of the indices in
R and € does matter, and reversing the order of the indices is a frequent source of
coding errors. For the special case of mode-n matricization (2.1), we have

N
(44) X =UMG, (U(m®...®U(n+1)@U(n—n@...@U(l)) .

Likewise, for the vectorized version (2.2), we have
(4.5) vec(X) = (U(N) ® - ® U(1)> vec(G).

4.2.1. n-mode matrix multiplication for a Tucker tensor. Multiplying a
Tucker tensor times a matrix in mode n reduces to multiplying its nth factor matrix;
in other words, the result retains the factored Tucker tensor structure. Let X be as
in (4.1) and V be a matrix of size K x I,,. Then from (2.3) and (4.4) we have

X x,V=[g;uM . vt yvum ugrtd g

The cost is that of the matrix-matrix multiplication, that is, O(1,J, K). More gener-
ally, let V(™ be of size K,, x I, forn=1,...,N. Then

[;v . vV =[5, vhUu® vy,

The cost here is the cost of N matrix-matrix multiplications, for a total of O(}_,, I, Jn Ky),
and the Tucker tensor structure is retained. As an aside, if U™ has full column rank

and V) = U™ forn =1,..., N, then G = [; U . uM™T.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

220 BRETT W. BADER AND TAMARA G. KOLDA

4.2.2. n-mode vector multiplication for a Tucker tensor. Multiplication
of a Tucker tensor by a vector follows logic similar to the matrix case except that the
nth factor matrix necessarily disappears and the problem reduces to n-mode vector
multiplication with the core. Let X be a Tucker tensor as in (4.1) and v be a vector
of size I,,; then

XX v=1[G X, W UM, 7U(”_D,U("Jrl),...,U(N)]]7 where w = U™Ty,

The cost here is that of multiplying a matrix times a vector, O(I,,.J,,), plus the cost of
multiplying the core (which could be dense, sparse, or factored) times a vector. The
Tucker tensor structure is retained but with one less factor matrix. More generally,
multiplying a Tucker tensor by a vector in every mode converts to the problem of

multiplying its core by a vector in every mode. Let V(™ be of size I,, forn =1,...,N;
then
X x; v Xy v =g 3w xy wiY),

where w(™ =UM™Tv(™ foralln=1,...,N.

In this case, the work is the cost of N matrix-vector multiplications, O}, I,,J»),
plus the cost of multiplying the core by a vector in each mode. If G is dense, the total

cost is
N N
0 (Z <Ian+ II Jm>> :

n=1

Further gains in efficiency are possible by doing the multiplications in order of largest
to smallest J,,. The Tucker tensor structure is clearly not retained for all-mode vector
multiplication.

4.2.3. Inner product. Let X be a Tucker tensor as in (4.1), and let Y be a
Tucker tensor of the same size, with

Y=[3; v .. v,

with H € RE1 <Ko xxKn gnd V() ¢ RInXEn for n = 1,..., N. If the cores are small
in relation to the overall tensor size, we can realize computational savings as follows.
Without loss of generality, assume G is smaller than (or at least no larger than) 3,
e.g., J, < K, for all n. Then

(0,Y) = ([G;UD, ..., UM [3¢; VD, .. v
(G, [VD V] g UMT .y UIITY

(G, [3¢; UWTVE L uMTVIN])

=(G,F), with F=[H ;WD .. WM and W™ = U™TV® for all n.

Each W™ is of size J, x K, and costs O(I,JnKy,) to compute. Then, to compute
F, we do a tensor times matrix in all modes with the tensor H (the cost varies
depending on the tensor type), followed by an inner product between two tensors of
size J; X Jy x -+ x Jy. If G and H are dense, then the total cost is

N N N n N
0 (ZIanKn +> (H el Jq> +1] Jn) .
n=1 n=1 q=1 n=1

= p=n

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 221

4.2.4. Norm of a Tucker tensor. From the previous discussion, it is clear that
the norm can also be calculated efficiently if the core tensor is small in relation to the
overall tensor, e.g., J, < I, for all n. Let X be a Tucker tensor as in (4.1). From
section 4.2.3, we have

(46) [X]*=(X,X)=(S.,F),
with F =[G ; WL, ... W] and W™ = U™TU™ for all n.

Forming all of the W matrices costs O(Y, I,J2). To compute F, we have to
do a tensor times matrix in all N modes, and if G is dense, for example, the cost
is O([L, Jn - >_,, Jn). Finally, we compute an inner product of two tensors of size
Ji X Ja X -+ X Jy, which costs O([],, J») if both tensors are dense. Moreover, if the
matrices U™ are columnwise orthonormal, as is often the case, then they entirely
disappear, leading to even greater computational savings.

