
Optimizing Sparse Matrix-Vector 
Operations on Scalar and Vector 

Processors

Dinesh Kaushik
William Gropp

Argonne National Laboratory



SIAM PP04

Organization of the Presentation

• Factors limiting performance
• Performance analysis of sparse matrix-vector 

multiplication on Scalar Processors
• Similar analysis for Cray X1
• Conclusions and Future Work 
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Performance Modeling and Prediction 

• Important to know what is “achievable” performance
Peak performance – very loose upper bound
Benchmarks based on Dense Linear Algebra – does not 
represent PDE workload

• What to expect from a new architecture
If memory bandwidth gets doubled, which 
computational phase benefits the most?
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Three Fundamental Limiting Factors to 
Peak Performance

• Memory Bandwidth
Processor does not get data at the rate it requires

• Instruction Issue Rate
If the loops are load/store bound, we will not be able to 
do a floating point operation in every cycle even if the 
operands are available in primary cache
Several constraints (like primary cache latency, latency 
of floating point units etc.) are to be observed while 
coming up with an optimal schedule

• Fraction of Floating Point Operations
Not every instruction is a floating point instruction
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Analyzing A Simple Kernel:
Sparse Matrix Vector Product

• Sparse matrix vector product is important part of many 
iterative solvers

• Its performance modeling is straightforward
• We present simple analysis to predict better 

performance bounds (based on the three architectural 
limits) than the “marketing” peak of a processor 
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Performance Issues for Sparse Matrix Vector Product

• Little data reuse
• High ratio of load/store to instructions/floating-point 

ops
• Stalling of multiple load/store functional units on the 

same cache line
• Low available memory bandwidth
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Sparse Matrix Vector Algorithm: A General 
Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1)  {    // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}
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Estimating the Memory Bandwidth 
Limitation

Assumptions

• Perfect Cache (only  compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
// ia, N input (size n) and output (size m) vectors

+ Nnz* (sizeof(int) + sizeof(double)) 
// ja, and a arrays 

=  4*(m+nnz)  +  8*(N*(m+n)+ Nnz)
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• Number of Floating-Point Multiply Add  (fmadd) Ops = N*nz
• For square matrices,

(Since Nnz >> n, Bytes transferred / fmadd  ~12/N)

• Similarly, for Block AIJ (BAIJ) format 

Estimating the Memory Bandwidth 
Limitation (Contd.)
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Performance Summary on 2.4 GHz P4 
Xeon

• Matrix size, n = 90,708; number of nonzero entries, Nnz = 
5,047,120 (from computational aerodynamics, b=4)

• Stream performance is 1973 MB/sec (for triad vector 
operation) http://www.cs.virginia.edu/stream

• Number of Vectors, N = 1, and 4

 
Bandwidth (GB/s) MFlops Format Number of 

Vectors 
Bytes / 

flop Required Achieved Ideal Achieved
AIJ 1 6.18 14.83 1.97  319 274 
AIJ 4 1.66   3.98 1.97 1188 610 

 
 

http://www.cs.virginia.edu/stream
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Estimating the Operation Issue Limitation
AT:address transln; Br: branch; Iop: integer op; Fop: floating point op; Of: offset 

calculation; Ld: load; St: store

for (i = 0, i < m; i++) {
jrow = ia(i+1) // 1Of, AT, Ld
ncol =  ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN //  N Ld
for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow)) 
// 1 Of, N+2 AT, and  Ld

do N fmadd (floating multiply add) // 2N Flop
} // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

} // 1 Iop, 1 Br
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Estimating the Operation Issue Limitation 
(Contd.)

• Assumptions:
Data items are in cache
Each operation takes only one cycle to complete but multiple 
operation can graduate in one cycle

• If only one load or store can be issued in one cycle, the best we can 
hope for is 

• Other restrictions (like primary cache latency, latency of floating point 
units etc.) need to be taken into account while creating the best 
schedule (especially on those processors where software pipelining is 
important) 

MFlops/sPeak *
Stores and Loads ofNumber 

nsinstructiopoint  floating ofNumber 
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Estimating the Fraction of Floating Point 
Operations

• Assumptions: 
infinite number of functional units
data items are in primary cache

• Estimated number of floating point operations out of the total 
instructions:

• For N=1, If = 0.18 and N = 4, If = 0.34.
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Cray X1 Architecture

• Basic building block is multistreaming processor 
(MSP) having four single streaming processors (SSPs)

• Each SSP runs at 400 MHz for scalar units and 800 
MHz for vector unis

• Each MSP can do 16 vector adds and 16 vector 
mutliply in one cycle, peaking at 12.8 Gflops/s for 800 
MHz vector units
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Cray X1 Memory Hierarchy

• Four SSPs on a MSP share a 2 MB cache
• Four MSPs share 16GB of memory forming a Cray X1 

node
• Ideal load bandwidth from memory to cache for an 

MSP is 8 double words per clock cycle (~25.6 GB/s 
for 400 MHz clock)

• The ideal load bandwidth (BWe) from cache to 
processor is 16 double words per cycle (~51.2 GB/s)
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CSR format on Cray X1

• CSR format can only vectorize on per-row basis
• Gives poor performance since the number of non-

zeroes in each row is small
• We get only about 50 Mflop/s with one vector and 130 

Mflops/s with four vectors for the PETSc-FUN3D 
matrix described earlier
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Other Formats for Vector Processors

• Sparse diagonal – useful for PDEs
• Ellpack/Itpack (ELL)

forces all rows to have the same length as the longest 
row by padding zeros
Vectorization is done on columns of the modified matrix

• Jagged Diagonal (JAD)
Permute the matrix in the order of decreasing length
First jagged diagonal is constructed by extracting the 
first element from each row, second by extracting the 
second element, and so on
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Analyzing the Diagonal Format

• Effective bandwidth:
BWeff (H) = min[BWc, BWm/(1-H)],

where H is cache hit rate
• Achieved memory bandwidth is about 70% of BWm

• y[j+col] += a[j]*x[j+col]
• Assume that the input and output vectors are in cache; therefore, 

we need to bring only the diagonal and column index arrays from 
main memory

• In this ideal situation, we bring 12 bytes for every 2 flops from 
main memory; bytes/flops = 6, leading to only 23 % of machine 
peak.
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Sparse Matrix vector Product on Cray X1
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Conclusions and Future Work
• Using multivectors can improve the performance of sparse 

matrix-vector product significantly
• Simple models predict the performance of sparse matrix-vector 

operations on a variety of platforms, including the effects of 
memory bandwidth, and instruction issue rates

achievable performance is a small fraction of stated peak for sparse 
matrix-vector kernels, independent of code quality

• Even though memory bandwidth is huge on Cray X1 (as 
compared to most scalar machines), sparse matvec is still 
memory bandwidth limited; only 23 % of machine peak is 
possible under ideal situations.

• In future, we plan to study Jagged diagonal and Segmented scan 
formats 
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