

Nonlinear Solution Algorithms for Circuit Simulation

<u>Roger P. Pawlowski</u>, Eric R. Keiter, Robert J. Hoekstra, Scott A. Hutchinson, Tom V. Russo, and Tamara Kolda Sandia National Laboratories Albuquerque, NM

> Jaijeet Roychowdhury University of Minnesota

Numerical Aspects of Circuit and Device Modeling Workshop June 23-25, 2004

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under contract DE-AC04-94AL85000.

Collaborators

- Sandia's distributed memory analog circuit simulator

Eric R. Keiter Robert J. Hoekstra Scott A. Hutchinson Tom V. Russo Todd Coffey

NOX/LOCA - Sandia's Nonlinear Solver/Bifurcation Analysis Libraries Roger P. Pawlowski Tamara Kolda Eric T Phipps Andrew G. Salinger

University of Minnesota Jaijeet Roychowdhury

Outline

Motivation

Newton-based Globalization Techniques

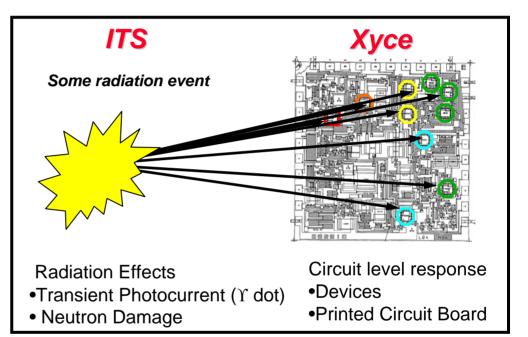
- Algorithms
- Results

MOSFET-based Homotopy

- ATANSH
- 3-Pass
- 2-Pass

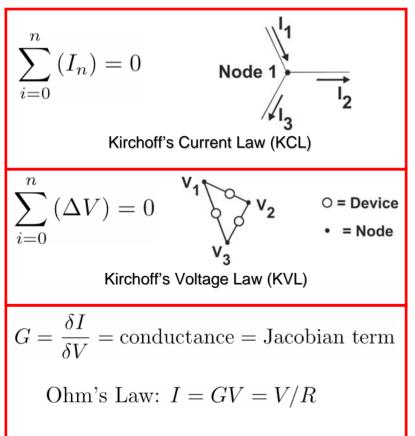
Application of MOSFET-based Homotopy

- inverter chains
- 100,000 unknown digital ASIC
- 300,000 unknown digital SRAM cell.



Motivation: Circuit Simulation at Sandia

- Sandia is interested in simulating large (>1e7 transistors) integrated circuits.
- Special requirements: a circuit's response to a hostile environment:
 - Radiation
 - Thermal
 - Vibrational
- To simulate these circuits with radiation, an analog (rather than digital) simulation is required.
- Commercial analog (PSPICE, etc.) simulators cannot handle circuits of this size.
 - linear solve
 - nonlinear solve



Analog Circuit Simulation

Solve Kirchoff's laws (KCL and KVL).

Difficulties

- Network topology (not a mesh!)
- Very heterogeneous in terms of both the devices and the topology: *There is no "characteristic" circuit!*
- Stiff, coupled DAEs: Different characteristics than PDEs.
- Highly nonlinear (device model discontinuities, hysteresis, etc.).
- Poorly scaled systems (unknowns can range over 9-12 orders of magnitude).
 - Even direct linear solvers in serial can fail.
- Large, ill-conditioned sparse Jacobian matrices present unique ordering and preconditioning challenges.

We focus on developing robust algorithms for solving the DC Operating Point (Steady State or DCOP):