4.2.5. Matricized Tucker tensor times Khatri—Rao product. As noted in
section 2.6, a common operation is to calculate a particular matricized tensor times a
special Khatri—-Rao product (2.6). In the case of a Tucker tensor, we can reduce this
to an equivalent operation on the core tensor. Let X be a Tucker tensor as in (4.1),
and let V(™) be a matrix of size I,,, x R for all m # n. The goal is to calculate

W =X, (V(m © o VOt o ve-D o @Vu))
— UG, (qu) % @U) U ... q U<1>)T
(V(N) ®- o VO oy o @Vu)) _

Using the properties of the Khatri-Rao product [44] and setting W) = yglmTy(m)
for m # n, we have

W =U™ G, (Wuv) O o WEH) o WD oL o W(l)) ,

matricized core tensor G times Khatri-Rao product
Thus, this requires (N — 1) matrix-matrix products to form the matrices W™ of
size J, X R, each of which costs O(l,,,J;, R). Then we calculate the MTTKRP with

G, and the cost is O(R]],, Jn) if G is dense. The final matrix-matrix multiplication
costs O(I,J,R). If G is dense, the total cost is

O<R<ifnjn+ﬁjn>>.

4.2.6. Computing X(n)X-(rn) for a Tucker tensor. To compute rank, (X),
we need Z = X(n)X(Tn). Let X be a Tucker tensor as in (4.1); then

Z=U"G,, (qu) % @U) U g...q U<1>>T

(U<N> @ @UMD UMD 5. .. g U<1>) Gl UM,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

222 BRETT W. BADER AND TAMARA G. KOLDA

Using the properties of the Kronecker product, this reduces to
Z=UM"G, (Vuv) @ @ Vet g vl o . g V(l)) Gl UM,

where V(™) = UmTUm) ¢ RIm*Jm for all m # n at a cost of O(I,,J2,). Finally,
this becomes the product of two matricized tensors and a third matrix:

Z =HG(,y U™, where
H=[G;vD,... ,ve-D g vty v,

If G is dense, forming H costs

N N
O[] I [LTn+ D Jmt
m=1

m=1
m#n

The final multiplication of the three matrices costs O(, fo:l I + 12T3).

4.3. MATLAB details for Tucker tensors. A Tucker tensor X is constructed
in MATLAB by passing in the core array G and factor matrices UM ... UM using
X = ttensor(G,{U1,...,UN}). In version 1.0 of the Tensor Toolbox, the ttensor
class was instead called tucker_tensor [4]. The core tensor can be any of the four
classes of tensors supported by the Tensor Toolbox.

A Tucker tensor can be converted to a standard tensor by calling full(X). Sub-
scripted reference and assignment can be done only on the factors, not elementwise.
For example, it is possible to change the (1,1) element of U® but not the (1,1,1)
element of a three-way Tucker tensor X. Scalar multiplication is supported, i.e., X*5.

The n-mode product of a Tucker tensor with one or more matrices (section 4.2.1)
or vectors (section 4.2.2) is implemented in ttm and ttv, respectively. The inner
product (section 4.2.3 and also section 6) is called innerprod, and the norm of a
Tucker tensor is called norm. The function mttkrp computes the matricized-tensor-
times-Khatri-Rao-product as described in section 4.2.5. The function nvecs(X,n)
computes the leading mode-n eigenvectors for X(n)X-(rn) and relies on the efficiencies
described in section 4.2.6.

5. Kruskal tensors. Consider a tensor X € RIt*12X"XIN that can be written
as a sum of R rank-1 tensors (with no assumption that R is minimal), i.e.,

R
x=5 A ulo-oul,
r=1

where A= [A\; -)\R]T € Rf and UM = [ugn) ugg)] € RI»¥E_ This is the
format that results from a PARAFAC decomposition [19, 9], and we refer to it as a
Kruskal tensor due to the work of Kruskal on tensors of this format [28, 29]. We use
the shorthand notation from [25]:

(5.1) X =[x; UM, ... UMy

In some cases, the weights A, are not explicit, and we write X = [[U(l), e U(N)]].
Other notation can be used. For instance, Kruskal [28] uses

X = (U(1)7...7U(N)).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 223

5.1. Kruskal tensor storage. Storing X as a Kruskal tensor is efficient in terms
of storage. In its explicit form, X requires storage of

N N
H I, versus R (1 + Z In>
n=1 n=1

elements for the factored form. We do not assume that R is minimal.

