
How to use Hybrid MPI-OpenMP on IBM SP
Systems

Edmond Chow

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.1/22



ASCI White

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.2/22



Current and Emerging IBM Systems

Machine No. Procs CPU Peak (TF/s) Procs/Node

ASCI Blue-SST 5808 PPC 604e 332 MHz 3.9 4

Snow 128 Power3 222 MHz 0.1 8

ASCI White 8192 Power3 375 MHz 12.3 16

HPCx, pSeries 690 1280 Power4 1.3 GHz 6.7 32

Purple 12608 Power5 2.0 GHz 100 64

Blue Planet 16384 Power5 2.4 GHz 160 8

BG/L 131072 PPC 440 700 MHz 360 2

Trends:

Blue Planet: with Virtual Vector Architecture

BG/L: System-on-a-Chip

Memory bandwidth and Network latency?

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.3/22



Hybrid programming

Hybrid programs use multithreading within a node and
message passing between nodes

Seems natural for attaining high performance on SMP clusters
(e.g., no MPI within a node)

However, many hybrid codes do not achieve the performance
of equivalent message passing codes

Motivation: to try to understand hybrid program performance

We investigate the combination of MPI and OpenMP. Many
other alternatives are available.

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.4/22



Assumptions

Domain decomposition

OpenMP used to thread the outer loops

The Hybrid and Pure-MPI programs do exactly the same work

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.5/22



When to definitely use a Hybrid model

Shared memory parallel algorithm (not domain
decomposition) is more efficient than MPI parallel algorithm

Algorithm is more efficient using larger subdomains

Different lines of execution in the code are naturally executed
by threads (e.g., master and slave)

Load balancing is needed within a node

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.6/22



Timings for SPMV on four 16-way SMP nodes

40x40x3 per node
Tasks/Threads Time

per node (ms)
1/16 0.33
4/4 0.33
16/1 0.29

120x120x3 per node
Tasks/Threads Time

per node (ms)
1/16 2.28
4/4 1.93
16/1 1.53

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.7/22



Timings for SPMV on four 16-way SMP nodes

40x40x3 per node
Tasks/Threads Comm. Comp. Total

per node (ms) (ms) (ms)
1/16 0.10 0.17 0.33
2/8 0.13 0.15 0.30
4/4 0.19 0.13 0.33
8/2 0.19 0.10 0.29
16/1 0.22 0.08 0.29

120x120x3 per node
Tasks/Threads Comm. Comp. Total

per node (ms) (ms) (ms)
1/16 0.29 1.96 2.28
2/8 0.28 1.84 2.14
4/4 0.31 1.62 1.93
8/2 0.26 1.40 1.65
16/1 0.35 1.26 1.53

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.8/22



Factors affecting hybrid program performance

1. Thread synchronization, loop scheduling, and other overheads

2. Critical sections that cannot be multithreaded

3. Data partitionings based on SMP nodes rather than threads,
leading to poor cache utilization compared to pure message
passing programs

4. Differences in communication performance when fewer
message passing processes share a network interface

5. Differences in scalability since fewer processes are involved in
message passing communication

Factors 1, 3, and 4 affect the results in the previous tables.

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.9/22



Communication parameters for 16-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 26.3 202.2 202.2

2 29.2 186.6 373.2

4 33.3 145.3 581.2

8 58.4 82.5 660.0

16 106.2 41.4 662.4

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.10/22



Communication parameters for 16-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 26.3 202.2 202.2

2 29.2 186.6 373.2

4 33.3 145.3 581.2

8 58.4 82.5 660.0

16 106.2 41.4 662.4

on-node 1 26.4 174.3 174.3

2 32.8 149.4 298.8

4 55.4 83.3 333.2

8 106.8 42.3 338.4

on-node 1 19.5 306.6 306.6

(sh.mem) 2 20.8 269.9 539.8

4 22.1 228.5 914.0

8 22.1 139.0 1112.0

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.11/22



Communication parameters for 8-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 52.8 130.5 130.5

2 51.6 123.8 247.6

4 46.5 84.4 337.6

8 63.0 43.1 344.8

on-node 1 46.2 128.9 257.8

2 44.3 88.3 353.2

4 61.3 43.8 350.4

on-node 1 27.5 175.4 350.8

(sh.mem) 2 28.7 174.3 697.2

4 30.3 168.8 1350.4

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.12/22



Communication parameters for 4-way SMP nodes

Number Overhead Bandwidth (MB/s)

of pairs (µs) Max per proc Aggregate

off-node 1 43.5 42.9 42.9

2 71.5 38.2 76.4

3 98.1 27.6 82.8

4 125.2 20.8 83.2

on-node 1 76.1 36.8 73.6

2 136.0 20.7 82.8

on-node 1 28.2 54.8 109.6

(sh.mem) 2 30.3 59.8 239.2

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.13/22



Megabytes sent per second per processor

10
0

10
1

10
2

10
3

10
4

10
5

10
6

0

10

20

30

40

50

60

Message size (bytes)