-DCOP is used as initial condition for transient

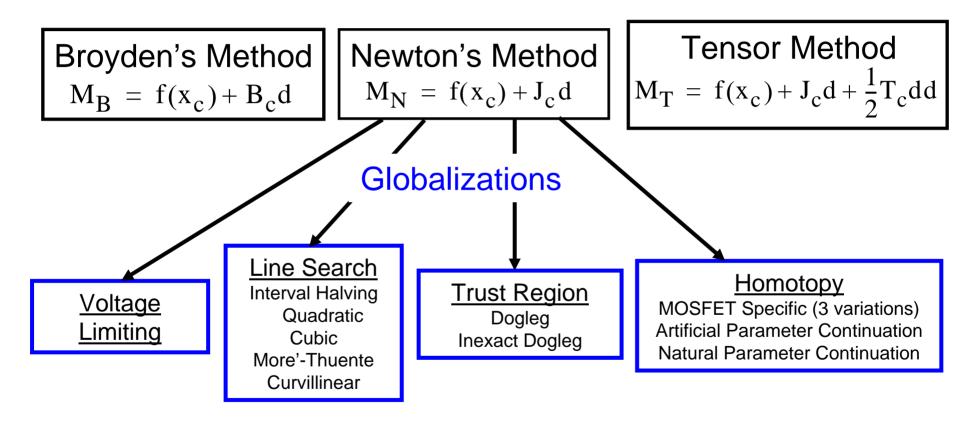
-Transient, on the nonlinear solver level, is not as hard.

Find x_* such that $F(x_*) = 0$, where $F : \mathbb{R}^n \to \mathbb{R}^n$.

Newton's Method:
$$M_k = F_k + J_k \Delta x$$

Until Convergence:

$$J_k \Delta x_k = -F_k$$


$$x_{k+1} = x_k + \Delta x_k$$

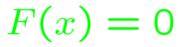
If x_o is poor, the nonlinear iteration sequence can diverge!

More Robust Techniques are Required

A History of Nonlinear Algorithm Capabilities in Xyce

Adaptive Forcing Terms (Eisenstat and Walker)

Voltage Limiting: A Frustratingly Effective Circuit-Specific Globalization


- Newton Linear System: $J\Delta x = -F$
- Voltage Limited Newton Linear System:

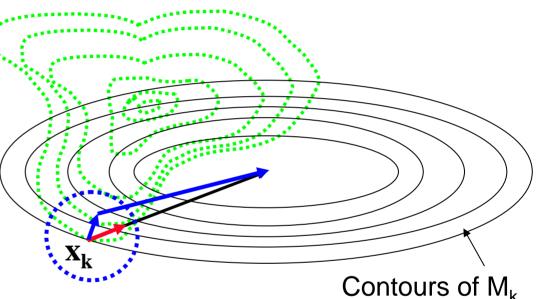
$$J\Delta x = -F + J\Delta x_{corr}$$

- Limit change in the solution (Δx) vector in individual devices/unknowns during the load phase.
- Each individual device can change the direction away from a Newton direction.
- Limits on voltage changes are dependent on the device state/history.
- Changes are inconsistent multiple devices may be adjusting the same unknown.
- Devices have a "memory". Hysteresis is introduced, which breaks other globalizations.
- This is the default method in most SPICE-style simulators.
- Hack that often works very well, but no real theory backing it up.

Globalization Methods

- Globalized methods typically force each step to reduce a merit function by a sufficient amount.
- Line Search
 - Newton Direction

 $M_k(s) = F(x_k) + J(x_k)s$


- Sufficient Decrease Condition

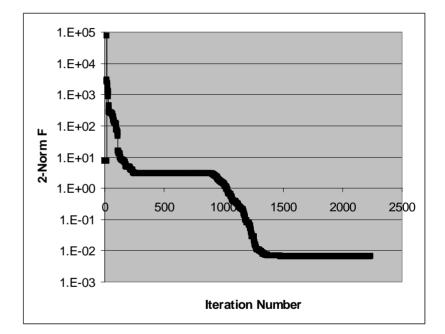
$$\begin{split} \phi(\theta) &= \frac{1}{2} \| F(x_k + \theta s) \|^2 \\ \phi(\theta) &\leq \phi(0) + \alpha \theta \phi'(0) \\ \| F(x_k + \theta s) \| &\leq \| F(x_k) \| (1 - \alpha (1 - \eta_k)) \end{split}$$

- » Trapped in local minima
- How to recover a failed step?
 - » Take a full Newton step
 - » Take the final step length
- Trust Region

9

- Changes the direction
- TR radius is controlled by a condition similar to the sufficient
- decrease condition

Globalization Comparisons (Standard Test Circuits)


- No single globalization algorithm works for everything transistor devices in particular.
- Overall, voltage limiting is much more robust than the other globalizations.
- Voltage limiting is the default solver algorithm in virtually all commercially available circuit simulators.
- When both converge, efficiency comparisons between Newton and voltage limiting are inconclusive.
- Trust Region and Line Search methods trade efficiency for robustness but for circuits the number of iterations is excessive.