5.2. Kruskal tensor properties. The Kruskal tensor is a special case of the
Tucker tensor where the core tensor G is an R X R X - - - X R superdiagonal tensor and
all of the factor matrices U™ have R columns.

It is well known that matricized versions of the Kruskal tensor (5.1) have a special
form; namely,

T
X(RXC:IN) = (U(TL) @0 U(m)) A (U(CM) -0 U(Cl)) 7
where A = diag()). For the special case of mode-n matricization, this reduces to

:
(5.2) X(ny =UMA (U(N> @ oUMeurle. ... U(l)) :

Finally, the vectorized version is
(5.3) vee(X) = (UM @0 UW) A

5.2.1. Adding two Kruskal tensors. Because the Kruskal tensor is a sum of
rank-1 tensors, adding two Kruskal tensors together can be viewed as extending that
summation over both sets of terms. For instance, consider Kruskal tensors X and Y
of the same size given by:

X=[\;UD . UM] and Y=[o; VD, .. VI
Adding X and Y yields

R P
SRRV ST MLV SRRV RRR
p=1

r=1

or, alternatively,
X1y [H*] U VO [u™) v<N>]ﬂ .
o

The work for this is O(1).

5.2.2. Mode-n matrix multiplication for a Kruskal tensor. Let X be a
Kruskal tensor as in (5.1) and V be a matrix of size J x I,. From the definition of
mode-n matrix multiplication and (5.2), we have

X x, V=[x;ub . vl vyvu gkt g,

In other words, mode-n matrix multiplication just modifies the nth factor matrix in
the Kruskal tensor. The work is just a matrix-matrix multiplication, O(RI,J). More
generally, if V(") is of size J,, x I, for n=1,..., N, then

[oc; v v =[x, vOUD v

retains the Kruskal tensor format and the work is N matrix-matrix multiplications
for O(RY", InJn).

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

224 BRETT W. BADER AND TAMARA G. KOLDA

5.2.3. Mode-n vector multiplication for a Kruskal tensor. In multiplica-
tion of a Kruskal tensor by a vector, the nth factor matrix necessarily disappears and
is absorbed into the weights. Let v € R», then

x>_<nV:[[)*W;U(l),...,U("fl),U(’”l),...,U(N)]], where w=U™Ty.

This operation retains the Kruskal tensor structure (though its order is reduced), and
the work is multiplying a matrix times a vector and then a Hadamard product of
two vectors, i.e., O(RI,). More generally, multiplying a Kruskal tensor by a vector
v(™ € R in every mode yields:

X %y v %y vy v = AT (W<1> ew® ... *Wuv))

)

where w(™ =UM™Tv(™ foralln=1,...,N.

Here the final result is a scalar, which is computed by N matrix-vector products, N
vector Hadamard products, and one vector dot-product, for total work of O(R ", I,).

5.2.4. Inner product of two Kruskal tensors. Consider Kruskal tensors X
and Y, both of size Iy x Iy X --- X I, given by:

X=[A;UD ..., UNM] and Y=[o; VD, .., VIV

Assume that X has R rank-1 factors and Y has S. From (5.3), we have
(2,Y) = (vee(X), vec(Y))

“AT(UM e U(l))T (VMo ovi)e

—AT (U<N>TV<N> . U<1>TV(1)) o

Note that this does not require that the number of rank-1 factors in X and Y to be
the same. The work is N matrix-matrix multiplications, plus N Hadamard products,
and a final vector-matrix-vector product. The total work is O(RS Y, I,).

5.2.5. Norm of a Kruskal tensor. Let X be a Kruskal tensor as defined in
(5.1). From section 5.2.4, it follows directly that

I X H2 =(X,X) = AT (U(N)TU(N) %% U(l)TU(1)> A,

and the total work is O(R? Y, I,,).

5.2.6. Matricized Kruskal tensor times Khatri-Rao product. As noted
in section 2.6, a common operation is to calculate (2.6). Let X be a Kruskal tensor as
n (5.1). Also, let V(™) be of size I,, x S for m # n. In the case of a Kruskal tensor,
the operation simplifies to:

W=X (V<N> @@ VEHD oy o @Vu))
_yma (U<N> oo UM UMD 6. U(l))T

(V(N> ®- o VEHD o yve-1 oL g V(l)) ,

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 225

Using the properties of the Khatri-Rao product [44] and setting A (™) = U(m)Tv(m) ¢
REXS for all m # n, we have

W = U™A (A<N> oo x AFD g A(R=1) *Au)) ,

Computing each A (™) requires a matrix-matrix product for a cost of O(RSI,,) for each
m=1,...,n—1,n+1,...,N. There is also a sequence of N — 1 Hadamard products
of R x S matrices, multiplication with an R x R diagonal matrix, and finally matrix-
matrix multiplication that costs O(RSI,). Thus, the total cost is O(RS Y, I,).

