Optimization with Large-Scale CFD Simulations

Natalia Alexandrov
Multidisciplinary Optimization Branch
NASA Langley Research Center

http://mdob.larc.nasa.gov

11th SIAM Conference on Parallel Processing for Scientific Computing, 25-28 Feb 2004, San Francisco

Optimization with simulations

* Problem minimize f(x, u(x))
X
s.t. Cgx, u(x))=0
C/x,u(x)) <0
X, < X < Xy with u(x) solving A(x, u(x)) = 0, given x

— The use of parallelism depends on problem structure and formulation
» At the level of function/derivative evaluations
« Sequential optimization with parallel linear algebra
« Parallel optimization algorithms
« Outline

— Computational environment in Fast Adaptive AeroSpace Tools
(FAAST) project

— General difficulties in using CFD for function evaluations
— A parallel optimization approach for single-discipline problems
— Range of methods in the changing computational environment

Aerodynamic Optimization

shape flow conditlons

l

— —

CFD analysis

state variables,
integrated quantitias

minimize Integrated quantities, such as — 7

L (lift
-drag

(g5

Jor C'}; (drag coefficient)

subjeet o constraints on, c.g., pilching and rolling moment coefficients, ele.

By By

Fast Adaptive AeroSpace Tools (FAAST) Design Environment

Objectives f,(x)
Constraints C(x)
Derivatives Vf,(x), VC(x)
for variable-fidelity models

Optimization

>

Initialization:

Grid Generation

Grid Parameterization
Domain decomposition
for parallel processing

and error analysis

DESIGN
ORIENTED

Choose or build model with
input from mesh adaptation q

Design variables x
Bhon choie ofid

HARDWARE/
SOFTWARE
INFRA-
STRUCTURE

ﬁ;ﬂs}ﬂ%*“*}*th

P ﬁ“ﬁ"ﬁ". i
G

Mesh movement

ANALYSIS
SYSTEM

Mesh sensitivities
Derivative evaluation

Error analysis

B Flow solver
| Adjoint solver

General difficulties in CFD-based optimization

» Until recently, focused almost exclusively on preliminary design; among
other problems, from the perspective of optimization:

— Function evaluation is expensive and not sufficiently robust (e.g.,
unstructured mesh movement for viscous problems breaks often)

— Function evaluation is not sufficiently automatic (e.g., grid
regeneration)

« Recent additional emphasis on incorporating high-fidelity simulations into
conceptual design

— Conceptual design now uses simple, inexpensive models with an
occasional recourse to a high-fidelity analysis

— Design with high-fidelity simulations necessarily implies high
dimensionality

— CFD must be view in a multidisciplinary context (possibilities and
challenges for parallelization)

— Time is crucial in conceptual design

Current Computational Environment, cont.

* Function and derivative computations involve black-box CFD simulations
= Approach that now, arguably, yields the most efficient uses of
parallelism—Simultaneous Analysis and Design (SAND)}—is not realistic
in the current environment of the project

* Number of variables and constraints not large in black-box formulation;
‘large-scale” refers to extreme expense of function evaluations = No
effort in parallelizing linear algebra in optimization algorithms

» Although most significant savings can be usually realized by addressing
the special structure of an application, with the perspective of conceptual
and multidisciplinary design, need general approaches, ability to combine
the use of different models

« Treat PDE constraints implicitly and focus on optimization algorithms that
make use of parallel function and derivative evaluation

Flow Solver

N2D/3D

Fully Unstructured Navier-Stokes

« FUN2D/3D (Anderson, Nielsen, FAAST) is a modular, state-
of-the-art solver for turbulent flows on unstructured mixed-
element grids across the speed range, with derivatives
provided by adjoint approach

* Feasible to run only on multiprocessor systems
— Expect 375 words of memory per grid point
— Example: a grid with 1 million mesh points has about 6 million cells
(tetrahedra) and 8.4 Gbytes
» Variety of solution algorithms available, including multigrid,
Newton-Krylov, and others

* Supports a wide range of research projects and is in high
demand for industrial and academic applications

Flow and Adjoint Solvers: Domain Decomposition and Parallelization

» Any sequential operations become showstoppers in terms of both
memory and speed

» All components developed for distributed platforms

— Parallel Party (D. Hammond) for grid partitioning (uses ParMETIS
(http://www-users.cs.umn.edu/~karypis/parmetis/index.html)

— Pre-/Post-processing: implicit line construction, multigrid interpolants,
etc.

— Mesh movement and adaptation (enrichment, coarsening, etc.)

 Flow solver parallelization scheme has shown excellent scaling on
available hardware of over 100 distributed CPU’s

(Pak Chan, USRP)

Both strong and
weak scalability
studied.