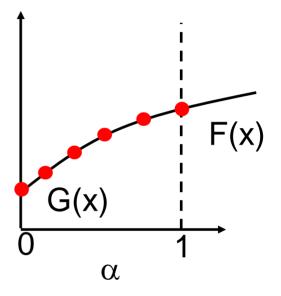
Method	Circuit				
	FPGA	Single Channel	Dual Channel	TX Adder	L1 Inv.
Newton	116	13	436	113	2
Voltage Limiting	57	58	42	122	2
Line Search (2)	133	26	10	4000	2
Line Search (20)	131	500	45	4000	2
Line Search (20 + r=1)	131	13	45	4000	2
নুrust Region	500	5	4000	4000	2

Comments on Globalization

- When voltage limiting fails, there are no parameters available to users to tweak.
- One recourse is to hack on the line search options:
 - Limit inner iterations to 2 and ignore the failed sufficient decrease condition.
 - Use the last computed step length.
 - This works on a variety of circuits prevents divergence!
- Poor performance of Line Search and Trust Region is due to the sufficient decrease condition:
 - Flip-flopping of device states causes oscillations in ||F||.
 - The step length to be severely reduced.
 - Many local minima.

None of these methods were successful on every circuit.

LOCA: Homotopy Development in Xyce

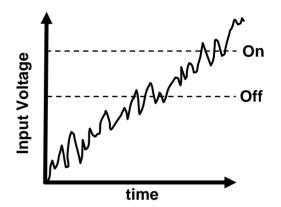


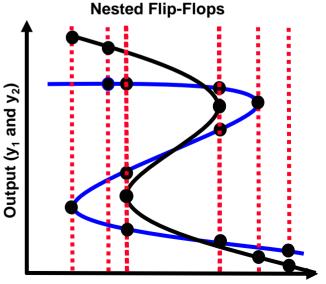
- General Idea:
 - Start with easy problem, related, by a single parameter to the hard problem.
 - Perform repeated solves while incrementing parameter until the hard problem solution is obtained.

Difficult Problem:F(x) = 0Easy Problem:G(x) = 0

- Circuit homotopy failures:
 - Natural Parameters such as voltage sources (Power nodes)
 - Artificial parameter homotopy:

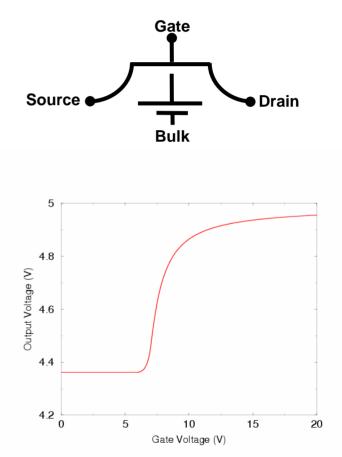
¹²
$$F^{H}(x) = \alpha F(x) + (1 - \alpha)(x - a)$$



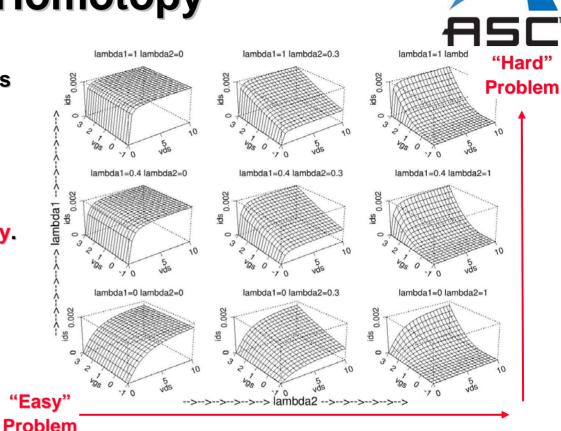

Multi-pass Homotopy

- Jaijeet Roychowdhury (U. Minnesota) -Circuit homotopy methods fail due to:
 - Ill conditioned numerics lead to path failing in the homotopy algorithm.
 - Exponentially (infinitely) long homotopy branches occur due to nested loops. (Some circuits are intentionally designed with multiplicity - Schmidt triggers)
- Device specific, multi-pass homotopies are required using specially constructed parameters:

