
Optimizing Sparse Matrix-Vector
Operations on Scalar and Vector

Processors

Dinesh Kaushik
William Gropp

Argonne National Laboratory

SIAM PP04

Organization of the Presentation

• Factors limiting performance
• Performance analysis of sparse matrix-vector

multiplication on Scalar Processors
• Similar analysis for Cray X1
• Conclusions and Future Work

SIAM PP04

Performance Modeling and Prediction

• Important to know what is “achievable” performance
Peak performance – very loose upper bound
Benchmarks based on Dense Linear Algebra – does not
represent PDE workload

• What to expect from a new architecture
If memory bandwidth gets doubled, which
computational phase benefits the most?

SIAM PP04

Three Fundamental Limiting Factors to
Peak Performance

• Memory Bandwidth
Processor does not get data at the rate it requires

• Instruction Issue Rate
If the loops are load/store bound, we will not be able to
do a floating point operation in every cycle even if the
operands are available in primary cache
Several constraints (like primary cache latency, latency
of floating point units etc.) are to be observed while
coming up with an optimal schedule

• Fraction of Floating Point Operations
Not every instruction is a floating point instruction

SIAM PP04

Analyzing A Simple Kernel:
Sparse Matrix Vector Product

• Sparse matrix vector product is important part of many
iterative solvers

• Its performance modeling is straightforward
• We present simple analysis to predict better

performance bounds (based on the three architectural
limits) than the “marketing” peak of a processor

SIAM PP04

Performance Issues for Sparse Matrix Vector Product

• Little data reuse
• High ratio of load/store to instructions/floating-point

ops
• Stalling of multiple load/store functional units on the

same cache line
• Low available memory bandwidth

SIAM PP04

Sparse Matrix Vector Algorithm: A General
Form

for every row, i {
fetch ia(i+1)
for j = ia(i) to ia(i + 1) { // loop over the non-zeros of the row

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

}
Store y1(i) ..…yN(i)

}

SIAM PP04

Estimating the Memory Bandwidth
Limitation

Assumptions

• Perfect Cache (only compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
// ia, N input (size n) and output (size m) vectors

+ Nnz* (sizeof(int) + sizeof(double))
// ja, and a arrays

= 4*(m+nnz) + 8*(N*(m+n)+ Nnz)

SIAM PP04

• Number of Floating-Point Multiply Add (fmadd) Ops = N*nz
• For square matrices,

(Since Nnz >> n, Bytes transferred / fmadd ~12/N)

• Similarly, for Block AIJ (BAIJ) format

Estimating the Memory Bandwidth
Limitation (Contd.)

N

N
n)*

N
 (

nz

12416 ed/fmadd transferrBytes ++=

)8
*
4(*

*
416 ed/fmadd transferrBytes

NbN

N
n)

bN
(

nz
+++=

SIAM PP04

Performance Summary on 2.4 GHz P4
Xeon

• Matrix size, n = 90,708; number of nonzero entries, Nnz =
5,047,120 (from computational aerodynamics, b=4)

• Stream performance is 1973 MB/sec (for triad vector
operation) http://www.cs.virginia.edu/stream

• Number of Vectors, N = 1, and 4

Bandwidth (GB/s) MFlops Format Number of

Vectors
Bytes /

flop Required Achieved Ideal Achieved
AIJ 1 6.18 14.83 1.97 319 274
AIJ 4 1.66 3.98 1.97 1188 610

http://www.cs.virginia.edu/stream

SIAM PP04

Estimating the Operation Issue Limitation
AT:address transln; Br: branch; Iop: integer op; Fop: floating point op; Of: offset

calculation; Ld: load; St: store

for (i = 0, i < m; i++) {
jrow = ia(i+1) // 1Of, AT, Ld
ncol = ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN // N Ld
for (j = 0; j < ncol; j++) { // 1 Ld

fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow))
// 1 Of, N+2 AT, and Ld

do N fmadd (floating multiply add) // 2N Flop
} // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

} // 1 Iop, 1 Br

SIAM PP04

Estimating the Operation Issue Limitation
(Contd.)

• Assumptions:
Data items are in cache
Each operation takes only one cycle to complete but multiple
operation can graduate in one cycle

• If only one load or store can be issued in one cycle, the best we can
hope for is

• Other restrictions (like primary cache latency, latency of floating point
units etc.) need to be taken into account while creating the best
schedule (especially on those processors where software pipelining is
important)

MFlops/sPeak *
Stores and Loads ofNumber

nsinstructiopoint floating ofNumber

SIAM PP04

Estimating the Fraction of Floating Point
Operations

• Assumptions:
infinite number of functional units
data items are in primary cache

• Estimated number of floating point operations out of the total
instructions:

• For N=1, If = 0.18 and N = 4, If = 0.34.