5.2.7. Computing X(n)X-(rn). Let X be a Kruskal tensor as in (5.1). We can
use the properties of the Khatri-Rao product to efficiently compute

Z =XmWXMT ¢ RInxIn,

From (4.4),

Z2=U"A (UM o oUr o U6 U(l))T

(U<N> ®- - oUE o U o... o U(l)) AUM™T,
This reduces to

7 — UM™A (Vuv) fo ke VD Ly D) V<1>) AUMT

where V(™) = UmTUm) ¢ REXE for all m # n and costs O(R?1,,). This is followed
by (N —1) R x R matrix Hadamard products and two matrix multiplications. The
total work in O(R? Y, I,,).

5.3. MATLARB details for Kruskal tensors. A Kruskal tensor X from (5.1) is
constructed in MATLAB by passing in the matrices UM, ..., U) and the weighting
vector A using X = ktensor (lambda,{U1,U2,U3}). If all of the A-values are one, then
the shortcut X = ktensor({U1,U2,U3}) can be used instead. In version 1.0 of the
Tensor Toolbox, this object was called the cp_tensor [4].

A Kruskal tensor can be converted to a standard tensor by calling full(X).
Subscripted reference and assignment can be done only on the component matrices
not elementwise. For example, it is possible to change the 4th element of A but not the
(1,1,1) element of a three-way Kruskal tensor X. Scalar multiplication is supported,
ie., X*5. It is also possible to add to Kruskal tensors (X+Y or X-Y) as described in
section 5.2.1.

The n-mode product of a Kruskal tensor with one or more matrices (section 5.2.2)
or vectors (section 5.2.3) is implemented in ttm and ttv, respectively. The inner prod-
uct (section 5.2.4 and also section 6) is called via innerprod. The norm of a Kruskal
tensor (section 5.2.5) is computed by calling norm. The function mttkrp computes the
matricized-tensor-times-Khatri—-Rao-product as described in section 5.2.6. The func-
tion nvecs (X,n) computes the leading mode-n eigenvectors for X(n)X-(rn) as described
in section 5.2.7.

6. Operations that combine different types of tensors. Here we consider
two operations that combine different types of tensors. Throughout, we work with
the following tensors:

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

226 BRETT W. BADER AND TAMARA G. KOLDA

o D is a dense tensor of size Iy X Iy X -+ X Ij.
o 8 is a sparse tensor of size I1 X Iy x --- x Iy, and v € RF contains its nonzeros.
T=1[G;UM, ..., UM]is a Tucker tensor of size I} x I x - -- x Iy with a core
of size G € R71*xJ2X%JN and factor matrices U™ € RIn*JIn for all n.
K=[Xx; WD .. W] is a Kruskal tensor of size I; x Iy x --- x Iy and R
factor matrices W) ¢ RIn xR,

6.1. Inner product. Here we discuss how to compute the inner product between
any pair of tensors of different types.

For a sparse and dense tensor, we have (D,8) = v'z, where z is the vector
extracted from D using the indices of the nonzeros in the sparse tensor 8.

For a Tucker and dense tensor, if the core of the Tucker tensor is small, we can
compute

(T, D)=(G,D), where D=Dx, UDT...x, UMT

Computing D and its inner product with a dense G costs

o (Ms f1) <11)

n=1 \p=n

The procedure is the same for a Tucker tensor and a sparse tensor, i.e., (J,8), though
the cost is different (see section 3.2.5).
For the inner product of a Kruskal tensor and a dense tensor, we have

(D, XK) = vec(D)" (U(N) Q-0 U(l)) A

The cost of forming the Khatri-Rao product dominates: O(R[],, I,).
The inner product of a Kruskal tensor and a sparse tensor can be written as

R
(8,K)=> A8 51w xnywil),
r=1

Consequently, the cost is equivalent to doing R tensor-times-vector products with N
vectors each, i.e., O(RN - nnz(8)). The same reasoning applies to the inner product
of Tucker and Kruskal tensors (T, XK).

