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X1 experiences

• X1(E) at ORNL
• Why X1E
• Using X1E
• Future
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National Center for Computational 
Sciences

• Was 512-MSP X1 (2 TB memory)
• Upgrading to 1024-MSP X1E (2 TB 

memory)
• Also installed 5294-Opteron XT3
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Why X1(E)?

• Breakthrough computational science
• Computation rate limits science progress
• Most-challenging computational problems 
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Most-challenging problems

• Cache unfriendly
• Growing cost per “grid point”
• More time steps
• Limited coarse-grain parallelism
• Tight synchronization
• Fixed startup cost
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• Gyrokinetic microturbulence in fusion plasmas
• Dynamic Cluster Approximation Quantum 

Monte Carlo simulation of superconductivity
• Explosion of core-collapse supernovae
• Ab initio calculations of double photo-ionization
• Molecular dynamics
• Coupled Climate System Model (see MS69)

Examples
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Your Example Here!

• DOE Innovative and Novel Computational 
Impact on Theory and Experiment (INCITE)

• DOE Leadership Computing Facility (LCF)
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INCITE

• 10% of NCCS X1E and XT3 for FY2006
• “open to all scientific researchers and 

research organizations, including industry”
• Call closes tomorrow
• http://hpc.science.doe.gov/
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Leadership Computing Facility

• 80% of NCCS X1E and XT3 for FY2006
• Must be relevant to the mission of the DOE 

Office of Science
• Around 10 major projects (think “Grand 

Challenge”)
• Call closes August 12
• http://hpc.science.doe.gov/proposalCallFY06.do
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Applications for X1E

• Limited by computation rate
• Runs at low efficiency on general-purpose 

processors
• Communication overhead limits scalability
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Applications not for X1E

• Limited by memory size
• Limited by I/O bandwidth (out of core)
• Runs efficiently on general-purpose 

processors
• Easily scales to zillions of processors
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Running on X1E
• Build on Intel-Linux cross compiler

- X1E has poor scalar performance

- Building on X1E is 5-10x slower

- X1E supports fewer tools (no E-macs, minimal 
Python, etc.)

- “configure” can be tricky either way

• Submit batch jobs and access scratch files 
from cross-compiler system
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Running on X1E
• Initial port may* be slow

*will probably be

• Build and generate loopmarks
- Shows vectorization & multistreaming, or why not

• Instrument executable with “pat_build”

• Run and generate line profile
- Shows which lines of which subroutines take the 

most time
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Running on X1E

• Use loopmarks to determine why time is 
spent where it is

• Vectorize and multistream
- Add directives

- Modify loops locally

- Promote arguments to vectors

- Globally modify data structures
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Running on X1E

• Repeat vector tuning until satisfied or 
communication bound

• Mitigate communication bottlenecks with 
targeted Co-Array Fortran or UPC

• Debug with TotalView and “print”
• Run regression tests for compiler upgrades!
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Future

• X1 a relic of the past?
• Or road to the future!
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Future

• Gate counts keep increasing
- Floating-point units get cheaper

- More fine-grained parallelism

• Clock-speed increases are stalling (Heat!)
• Bandwidth may be catching up

- Wire signal rates continue to increase

- Optical communication will get cheaper
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Future

• How do we use fine-grained parallelism?
• How do we hide latency?



National Center for
Computational Sciences

Answer

• Vectors
• Globally addressable memory
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Vectors

• Provide fine-grained parallelism
• Hide latency
• Work today
• Natural progression to more gates
• Systematic tuning strategy
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Globally addressable memory

• Minimize latency
• Extend benefits of vector to remote access
• Hide latency (as with local memory)
• Local/remote hierarchy allows scalable 

architectures
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Example

   11.                   !Scatter

   12.                   call sync_all()

   13.                   if (this_image() == master) then

   14.  MVw----------<      do i = 1, num_images()

   15.  MVw                    x[i] = y(i)

   16.  MVw---------->      end do

   17.                   end if
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Example

   11.                   !Gather

   12.                   call sync_all()

   13.                   if (this_image() == master) then

   14.  MVw----------<      do i = 1, num_images()

   15.  MVw                    y(i) = x[i]

   16.  MVw---------->      end do

   17.                   end if
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Example

   27.                   !Gather

   28.                   call sync_all()

   29.                   y(this_image())[master] = x
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Programming for the future

• Clearly present fine-grained parallelism
• Allow latency hiding (local and remote)
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Programming for the future

• Operate on adjustable sub-aggregates
- Not scalars (to allow vectorization and piplining)

- Not the whole domain (to allow caching)

• Avoid false dependencies
- Pointers!

- I/O statements inside loops (for debugging)

• Also faster on general-purpose processors!
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Programming for the future
• Use modules* instead of passing arguments 

(if you always pass the same object)
- Easier promotion of scalar procedures

- Easier promotion of variables to co-arrays**

- Compilers can “see” the variables better

- Adding “arguments” is a local modification
(not throughout call stack)

*Fortran, the language of the future!  
**Co-arrays will be in the Fortran 2008 standard.
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Programming for the future

• Use modules instead of user-defined types
(if there are one/few instances of that type)
- Easy promotion of variables to co-arrays

- Avoids artificial dependencies

- Encourages operations on aggregates

- Simpler for others to understand

- Simpler for compilers to understand
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Summary

• Cray X1(E) is for challenging Grand 
Challenges

• Hiding latency and enabling fine-grained 
parallelism will be critical for progress

• X1 series is designed accordingly
• Grand Challenge applications must be too
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Try it yourself!

• INCITE
- Closes tomorrow

- http://hpc.science.doe.gov/

• NCCS LCF
- Closes August 12

- http://hpc.science.doe.gov/proposalCallFY06.do

- http://nccs.gov/LCF/review.html