9)N*(4*N8)N*(3*m
N*N*2)(I point work floatingon spent Fraction

9)N*(4*N8)N*(3*m)(Icompletednsinstructio ofnumber Total

nz

nz
f

nzt

+++
=

+++=

SIAM PP04

Realistic Measures of Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

0

1000

2000

3000

4000

5000

6000

Power 4 (1.3 GHz) Pentium 4 Xeon (2.4 GHz)

Theoretical Peak Oper. Issue Peak
Mem BW Peak Observed

SIAM PP04

Cray X1 Architecture

• Basic building block is multistreaming processor
(MSP) having four single streaming processors (SSPs)

• Each SSP runs at 400 MHz for scalar units and 800
MHz for vector unis

• Each MSP can do 16 vector adds and 16 vector
mutliply in one cycle, peaking at 12.8 Gflops/s for 800
MHz vector units

SIAM PP04

Cray X1 Memory Hierarchy

• Four SSPs on a MSP share a 2 MB cache
• Four MSPs share 16GB of memory forming a Cray X1

node
• Ideal load bandwidth from memory to cache for an

MSP is 8 double words per clock cycle (~25.6 GB/s
for 400 MHz clock)

• The ideal load bandwidth (BWe) from cache to
processor is 16 double words per cycle (~51.2 GB/s)

SIAM PP04

CSR format on Cray X1

• CSR format can only vectorize on per-row basis
• Gives poor performance since the number of non-

zeroes in each row is small
• We get only about 50 Mflop/s with one vector and 130

Mflops/s with four vectors for the PETSc-FUN3D
matrix described earlier

SIAM PP04

Other Formats for Vector Processors

• Sparse diagonal – useful for PDEs
• Ellpack/Itpack (ELL)

forces all rows to have the same length as the longest
row by padding zeros
Vectorization is done on columns of the modified matrix

• Jagged Diagonal (JAD)
Permute the matrix in the order of decreasing length
First jagged diagonal is constructed by extracting the
first element from each row, second by extracting the
second element, and so on

SIAM PP04

Analyzing the Diagonal Format

• Effective bandwidth:
BWeff (H) = min[BWc, BWm/(1-H)],

where H is cache hit rate
• Achieved memory bandwidth is about 70% of BWm

• y[j+col] += a[j]*x[j+col]
• Assume that the input and output vectors are in cache; therefore,

we need to bring only the diagonal and column index arrays from
main memory

• In this ideal situation, we bring 12 bytes for every 2 flops from
main memory; bytes/flops = 6, leading to only 23 % of machine
peak.

SIAM PP04

Sparse Matrix vector Product on Cray X1
One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120

12.8

2.9
1.49

0

2

4

6

8

10

12

14

Theoretical Peak Memory BW Peak
Observed

SIAM PP04

Conclusions and Future Work
• Using multivectors can improve the performance of sparse

matrix-vector product significantly
• Simple models predict the performance of sparse matrix-vector

operations on a variety of platforms, including the effects of
memory bandwidth, and instruction issue rates

achievable performance is a small fraction of stated peak for sparse
matrix-vector kernels, independent of code quality

• Even though memory bandwidth is huge on Cray X1 (as
compared to most scalar machines), sparse matvec is still
memory bandwidth limited; only 23 % of machine peak is
possible under ideal situations.

• In future, we plan to study Jagged diagonal and Segmented scan
formats

SIAM PP04

Acknowledgements

• James Schwarzmeier of Cray Research Inc., Satish
Balay and Barry Smith of Argonne, and David Keyes
of Columbia University for many interesting
discussions

• Oak Ridge National Laboratory for computer time on
IBM power 4 and Cray X1

• Argonne National Laboratory for computer time on
Jazz cluster

	Optimizing Sparse Matrix-Vector Operations on Scalar and Vector Processors��
	Organization of the Presentation
	Performance Modeling and Prediction
	Three Fundamental Limiting Factors to Peak Performance
	Analyzing A Simple Kernel:�Sparse Matrix Vector Product
	Performance Issues for Sparse Matrix Vector Product
	Sparse Matrix Vector Algorithm: A General Form
	Estimating the Memory Bandwidth Limitation
	Estimating the Memory Bandwidth Limitation (Contd.)
	Performance Summary on 2.4 GHz P4 Xeon
	Estimating the Operation Issue Limitation�AT:address transln; Br: branch; Iop: integer op; Fop: floating point op; Of: offset
	Estimating the Operation Issue Limitation (Contd.)
	Estimating the Fraction of Floating Point Operations
	Realistic Measures of Peak Performance�Sparse Matrix Vector Product�One vector, matrix size, m = 90,708, nonzero entries nz =
	Cray X1 Architecture
	Cray X1 Memory Hierarchy
	CSR format on Cray X1
	Other Formats for Vector Processors
	Analyzing the Diagonal Format
	Sparse Matrix vector Product on Cray X1�One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120�
	Conclusions and Future Work
	Acknowledgements