6.2. Hadamard product. We consider the Hadamard product of a sparse ten-
sor with dense and Kruskal tensors.

The product Y = D * 8 necessarily has zeros everywhere that 8 is zero, so only
the potential nonzeros in the result, corresponding to the nonzeros in 8, need to be
computed. The result is assembled from the nonzero subscripts of S and v * z, where
z is the values of D at the nonzero subscripts of S. The work is O(nnz(8)).

Once again, Y = 8+ K can have nonzeros only where 8 has nonzeros. Let z € RY
be the vector of possible nonzeros for Y corresponding to the locations of the nonzeros
in 8. Observe that

1 2 N
(ZA w£ 5)1)821, o 'wﬁ,SJ)\rp> :

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 227

This means that we can compute it vectorwise by a sum of a series of vector Hadamard
products with “expanded” vectors as in section 3.2.4, for example. The work is

O(N - nnz(8)).

7. Conclusions. In this article, we considered the question of how to deal with
potentially large-scale tensors stored in sparse or factored (Tucker or Kruskal) form.
The Tucker and Kruskal formats can be used, for example, to store the results of a
Tucker or CANDECOMP /PARAFAC decomposition of a large, sparse tensor. We
demonstrated relevant mathematical properties of structured tensors that simplify
common operations appearing in tensor decomposition algorithms, such as mode-n
matrix/vector multiplication, inner product, and collapsing/scaling. For many func-
tions, we are able to realize substantial computational efficiencies as compared to
working with the tensors in dense/unfactored form.

The Tensor Toolbox provides an extension to MATLAB by adding the ability
to work with sparse multidimensional arrays, not to mention the specialized fac-
tored tensors. Moreover, relatively few packages in any language have the ability
to work with sparse tensors, and our investigations have not revealed any others
that have the variety of capabilities available in the Tensor Toolbox. A complete
listing of functions for dense (tensor), sparse (sptensor), Tucker (ttensor), and
Kruskal (ktensor) tensors is provided in Table 7.1. In general, Tensor Toolbox ob-
jects work the same as MATLAB arrays. For example, for a 3-way tensor A in
any format (tensor, sptensor, ktensor, ttensor), it is possible to call functions
such as size(A), ndims(A), permute (A, [3 2 11), -A, 2*A, and norm(A) (always the
Frobenius norm for tensors). A major difference between Tensor Toolbox objects and
MATLAB arrays is that the tensor classes support subscript indexing (i.e., passing
in a matrix of subscripts) and do not support linear indexing. This avoids possible
complications with integer overflow for large-scale arrays; see section 3.3.

Due to their structure, factored tensors cannot support every operation that
is supported for dense and sparse tensors. For instance, most element-level oper-
ations are prohibited, such as subscripted reference/assignment, logical operations/
comparisons, etc. In these cases, memory permitting, the factored tensors can be
converted to dense tensors by calling full. However, there are certain operations
that can be adapted to the structure. For example, it is possible to add two Kruskal
tensors, as described in section 5.2.1, and it is possible to do tensor multiplication
and inner products involving Kruskal tensors; see section 6.

A major feature of the Tensor Toolbox is that it defines multiplication on ten-
sor objects. For example, generalized tensor-tensor multiplication and contraction is
supported for dense and sparse tensors. The specialized operations of n-mode mul-
tiplication of a tensor by a matrix or a vector is supported for dense, sparse, and
factored tensors. Likewise, inner products, even between tensors of different types,
and norms are supported across the board.

The Tensor Toolbox also includes specialized functions, such as collapse and
scale (see section 3.2.9), the matricized-tensor-times-Khatri-Rao-product (see sec-
tion 2.6), the computation of the leading mode-n singular vectors (equivalent to the
leading eigenvectors of X(n)X(Tn)), and conversion of a tensor to a matrix.

While we believe that the Tensor Toolbox is a useful package, we look forward
to greater availability of storage formats and increased functionality in software for
tensors, especially sparse tensors. For instance, the benefits of storing matrices in
sorted order using CSR or CSC format generally outweigh the negatives, and so it