» **MOSFET**



MOSFET Circuits


- MOSFET = <u>Metal Oxide Semiconductor Field Effect</u> <u>Transistor</u>.
- Very common integrated circuit component.
- Behaves as an on/off switch. (2 Distinct states, even if simulated in analog)
- MOSFET circuits pose problems for nonlinear solvers, because they will often repeatedly change state (onoff-on, etc) over the course of the nonlinear solve.
- Critical Variables (voltage differences):
 - Gate to source voltage: Vgs = Vg Vs
 - Drain to source voltage: Vds = Vd Vs
 - Output Current: Ids = f(Vgs, Vds)
- Extremely complex models:
 - Many different models (MOS1, MOS3, BSIM3 etc...)
 - BSIM3 has 12,000 lines of code, 400+ parameters
 - Models are industry standards: have to be "bug" compatible.

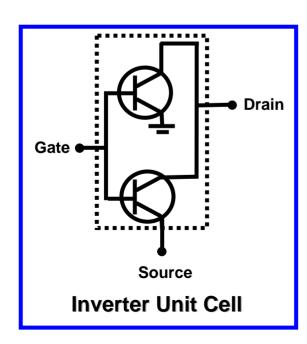
Specialized MOSFET Homotopy

- MOSFET-based homotopy does not appear in the simulation literature, but is crucial.
- Based on conversations with Jaijeet Roychowdhury (U. Minnesota), ATANSH homotopy.
 - Pass 1: gain
 - Pass 2: nonlinearity
- When both parameters are 0 ("Easy") all MOSFETs act as nearly linear resistors.

Gain (horizontal path): Controls the transfer characteristic – the influence of the gate on the drain. Fixes the on/off states.

$$V_{gs_{model}} = \lambda_2 V_{gs_{input}} + (1 - \lambda_2) V_{gs_{const}}$$

Nonlinearity (vertical path): Sharpens the driving point characteristic – the degree of nonlinearity in the drain-source driving point.


$$V_{ds_{model}} = \lambda_1 V_{ds_{input}} + (1 - \lambda_1) V_{ds_{const}}$$

Scalable Problem: Inverter Chain

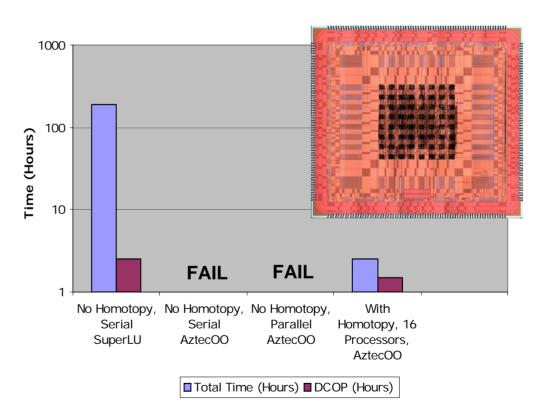
- Test problem where one can adjust problem difficulty via the chain length.
- Constructed from two MOSFETs (one n-type, one p-type).
- Has lots of conditioning problems, which get worse with size.

Level 1 Inverter Chains (MOS1)

Method	Number of Inverters						
	1	10	25	50	75	100	1000
Newton	2	200	60	2	2	2	2
Volt Limiting	7	13	55	200	2	2	2
Line Search (2 steps)	2	200	200	2	2	2	2
Line Search (20 steps)	2	200	50	2	2	2	2
Trust Region	2	41	155	200	2	2	2

- Shows number of Newton steps until Convergence/Failure
- Failures are RED
- Not perfect test:
 - Does not contain multiplicity
 - Not much cross-linking topological straight line.

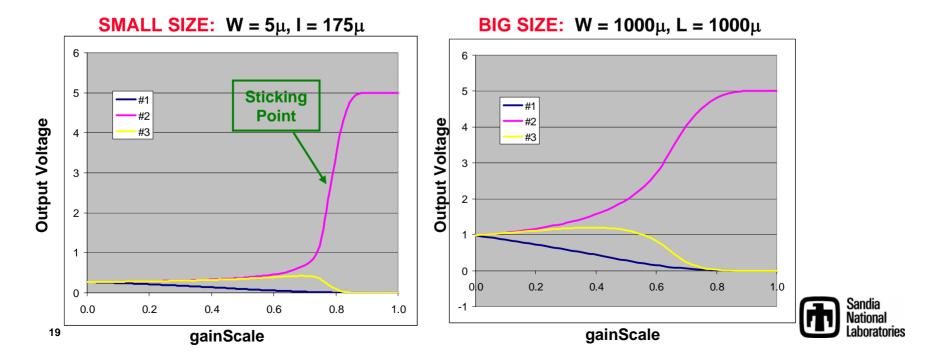
Specialized MOSFET Homotopy (ATANSH)