W
T

Speed Up
N

0 24 48 72 96 120
Processors

Optimization Approach in FAAST

» Despite efficiency of flow and adjoint solver, straightforward optimization
with high-fidelity simulations for large problems is prohibitively expensive

« Current approach: 1st order Approximation and Model management
Optimization (AMMO) (e.g., Alexandrov & Lewis, AIAA-96-4101/02)

— Combines the long-standing engineering practice of low-fidelity
model use (heuristic, sometimes with corrections) with rigorous
nonlinear programming techniques that guarantee convergence to
high-fidelity answers

— Available models: variable-accuracy, variable-resolution, variable-
fidelity physics models; models based on sampling

— Meant to make the use of high-fidelity models affordable in solving
large-scale problems in conceptual and preliminary design

« Since 1996, several independent proofs of concept using AMMO for
aerodynamic and multidisciplinary design; typical savings in hi-fi function
evaluations from 3 to 7-fold

AMMO

Single-fidelity algorithms

« Do until convergence

1. Build local models (usually
Taylor series) of the objective
and constraints based on
information computed by hi-fi
simulation

2. Compute a trial step by
solving a subproblem based
on local hi-fi models

3. Check improvement in hi-fi
responses (globalization) and
update iterates

e Enddo

Variable-fidelity (AMMO) algorithms

Do until convergence

1. Select a model from a suite
of available lo-fi models and
compute corrections based
on hi-fi and lo-fi models so
that 1st order consistency
holds

2. Compute a trial step by
solving a subproblem based
on corrected lo-fi models,
using standard techniques

3. Check improvement in hi-fi
responses (globalization) and
update iterates

End do

AMMO: Convergence vs. Efficiency

« Convergence relies on enforcing local similarity of trends: if
fy is a high-fidelity model and f, 5 is a low-fidelity model, f, 5
Is required to be consistent to 15t order at each major
iteration:

fLo (X) = fr(X) and Vi g (Xy) = Vi(Xy)
Easily enforced for arbitrary pairs of functions via
multiplicative or additive corrections, (e.g., Haftka, 1991)

 Practical efficiency is problem/model dependent on
— Global predictive properties of low-fidelity model
— Expense of low-fidelity model

Efficiency depends on relative expense of low-fidelity model

Example: 2D (multi-element airfoil) aerodynamic optimization problem;
time/hi-fi analysis / time/lo-fi analysis = 120

hi-fi lo-fi total CPU time factor
eval eval
Optimization 14/13 ~ 12 hrs
(PORT),
2 variables
AMMO, 3/3 19/9 ~ 2.41 hrs ~5
2 variables
Optimization 19/19 ~ 35 hrs
(PORT),
84 variables
AMMO, 4/4 23/8 ~ 7.2 hrs ~5
84 variables

(functions/gradients)

Efficiency depends on relative expense of low-fidelity model

Example: 3D (wing) aerodynamic optimization problem;

time/hi-fi analysis / time/lo-fi analysis = 6

hi-fi lo-fi total CPU time factor
eval eval

Optimization 13/11 ~ 175 hrs

(PORT),

54 variables

AMMO 3/3 22/15 ~ 86 hrs ~ 2

Efficient low-fidelity modeling aspects under investigation

(functions/gradients)

- “Optimal” models

- “Optimal” termination of subproblems

Another approach: attempt to parallelize AMMO

Parallelization of AMMO

« Which basic algorithm to choose?
* In general, cannot exploit (partial) separability

 Investigate Parallel Variable Distribution (Ferris and
Mangasarian, continued by Solodov)

— Applicable to problems with convex constraints
 Distribute low-fidelity computations
« (Cases for comparison

— AMMO without PVD

— AMMO with PVD in low-fidelity subproblem

— PVD with single-fidelity (future)

Algorithm

« Current problem: minimize f(x,u(x)), s.t. x € B

 Notation: for x € R", partitions are x, € R", | =1, ..., p and nl
sum up ton
« LetI* be acomplementoflin{1, ..., p}, u+ € RP-

« Let dk € R" be an arbitrary direction, partitioned into n
subsets and

(p-1

k
d I+1

\ d<,
« Dk.and . are used to form the “forget-me-not” term in
subproblems

AMMO with PVD at the low-fidelity subproblem level

Given f,, X%, and B®>=B™ax (bound constraints)
Do until convergence
1. Choose fk 5 and compute correction s.t. f__ (x*)=f,,(x¥),
kacorr(xk) VfHI(Xk)

2. Solve approximately for sk: min fk +s) s.t.xk+s e Bk

COI'I'(

Do until stopping criterion is satisfied{

Solve in parallel: min % (x, L) = X,y XK + DR)

Xy, Wy

COI"I"(

s.t. (Xl’ X I* + D I* Ml*) € Bk,

resulting in (y¥,, %)

Synchronize: Compute x¥*1 s.t. f(x**1') < min ok, (y*,115)

3. Update the iterate and bounds based on the actual decrease in f
produced by sk vs. the decrease predicted by fk

corr

}

Some comments

Forget-me-not term distinguishes PVD from block-Jacobi and coordinate
descent (secondary variables are fixed there)

Allowing secondary variables to move improves robustness of the
algorithm, as observed in computations by Ferris and Mangasarian

The choice of dk is arbitrary theoretically, but important in practice; one
particular choice (F&M) is scaled -Vf(xk) for unconstrained problems

Following Solodov, we use the projected gradient residual function
dk = r(x¥), where r(x) = x — Pg [x - Vf(x¥)]

Solodov’s convergence theory allows for sufficient decrease instead of
global solutions for the subproblems = consequences for practical
problems and parallelism

Concluding remarks

Fully coupled, expensive, black-box based problems are
difficult to solve by parallel gradient-based optimization

There are many approaches to parallel optimization
— Zero-order methods (e.g., pattern search methods)
— Multi-start derivative-based methods

— In both derivative-based and derivative-free methods, construction of
low-fidelity models from samples of high-fidelity model outputs (e.g.,
response surfaces, reduced order models, etc.)

— Domain decomposition and explicit use of discretized analysis
equations as constraints (SAND)

There are few quantitative guidelines as to what approach
may be beneficial under which circumstances

Initiated a systematic comparison of a range of techniques
Time will show...