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

228 BRETT W. BADER AND TAMARA G. KOLDA

TABLE 7.1

Methods in the Tensor Toolbox.
Functionality tensor | sptensor | ttensor | ktensor
Sizes (size, ndims) v v v v
Number of nonzeros (nnz) V& v - -
Permute v v v v
Remove singleton dimensions (squeeze) v v - -
Subscripted reference and assignment Ve Ve V& V&3
Unary plus and minus (e.g., -X) v v v v
Plus and minus v v - v
Logical (and/or/xor/not) v Ve -
Comparisons (eq/ne/gt/ge/1t/1e) v va — —
Scalar multiplication (A*5) v v v v
Scalar elementwise power (A.°) v va — v
Array (Hadamard) multiplication (A.*B) Ve Ve — Ve
Array right division (A./B) Ve Ve - Ve
Convert to multidimensional array (MDA) (double) v v v v
Convert to dense (full) v v v v
Find subscripts of nonzero elements (find) v v —
Apply a function to every element (tenfun) v - -
Apply a function to every nonzero element (elemfun) - v - -
Tensor times tensor (ttt) v v
Generalized trace (contract) v v — -
Tensor time matrix (ttm) v v v v
Tensor times vector (ttv) v v v v
Matricized-tensor-times-Khatri-Rao-product (mttkrp) v v v v
Mode-n singular vectors (nvecs) v v v v
Inner product (innerprod) Ve Ve Ve Ve
Norm v v v v
Collapse along dimensions v v - -
Scale along dimensions v v - -
Matricize v v - -

@ Multiple subscripts passed explicitly (no linear indices).
b Only the factors may be referenced/modified.

¢ Supports combinations of different types of tensors.

4 New as of version 2.1.

makes sense to seek multidimensional extensions that are both practical and useful,
at least for specialized contexts as with the EKMR [33, 34].

Furthermore, extensions to parallel data structures and architectures require fur-
ther innovation, especially as we hope to leverage existing codes for parallel linear
algebra.

Acknowledgments. We gratefully acknowledge all of those who have influenced
the development of the Tensor Toolbox through their conversations and email ex-
changes with us—you have helped us to make this a much better package. In partic-
ular, we thank Evrim Acar, Rasmus Bro, Jerry Gregoire, Richard Harshman, Morten
Mgrup, Teresa Selee, and Giorgio Tomasi. We also thank Jimeng Sun for being a
beta tester and using the results in [45]. We thank the referees for their constructive
comments, which have greatly improved the manuscript.

REFERENCES

[1] E. Acar, S. A. CAMTEPE, AND B. YENER, Collective sampling and analysis of high order
tensors for chatroom communications, in ISI 2006: IEEE International Conference on
Intelligence and Security Informatics, Lecture Notes in Comput. Sci. 3975, Springer, Berlin,
2006, pp. 213-224.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

(9]

[10]

(11]

[12]

[13]

SPARSE AND FACTORED TENSORS 229

. A. ANDERSSON AND R. BRO, The N-way toolbox for MATLAB, Chemometr. Intell. Lab., 52

(2000), pp. 1-4. See also http://www.models.kvl.dk/source/nwaytoolbox/.

. J. APPELLOF AND E. R. DAVIDSON, Strategies for analyzing data from video fluorometric

monitoring of liquid chromatographic effluents, Anal. Chem., 53 (1981), pp. 2053-2056.

. W. BADER AND T. G. KoLDA, Algorithm 862: MATLAB tensor classes for fast algorithm

prototyping, ACM Trans. Math. Software, 32 (2006), pp. 635-653.

W. BADER AND T. G. KoLpDA, Matlab Tensor Toolboxz, Version 2.1, http://csmr.ca.

sandia.gov/ tgkolda/TensorToolbox/ (December 2006).

. BEYLKIN AND M. J. MOHLENKAMP, Algorithms for numerical analysis in high dimensions,

SIAM J. Sci. Comput., 26 (2005), pp. 2133-2159.

. BrRo, PARAFAC. Tutorial and applications, Chemometr. Intell. Lab., 38 (1997), pp. 149-

171.

BRrRO, Multi-way Analysis in the Food Industry: Models, Algorithms, and Applications,

Ph.D. thesis, University of Amsterdam, 1998. Available at http://www.models.kvl.dk/

research/theses/.

. D. CARROLL AND J. J. CHANG, Analysis of individual differences in multidimensional scaling
via an N-way generalization of ‘Eckart-Young’ decomposition, Psychometrika, 35 (1970),
pp. 283-319.

B. CHEN, A. PETROPOLU, AND L. DE LATHAUWER, Blind identification of convolutive MIM
systems with 3 sources and 2 sensors, Applied Signal Processing, (2002), pp. 487-496
(Special Issue on Space-Time Coding and Its Applications, Part II).

. COMON, Tensor decompositions: State of the art and applications, in Mathematics in Signal
Processing V, J. G. McWhirter and I. K. Proudler, eds., Oxford University Press, Oxford,
2001, pp. 1-24.

L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, A multilinear singular value decom-

position, STAM J. Matrix Anal. Appl., 21 (2000), pp. 1253-1278.