B
yt

es
 s

en
t p

er
 s

ec
on

d 
pe

r 
pr

oc
es

so
r 

(×
 1

06 )

Off-node communication using 1 (top) to 4 (bottom) processors per node

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.14/22



Communication time

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

Total number of bytes sent

C
om

m
un

ic
at

io
n 

tim
e 

(µ
 s

)
1 MPI task per node 
4 MPI tasks per node

Communication time with 1 processor per node (solid) and 4 processors per node (dashed)

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.15/22



Model program

SPMV kernel using matrix from a 3-D structured grid

3-D array is split up into subdomains for each node or
processor

communication between processors with neighboring
subdomains (ghost layer exchange); at most 26 neighbors

parameterizing the global and local problem sizes leads to
realistic changes in the communication-computation ratio

t = tcomm
+ tcomp, OpenMP applied to computation section

results generally shown for IBM SP with silver nodes

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.16/22



Communication timings for SPMV on two nodes
(8 processors)

Prob. Communication time (s)

Size MPI MPI-sh.mem Hybrid

500 0.041 0.033 0.010

4000 0.075 0.057 0.038

13500 0.081 0.068 0.067

32000 0.140 0.115 0.086

62500 0.202 0.126 0.125

108000 0.210 0.172 0.150

171500 0.315 0.253 0.195

256000 0.406 0.326 0.213

Hybrid mode is advantageous here

Off-node comm. masks shared memory on-node comm.

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.17/22



Large number of nodes – small local problem size

Prob. Number Total time (s) Comm. time (s)

Size of Nodes MPI Hybrid MPI Hybrid

500 1 0.029 0.015 0.021 0.000

8 0.071 0.042 0.063 0.027

27 0.119 0.101 0.111 0.086

64 0.141 0.126 0.133 0.111

125 0.297 0.148 0.289 0.133

216 0.416 0.182 0.408 0.167

Again, Hybrid performance better for short messages.

Any gains with large numbers of nodes is masked by other
effects.

Reserve a processor for daemon processes; limited by memory
bandwidth anyway.

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.18/22



Large number of nodes – large local problem size

Prob. Number Total time (s) Comm. time (s)

Size of Nodes MPI Hybrid MPI Hybrid

256000 1 16.359 16.228 0.280 0.000

8 17.614 17.399 1.535 1.171

27 19.103 19.912 3.024 3.684

64 19.472 21.960 3.393 5.732

125 20.331 22.859 4.252 6.631

216 21.178 24.057 5.099 7.829

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.19/22



Conclusions

When computation dominates communication, hybrid
performance mostly depends on the size of overheads and
critical sections

Cache behavior of hybrid programs may be worse

Hybrid programs are better for programs with short messages

Possible algorithmic improvements is the best reason to use
hybrid programming, i.e., don’t just think domain
decomposition!

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.20/22



Additional information

See the paper, “Assessing Performance of Hybrid MPI/OpenMP
Programs on SMP Clusters,” available at

http://www.llnl.gov/casc/people/chow/pubs/hpaper.ps

(submitted to J. Parallel Dist. Comput.) or contact the author at
echow@llnl.gov

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.21/22



Acknowledgment

This work was performed under the auspices of the U.S. Department of Energy by University

of California Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

2003 SIAM Conference on Computational Science and Engineering, UCRL-PRES-149604 – p.22/22


	ASCI White
	Current and Emerging IBM Systems
	Hybrid programming
	Assumptions
	When to definitely use a Hybrid model
	Timings for SPMV on four 16-way SMP nodes
	Timings for SPMV on four 16-way SMP nodes
	Factors affecting hybrid program performance
	Communication parameters for 16-way SMP nodes
	Communication parameters for 16-way SMP nodes
	Communication parameters for 8-way SMP nodes
	Communication parameters for 4-way SMP nodes
	Megabytes sent per second per processor
	Communication time
	Model program
	Communication timings for SPMV on two nodes 
ewline (8 processors)
	Large number of nodes -- small local problem size
	Large number of nodes -- large local problem size
	Conclusions
	Additional information
	Acknowledgment