Method	Number of Inverters					
	1	10	25	50	75	100
Newton	2	200	60	2	2	2
Volt Limiting	7	13	55	200	2	2
Line Search (2 steps)	2	200	200	2	2	2
Line Search (20 steps)	2	200	50	2	2	2
Trust Region	2	41	155	200	2	2
MOSFET Homotopy (ATANSH)	242	274	286	302	318	334

- In use internally at AT&T/Lucent Microelectronics since 1995.
- We have found that ATANSH Homotopy works well, but it can not solve all of our circuits (we go to much larger sizes):
 - Level 1 (MOS1) <= 150
 - Level 9 (BSIM3) <= 1000

MOSFET Homotopy Impact on a Real Problem (Oct 2003 results)

- ASIC with over 233,000 MOSFET devices in the model.
- Without homotopy, this ASIC could run, but only in serial, and it had a lot of trouble. It only worked with a direct solver.
- With ATANSH homotopy, Xyce was robust enough to hand off to users to experiment with the circuit, and it was possible to run in parallel.



SuperLU = Trilinos direct solver AztecOO = Trilinos iterative solver

ATANSH Failure Mode Suggests new 3-pass homotopy

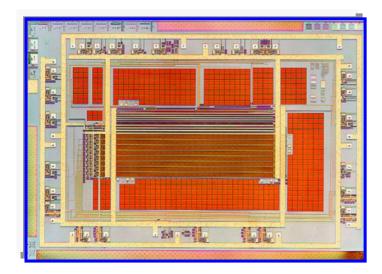
- Failures of ATANSH Homotopy were during continuation in the "gain" pass. (sticking point near 0.7, when the devices "turn on")
- Sticking point appeared in a lot of MOSFET circuits, not just inverters.
- This effect was less pronounced if the MOSFETs were physically large.
- Thus, a modification is proposed for ATANSH, in which an addition SIZE parameter is used: 3 parameters: gainScale, nltermScale, sizeScale.

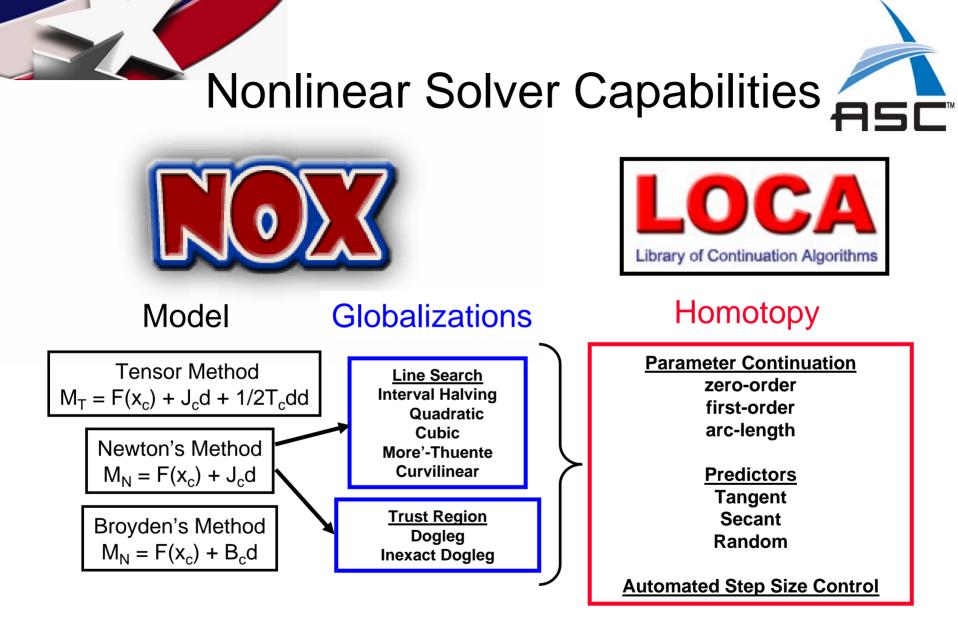
New (3-pass) HOMOTOPY applied to Inverter Chains

- ATANSH: gain, nonlinearity
- 3 Pass: gain, nonlinearity, size
- 2 Pass: nonlinearity, size (why is this best!?)