L. DE LATHAUWER, B. DE MOOR, AND J. VANDEWALLE, On the best rank-1 and rank-
(R1,R2,...,RN) approzimation of higher-order tensors, SIAM J. Matrix Anal. Appl.,
21 (2000), pp. 1324-1342.

I. S. DurF AND J. K. REID, Some design features of a sparse matriz code, ACM Trans. Math.
Software, 5 (1979), pp. 18-35.

R. GARCIA AND A. LUMSDAINE, MultiArray: A C++ library for generic programming with
arrays, Software: Practice and Experience, 35 (2004), pp. 159-188.

J. R. GILBERT, C. MOLER, AND R. SCHREIBER, Sparse matrices in MATLAB: Design and
implementation, SIAM J. Matrix Anal. Appl., 13 (1992), pp. 333-356.

V. S. GRIGORASCU AND P. A. REGALIA, Tensor displacement structures and polyspectral match-
ing, in Fast Reliable Algorithms for Matrices with Structure, T. Kaliath and A. H. Sayed,
eds., STAM, Philadelphia, 1999, pp. 245-276.

F. G. GUSTAVSON, Some basic techniques for solving sparse systems, in Sparse Matrices and
their Applications, D. J. Rose and R. A. Willoughby, eds., Plenum Press, New York, 1972,
pp. 41-52.

R. A. HARSHMAN, Foundations of the PARAFAC procedure: Models and conditions for an
“explanatory” multi-modal factor analysis, UCLA working papers in phonetics, 16 (1970),
pp. 1-84. Available at http://publish.uwo.ca/ harshman/wpppfac0.pdf.

. HENRION, Body diagonalization of core matrices in three-way principal components analysis:

Theoretical bounds and simulation, J. Chemometr., 7 (1993), pp. 477-494.

HENRION, N-way principal component analysis theory, algorithms and applications,

Chemometr. Intell. Lab., 25 (1994), pp. 1-23.

. A. KIERS, Joint orthomaz rotation of the core and component matrices resulting from three-

mode principal components analysis, J. Classification, 15 (1998), pp. 245-263.

. A. L. Kiers, Towards a standardized notation and terminology in multiway analysis, J.

Chemometr., 14 (2000), pp. 105-122.

. G. KoLpa, Orthogonal tensor decompositions, SIAM J. Matrix Anal. Appl., 23 (2001),

pp. 243-255.

G. KoLpa, Multilinear Operators for Higher-Order Decompositions, Technical report

SAND2006-2081, Sandia National Laboratories, Albuquerque, NM and Livermore, CA,

2006.

P. KROONENBERG, Applications of three-mode techniques: Overview, problems, and prospects

(slides), Presentation at the AIM Tensor Decompositions Workshop, Palo Alto, CA, 2004.

Available at http://csmr.ca.sandia.gov/ tgkolda/tdw2004/Kroonenberg%20-%20Talk.pdf.

5 A QW W a0

-

g

H 43 oz =z = B

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

230

27]

(28]

BRETT W. BADER AND TAMARA G. KOLDA

P. M. KROONENBERG AND J. DE LEEUW, Principal component analysis of three-mode data by
means of alternating least squares algorithms, Psychometrika, 45 (1980), pp. 69-97.

J. B. KRUSKAL, Three-way arrays: rank and uniqueness of trilinear decompositions, with appli-
cation to arithmetic complexity and statistics, Linear Algebra Appl., 18 (1977), pp. 95-138.

J. B. KRUSKAL, Rank, decomposition, and uniqueness for 3-way and N -way arrays, in Multiway
Data Analysis, R. Coppi and S. Bolasco, eds., North-Holland, Amsterdam, 1989.

W. LANDRY, Implementing a high performance tensor library, Scientific Programming, 11
(2003), pp. 273-290.

S. LEURGANS AND R. T. Ross, Multilinear models: Applications in spectroscopy, Statist. Sci.,
7 (1992), pp. 289-310.

L.-H. LM, Singular values and eigenvalues of tensors: A variational approach,in CAMAP2005:
1st IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive
Processing, 2005, pp. 129-132.

C.-Y. LN, Y.-C. CHUNG, AND J.-S. Liu, Efficient data compression methods for multidimen-
stonal sparse array operations based on the ekmr scheme, IEEE Trans. Comput., 52 (2003),
pp- 1640-1646.

C.-Y. Lin, J.-S. Liu, AND Y .-C. CHUNG, Efficient representation scheme for multidimensional
array operations, IEEE Trans. Comput., 51 (2002), pp. 327-345.

