Experiences.with.the Cray
X1 at Qak RidgeNational
Laboratory

James B. White lll (Trey)
trey@ornl.gov
July 14, 2005

Acknowledgement

Research sponsored by the Mathematical,
Information, and Computational Sciences
Division, Office of Advanced Scientific
Computing Research, U.S. Department of
Energy, under Contract No. DE-
AC05-000R22725 with UT-Battelle, LLC.

(&)

X1 experiences

» X1(E) at ORNL
- Why X1E
» Using X1E

* Future

(&)

Was 512-MSP X1 (2 TB memory)

Upgrading to 1024-MSP X1E (2 TB
memory)

Also installed 5294-Opteron XT3

Why X1(E)?

» Breakthrough computational science
» Computation rate limits science progress
» Most-challenging computational problems

Most-challenging problems

» Cache unfriendly

» Growing cost per “grid point”
More time steps
Limited coarse-grain parallelism
Tight synchronization
Fixed startup cost

(&)

Examples

Gyrokinetic microturbulence in fusion plasmas

Dynamic Cluster Approximation Quantum
Monte Carlo simulation of superconductivity

Explosion of core-collapse supernovae

Ab initio calculations of double photo-ionization
Molecular dynamics

Coupled Climate System Model (see MS69)

(&)

Your Example Here!

* DOE Innovative and Novel Computational
Impact on Theory and Experiment (INCITE)

* DOE Leadership Computing Facility (LCF)

INCITE

10% of NCCS X1E and XT3 for FY2006

“‘open to all scientific researchers and

research organizations, including industry”

Call closes tomorrow

http://hpc.science.doe.gov/

(&)

Leadership Computing Facility

* 80% of NCCS X1E and XT3 for FY2006

* Must be relevant to the mission of the DOE
Office of Science

» Around 10 major projects (think “Grand
Challenge”)

» Call closes August 12
* http://hpc.science.doe.gov/proposalCallFY06.do

(&)

Applications for X1E

 Limited by computation rate

* Runs at low efficiency on general-purpose
Processors

- Communication overhead limits scalability

(&)

Applications not for X1E

* Limited by memory size
 Limited by I/O bandwidth (out of core)

» Runs efficiently on general-purpose
Processors

 Easily scales to zillions of processors

(&)

Running on X1E

» Build on Intel-Linux cross compiler
- X1E has poor scalar performance
- Building on X1E is 5-10x slower

- X1E supports fewer tools (no E-macs, minimal
Python, efc.)

- “configure” can be tricky either way

» Submit batch jobs and access scratch files
from cross-compiler system

(&)

Running on X1E

Initial port may™ be slow
*will probably be

Build and generate loopmarks

- Shows vectorization & multistreaming, or why not

nstrument executable with “pat_bu1ld’

Run and generate line profile

- Shows which lines of which subroutines take the
most time

(&)

Running on X1E

» Use loopmarks to determine why time is
spent where it is

* Vectorize and multistream
Add directives
Modify loops locally
Promote arguments to vectors

Globally modify data structures

Running on X1E

» Repeat vector tuning until satisfied or
communication bound

- Mitigate communication bottlenecks with
targeted Co-Array Fortran or UPC

» Debug with TotalView and “print”
* Run regression tests for compiler upgrades!

(&)

Future

» X1 arelic of the past?
* Or road to the future!

Future

» Gate counts keep increasing
- Floating-point units get cheaper

- More fine-grained parallelism
» Clock-speed increases are stalling (Heat!)
- Bandwidth may be catching up

- Wire signal rates continue to increase

- Optical communication will get cheaper

(&)

Future

How do we use fine-grained parallelism?

low do we hide latency?

Answer

* Vectors
» Globally addressable memory

Vectors

Provide fine-grained parallelism

Hide latency

Work today

Natural progression to more gates
» Systematic tuning strategy

(&)

Globally addressable memory

Minimize latency
Extend benefits of vector to remote access
Hide latency (as with local memory)

Local/remote hierarchy allows scalable
architectures

(&)

Example

IScatter
call sync_all()
1f (this_image() == master) then
do 1 =1, num_images()
x[1] = y(1)
end do

end 1f

Example

IGather
call sync_all()
1f (this_image() == master) then
do 1 =1, num_images()
y(1) = x[1]
end do

end 1f

Example

| Gather
call sync_all(Q)

y(this_image())[master] = x

Programming for the future

early present fine-grained parallelism

low latency hiding (local and remote)

Programming for the future

» Operate on adjustable sub-aggregates

- Not scalars (to allow vectorization and piplining)

- Not the whole domain (to allow caching)

» Avoid false dependencies

- Pointers!

* A

(&)

/O statements inside loops (for debugging)

so faster on general-purpose processors!

Programming for the future

» Use modules™ instead of passing arguments
(if you always pass the same object)

- Easier promotion of scalar procedures
- Easier promotion of variables to co-arrays™*
- Compilers can “see” the variables better

- Adding “arguments” is a local modification
(not throughout call stack)

*Fortran, the language of the future!
**Co-arrays will be in the Fortran 2008 standard.

(&)

Programming for the future

» Use modules instead of user-defined types
(if there are one/few instances of that type)

Easy promotion of variables to co-arrays
Avoids artificial dependencies
Encourages operations on aggregates
Simpler for others to understand

Simpler for compilers to understand

Summary

» Cray X1(E) is for challenging Grand
Challenges

 Hiding latency and enabling fine-grained
parallelism will be critical for progress

» X1 series is designed accordingly

» Grand Challenge applications must be too

(&)

Try it yourself!

* INCITE

- Closes tomorrow

- http://hpc.science.doe.gov/

* NCCS LCF
- Closes August 12

- http://hpc.science.doe.gov/proposalCallFY06.do

- http://nccs.gov/LCF/review.html

(&)