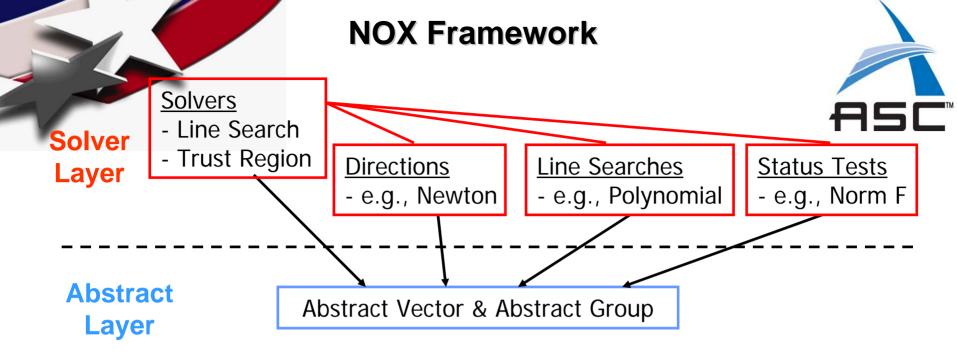
Method	Number of Inverters				
	100	200	500	1000	5000
Newton	F	F	F	F	F
Voltage Limiting	122	F	F	F	F
ATANSH	178	184	400	480	F
3 Pass (L=5, W=175)	387	386	F	F	F
3 Pass (L=1000, W=1000)	193	214	F	F	F
2 Pass (L=1000, W=1000)	129	144	195	195	195
gain	57	105	151	F	F
nonlinearity	113	115	F	F	F
size	F	F	F	F	F

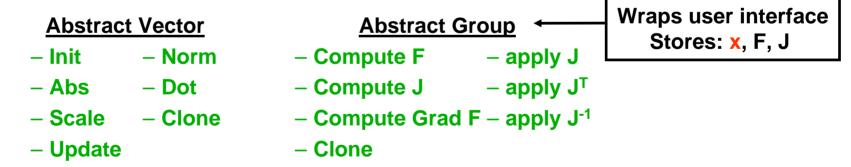
- 2 Pass in nonlinearity and size works extremely well.
- This no longer decouples nested turning points so we are susceptible to infinitely long homotopy branches.





- SRAM Cell. Much harder than the ASIC.
- The number of devices is ~250k.
- The size of the nonlinear system is ~278k.


Method	Status
Newton	F
Voltage Limiting	2 days
ATANSH	F
3-Pass	4 hours



Matrix-Free Newton-Krylov Jacobian Estimation via colored finite diff.

 Don't need to directly access the vector or matrix entries, only manipulate the objects!

- Implementation is independent of the linear algebra storage format and parallel services.
- ²³ We provide implementations for LAPACK, Epetra (Trilinos) and PETSc.

Conclusions

- Large-scale systems with many transistors require divice specific homotopy for the DC Operating point calculation.
- MOSFET homotopy has yielded a HUGE benefit in robustness over standard globalization techniques.
- Artificial homotopy and continuation on obvious natural parameters, such as the power node does not work well.
- We expect the 3-Pass and the 2 Pass (nonlinear, size) to be even better.

Nonlinear Solver Software in Trilinos

NOX: Nonlinear Object-oriented Solutions

- Provides a common solver framework for nonlinear methods.
- Algorithmic construction via parameter lists
- Robust algorithms: Newton, Line Search, Trust Region, Tensor, Broyden solvers.
- User Defined Quantities: stopping criteria, algorithmic norms, merit functions.
- Independent of linear algebra storage format/ solver algorithm!

LOCA: Library of Continuation Algorithms

- Provides robust continuation and bifurcation analysis algorithms
- Provides zero-order, first-order, and arc-length continuation routines.
- Automatic step size control and predictor/corrector algorithms.
- Allows for direct tracking of bifurcation points (turning point, pitchfork and Hopf).

Download http://software.sandia.gov/trilinos http://software.sandia.gov/nox

ContactsNOX:Roger Pawlowskirppawlo@sandia.govLOCA:Andy Salingeragsalin@sandia.govXyce:Eric Keitererkeite@sandia.gov

Backup Slides

