
National Center for
Computational Sciences OAK RIDGE NATIONAL LABORATORY

Experiences with the Cray
X1 at Oak Ridge National

Laboratory
James B. White III (Trey)

trey@ornl.gov
July 14, 2005

National Center for
Computational Sciences

Acknowledgement

Research sponsored by the Mathematical,
Information, and Computational Sciences
Division, Office of Advanced Scientific
Computing Research, U.S. Department of
Energy, under Contract No. DE-
AC05-00OR22725 with UT-Battelle, LLC.

National Center for
Computational Sciences

X1 experiences

• X1(E) at ORNL
• Why X1E
• Using X1E
• Future

National Center for
Computational Sciences

National Center for Computational
Sciences

• Was 512-MSP X1 (2 TB memory)
• Upgrading to 1024-MSP X1E (2 TB

memory)
• Also installed 5294-Opteron XT3

National Center for
Computational Sciences

Why X1(E)?

• Breakthrough computational science
• Computation rate limits science progress
• Most-challenging computational problems

National Center for
Computational Sciences

Most-challenging problems

• Cache unfriendly
• Growing cost per “grid point”
• More time steps
• Limited coarse-grain parallelism
• Tight synchronization
• Fixed startup cost

National Center for
Computational Sciences

• Gyrokinetic microturbulence in fusion plasmas
• Dynamic Cluster Approximation Quantum

Monte Carlo simulation of superconductivity
• Explosion of core-collapse supernovae
• Ab initio calculations of double photo-ionization
• Molecular dynamics
• Coupled Climate System Model (see MS69)

Examples

National Center for
Computational Sciences

Your Example Here!

• DOE Innovative and Novel Computational
Impact on Theory and Experiment (INCITE)

• DOE Leadership Computing Facility (LCF)

National Center for
Computational Sciences

INCITE

• 10% of NCCS X1E and XT3 for FY2006
• “open to all scientific researchers and

research organizations, including industry”
• Call closes tomorrow
• http://hpc.science.doe.gov/

National Center for
Computational Sciences

Leadership Computing Facility

• 80% of NCCS X1E and XT3 for FY2006
• Must be relevant to the mission of the DOE

Office of Science
• Around 10 major projects (think “Grand

Challenge”)
• Call closes August 12
• http://hpc.science.doe.gov/proposalCallFY06.do

National Center for
Computational Sciences

Applications for X1E

• Limited by computation rate
• Runs at low efficiency on general-purpose

processors
• Communication overhead limits scalability

National Center for
Computational Sciences

Applications not for X1E

• Limited by memory size
• Limited by I/O bandwidth (out of core)
• Runs efficiently on general-purpose

processors
• Easily scales to zillions of processors

National Center for
Computational Sciences

Running on X1E
• Build on Intel-Linux cross compiler

- X1E has poor scalar performance

- Building on X1E is 5-10x slower

- X1E supports fewer tools (no E-macs, minimal
Python, etc.)

- “configure” can be tricky either way

• Submit batch jobs and access scratch files
from cross-compiler system

National Center for
Computational Sciences

Running on X1E
• Initial port may* be slow

*will probably be

• Build and generate loopmarks
- Shows vectorization & multistreaming, or why not

• Instrument executable with “pat_build”

• Run and generate line profile
- Shows which lines of which subroutines take the

most time

National Center for
Computational Sciences

Running on X1E

• Use loopmarks to determine why time is
spent where it is

• Vectorize and multistream
- Add directives

- Modify loops locally

- Promote arguments to vectors

- Globally modify data structures

National Center for
Computational Sciences

Running on X1E

• Repeat vector tuning until satisfied or
communication bound

• Mitigate communication bottlenecks with
targeted Co-Array Fortran or UPC

• Debug with TotalView and “print”
• Run regression tests for compiler upgrades!

National Center for
Computational Sciences

Future

• X1 a relic of the past?
• Or road to the future!

National Center for
Computational Sciences

Future

• Gate counts keep increasing
- Floating-point units get cheaper

- More fine-grained parallelism

• Clock-speed increases are stalling (Heat!)
• Bandwidth may be catching up

- Wire signal rates continue to increase

- Optical communication will get cheaper

National Center for
Computational Sciences

Future

• How do we use fine-grained parallelism?
• How do we hide latency?

National Center for
Computational Sciences

Answer

• Vectors
• Globally addressable memory

National Center for
Computational Sciences

Vectors

• Provide fine-grained parallelism
• Hide latency
• Work today
• Natural progression to more gates
• Systematic tuning strategy

National Center for
Computational Sciences

Globally addressable memory

• Minimize latency
• Extend benefits of vector to remote access
• Hide latency (as with local memory)
• Local/remote hierarchy allows scalable

architectures

National Center for
Computational Sciences

Example

 11. !Scatter

 12. call sync_all()

 13. if (this_image() == master) then

 14. MVw----------< do i = 1, num_images()

 15. MVw x[i] = y(i)

 16. MVw----------> end do

 17. end if

National Center for
Computational Sciences

Example

 11. !Gather

 12. call sync_all()

 13. if (this_image() == master) then

 14. MVw----------< do i = 1, num_images()

 15. MVw y(i) = x[i]

 16. MVw----------> end do

 17. end if

National Center for
Computational Sciences

Example

 27. !Gather

 28. call sync_all()

 29. y(this_image())[master] = x

National Center for
Computational Sciences

Programming for the future

• Clearly present fine-grained parallelism
• Allow latency hiding (local and remote)

National Center for
Computational Sciences

Programming for the future

• Operate on adjustable sub-aggregates
- Not scalars (to allow vectorization and piplining)

- Not the whole domain (to allow caching)

• Avoid false dependencies
- Pointers!

- I/O statements inside loops (for debugging)

• Also faster on general-purpose processors!

National Center for
Computational Sciences

Programming for the future
• Use modules* instead of passing arguments

(if you always pass the same object)
- Easier promotion of scalar procedures

- Easier promotion of variables to co-arrays**

- Compilers can “see” the variables better

- Adding “arguments” is a local modification
(not throughout call stack)

*Fortran, the language of the future!
**Co-arrays will be in the Fortran 2008 standard.

National Center for
Computational Sciences

Programming for the future

• Use modules instead of user-defined types
(if there are one/few instances of that type)
- Easy promotion of variables to co-arrays

- Avoids artificial dependencies

- Encourages operations on aggregates

- Simpler for others to understand

- Simpler for compilers to understand

National Center for
Computational Sciences

Summary

• Cray X1(E) is for challenging Grand
Challenges

• Hiding latency and enabling fine-grained
parallelism will be critical for progress

• X1 series is designed accordingly
• Grand Challenge applications must be too

National Center for
Computational Sciences

Try it yourself!

• INCITE
- Closes tomorrow

- http://hpc.science.doe.gov/

• NCCS LCF
- Closes August 12

- http://hpc.science.doe.gov/proposalCallFY06.do

- http://nccs.gov/LCF/review.html