R. P. McDONALD, A simple comprehensive model for the analysis of covariance structures,
British J. Math. Statist. Psych., 33 (1980), p. 161. Cited in [8].

M. Mgrup, L. HANSEN, J. PARNAS, AND S. M. ARNFRED, Decomposing the Time-
Frequency Representation of EEG Using Nonnegative Matrixz and Multi-way Factoriza-
tion, http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4144 /pdf/imm4144.pdf
(2006).

T. Murakawmi, J. M. F. TEN BERGE, AND H. A. L. KIERS, A case of extreme simplicity of
the core matriz in three-mode principal components analysis, Psychometrika, 63 (1998),
pPpP. 255-261.

P. PAATERO, The multilinear engine - a table-driven, least squares program for solving mul-
tilinear problems, including the n-way parallel factor analysis model, J. Comput. Graph.
Statist., 8 (1999), pp. 854-888.

U. W. Poocu AND A. NIEDER, A survey of indexing techniques for sparse matrices, ACM
Computing Surveys, 5 (1973), pp. 109-133.

C. R. RAO AND S. MITRA, Generalized Inverse of Matrices and its Applications, Wiley, New
York, 1971. Cited in [8].

J. R. Ruiz-ToLosA AND E. CASTILLO, From Vectors to Tensors, Universitext, Springer, Berlin,
2005.

Y. SAAD, Iterative Methods for Sparse Linear Systems, 2nd ed., STAM, Philadelphia, 2003.

B. Savas, Analyses and Tests of Handwritten Digit Recognition Algorithms, master’s thesis,
Link6ping University, Sweden, 2003.

A. SMILDE, R. BrRO, AND P. GELADI, Multi-way Analysis: Applications in the Chemical Sci-
ences, Wiley, West Sussex, England, 2004.

J. Sun, D. TAao, AND C. FALOUTSOS, Beyond streams and graphs: Dynamic tensor analysis, in
KDD ’06: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, 2006, pp. 374-383.

J.-T. Sun, H.-J. ZENG, H. Liu, Y. Lu, AND Z. CHEN, CubeSVD: A novel approach to person-
alized web search, in WWW 2005: Proceedings of the 14th International Conference on
World Wide Web, ACM Press, New York, 2005, pp. 382-390.

J. TEN BERGE, J. DE LEEUW, AND P. M. KROONENBERG, Some additional results on principal
components analysis of three-mode data by means of alternating least squares algorithms,
Psychometrika, 52 (1987), pp. 183-191.

J. M. F. TEN BERGE AND H. A. L. KIERs, Simplicity of core arrays in three-way principal
component analysis and the typical rank of p X q X 2 arrays, Linear Algebra Appl., 294
(1999), pp. 169-179.

G. TomMmasi, Use of the Properties of the Khatri-Rao Product for the Computation of Jacobian,
Hessian, and Gradient of the PARAFAC Model under MATLA B, manuscript, 2005.

G. Tomas1 AND R. Bro, A comparison of algorithms for fitting the PARAFAC model, Comput.
Statist. Data Anal., 50 (2006), pp. 1700-1734.

L. R. TUCKER, Some mathematical notes on three-mode factor analysis, Psychometrika, 31
(1966), pp. 279-311.

M. A. O. VASILESCU AND D. TERZOPOULOS, Multilinear analysis of image ensembles: Tensor-
Faces, in ECCV 2002: 7th European Conference on Computer Vision, Lecture Notes in
Comput. Sci. 2350, Springer, Berlin, 2002, pp. 447-460.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

SPARSE AND FACTORED TENSORS 231

. Viasic, M. BRAND, H. PFISTER, AND J. PoroviC¢, Face transfer with multilinear models,

ACM Trans. Graphics, 24 (2005), pp. 426-433.

WANG AND N. AHUJA, Facial expression decomposition, in ICCV 2003: 9th IEEE Interna-

tional Conference on Computer Vision, vol. 2, 2003, pp. 958-965.

. M. WisE AND N. B. GALLAGHER, PLS_Toolboz 4.0, http://www.eigenvector.com (2007).

. ZAss, HUJI Tensor Library, http://www.cs.huji.ac.il/"zass/htl/ (May 2006).

. ZHANG, J. HAvs, AND G. TURK, Interactive Tensor Field Design and Visualization on
Surfaces, http:/ /eecs.oregonstate.edu/library/files/2005-106/tenflddesn.pdf (2005).

. ZHANG AND G. H. GOLUB, Rank-one approzimation to high order tensors, SIAM J. Matrix

Anal. Appl., 23 (2001), pp. 534-550.

HI® = U

H

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.

