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Current and Emerging IBM Systems

Machine No. Procs CPU Peak (TF/s) Procs/Node

ASCI Blue-SST 5808 PPC 604e 332 MHz 3.9 4

Snow 128 Power3 222 MHz 0.1 8

ASCI White 8192 Power3 375 MHz 12.3 16

HPCx, pSeries 690 1280 Power4 1.3 GHz 6.7 32

Purple 12608 Power5 2.0 GHz 100 64

Blue Planet 16384 Power5 2.4 GHz 160 8

BG/L 131072 PPC 440 700 MHz 360 2

Trends:

Blue Planet: with Virtual Vector Architecture

BG/L: System-on-a-Chip

Memory bandwidth and Network latency?
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Hybrid programming

Hybrid programs use multithreading within a node and
message passing between nodes

Seems natural for attaining high performance on SMP clusters
(e.g., no MPI within a node)

However, many hybrid codes do not achieve the performance
of equivalent message passing codes

Motivation: to try to understand hybrid program performance

We investigate the combination of MPI and OpenMP. Many
other alternatives are available.
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Assumptions

Domain decomposition

OpenMP used to thread the outer loops

The Hybrid and Pure-MPI programs do exactly the same work
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When to definitely use a Hybrid model

Shared memory parallel algorithm (not domain
decomposition) is more efficient than MPI parallel algorithm

Algorithm is more efficient using larger subdomains

Different lines of execution in the code are naturally executed
by threads (e.g., master and slave)

Load balancing is needed within a node
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Timings for SPMV on four 16-way SMP nodes

40x40x3 per node
Tasks/Threads Time

per node (ms)
1/16 0.33
4/4 0.33
16/1 0.29

120x120x3 per node
Tasks/Threads Time

per node (ms)
1/16 2.28
4/4 1.93
16/1 1.53
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Timings for SPMV on four 16-way SMP nodes

40x40x3 per node
Tasks/Threads Comm. Comp. Total

per node (ms) (ms) (ms)
1/16 0.10 0.17 0.33
2/8 0.13 0.15 0.30
4/4 0.19 0.13 0.33
8/2 0.19 0.10 0.29
16/1 0.22 0.08 0.29

120x120x3 per node
Tasks/Threads Comm. Comp. Total

per node (ms) (ms) (ms)
1/16 0.29 1.96 2.28
2/8 0.28 1.84 2.14
4/4 0.31 1.62 1.93
8/2 0.26 1.40 1.65
16/1 0.35 1.26 1.53
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Factors affecting hybrid program performance

1. Thread synchronization, loop scheduling, and other overheads

2. Critical sections that cannot be multithreaded

3. Data partitionings based on SMP nodes rather than threads,
leading to poor cache utilization compared to pure message
passing programs

4. Differences in communication performance when fewer
message passing processes share a network interface

5. Differences in scalability since fewer processes are involved in
message passing communication

Factors 1, 3, and 4 affect the results in the previous tables.
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Communication parameters for 16-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 26.3 202.2 202.2

2 29.2 186.6 373.2

4 33.3 145.3 581.2

8 58.4 82.5 660.0

16 106.2 41.4 662.4
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Communication parameters for 16-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 26.3 202.2 202.2

2 29.2 186.6 373.2

4 33.3 145.3 581.2

8 58.4 82.5 660.0

16 106.2 41.4 662.4

on-node 1 26.4 174.3 174.3

2 32.8 149.4 298.8

4 55.4 83.3 333.2

8 106.8 42.3 338.4

on-node 1 19.5 306.6 306.6

(sh.mem) 2 20.8 269.9 539.8

4 22.1 228.5 914.0

8 22.1 139.0 1112.0
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Communication parameters for 8-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 52.8 130.5 130.5

2 51.6 123.8 247.6

4 46.5 84.4 337.6

8 63.0 43.1 344.8

on-node 1 46.2 128.9 257.8

2 44.3 88.3 353.2

4 61.3 43.8 350.4

on-node 1 27.5 175.4 350.8

(sh.mem) 2 28.7 174.3 697.2

4 30.3 168.8 1350.4
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Communication parameters for 4-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 43.5 42.9 42.9

2 71.5 38.2 76.4

3 98.1 27.6 82.8

4 125.2 20.8 83.2

on-node 1 76.1 36.8 73.6

2 136.0 20.7 82.8

on-node 1 28.2 54.8 109.6

(sh.mem) 2 30.3 59.8 239.2
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Megabytes sent per second per processor
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Communication time
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Model program

SPMV kernel using matrix from a 3-D structured grid

3-D array is split up into subdomains for each node or
processor

communication between processors with neighboring
subdomains (ghost layer exchange); at most 26 neighbors

parameterizing the global and local problem sizes leads to
realistic changes in the communication-computation ratio

t = tcomm
+ tcomp, OpenMP applied to computation section

results generally shown for IBM SP with silver nodes
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Communication timings for SPMV on two nodes
(8 processors)

Prob. Communication time (s)

Size MPI MPI-sh.mem Hybrid

500 0.041 0.033 0.010

4000 0.075 0.057 0.038

13500 0.081 0.068 0.067

32000 0.140 0.115 0.086

62500 0.202 0.126 0.125

108000 0.210 0.172 0.150

171500 0.315 0.253 0.195

256000 0.406 0.326 0.213

Hybrid mode is advantageous here

Off-node comm. masks shared memory on-node comm.
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Large number of nodes – small local problem size

Prob. Number Total time (s) Comm. time (s)

Size of Nodes MPI Hybrid MPI Hybrid

500 1 0.029 0.015 0.021 0.000

8 0.071 0.042 0.063 0.027

27 0.119 0.101 0.111 0.086

64 0.141 0.126 0.133 0.111

125 0.297 0.148 0.289 0.133

216 0.416 0.182 0.408 0.167

Again, Hybrid performance better for short messages.

Any gains with large numbers of nodes is masked by other
effects.

Reserve a processor for daemon processes; limited by memory
bandwidth anyway.
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Large number of nodes – large local problem size

Prob. Number Total time (s) Comm. time (s)

Size of Nodes MPI Hybrid MPI Hybrid

256000 1 16.359 16.228 0.280 0.000

8 17.614 17.399 1.535 1.171

27 19.103 19.912 3.024 3.684

64 19.472 21.960 3.393 5.732

125 20.331 22.859 4.252 6.631

216 21.178 24.057 5.099 7.829
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Conclusions

When computation dominates communication, hybrid
performance mostly depends on the size of overheads and
critical sections

Cache behavior of hybrid programs may be worse

Hybrid programs are better for programs with short messages

Possible algorithmic improvements is the best reason to use
hybrid programming, i.e., don’t just think domain
decomposition!
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Additional information

See the paper, “Assessing Performance of Hybrid MPI/OpenMP
Programs on SMP Clusters,” available at

http://www.llnl.gov/casc/people/chow/pubs/hpaper.ps

(submitted to J. Parallel Dist. Comput.) or contact the author at
echow@llnl.gov
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