A Scalable Robust Solver for the

 Diffusion Limited Radiation Transport Equations
Dinesh Kaushik

Argonne National Laboratory

David Keyes

Columbia University

William Gropp

Barry Smith

Argonne National Laboratory

Radiation Diffusion Equations

- Govern the evolution of photon radiation in an optically thick medium
- Derived by integrating over all energy frequencies, assuming
- Isotropy (angle dependence averaged out)
- Small mean-free photon paths
- Very important in the simulation of
- forest fires
- inertial confinement fusion (http://fusion.gat.com/icf)
- Astrophysical phenomenon
- Suitable for analyzing the effectiveness of a nonlinear solution algorithm
- We use them to simulate the radiation penetration from hot source to cold medium

Organization of the Presentation

- Introduction
- Discretization of 2T Radiation Diffusion Equations
- Solution Algorithm
- Performance Issues
- Conclusions and Future Work

Two Equation Model

- Based on Mousseau, Knoll, and Rider (LA-UR-99-4230)
- Photon Energy Equation

$$
\frac{\partial E}{\partial t}-\nabla \cdot\left(D_{E} \nabla E\right)=\sigma_{a}\left(T^{4}-E\right)
$$

- Material Energy Equation

$$
\frac{\partial T}{\partial t}-\nabla \cdot\left(D_{T} \nabla T\right)=-\sigma_{a}\left(T^{4}-E\right)
$$

- where

$$
\sigma_{a}=\frac{z^{3}}{T^{3}}, D_{E}(T, E)=\frac{1}{3 \sigma_{a}+\frac{1}{E}|\nabla E|}, D_{T}(T)=\kappa T^{\frac{5}{2}}
$$

- Atomic number (z) depends on the location
- Solve the nonlinear equation, $\mathrm{R}=0$ at every time step

Space Discretization

- Linear P1 elements on triangles (2D) and tetrahedrons (3D) giving second order spatial accuracy
- Various ways to evaluate the diffusion coefficients
- We express them in terms of basis functions

$$
D_{e}=\sum_{j}^{n_{e}} D_{j} \phi_{j} \quad \frac{1}{V_{e}} \int_{\Omega_{e}} D_{e} d V_{e}=\frac{1}{n_{e}} \sum_{j}^{n_{e}} D_{j}
$$

- Preserves the second order accuracy
- Care is needed not to overestimate the diffusion coefficients

Time Discretization- BE

- Backward Euler
with

$$
R_{E}^{n+1}=[M]\left\{\frac{E^{n+1}-E^{n}}{\Delta t^{n}}\right\}-\left\{\nabla \cdot\left(D_{r} \nabla E\right)-\sigma_{a}\left(T^{4}-E\right)\right\}^{n+1}
$$

$$
\max \left(\frac{\left|E^{n+1}-E^{n}\right|}{\left|E^{n+1}\right|}\right) \leq \varepsilon
$$

- May permit large time step size and nonlinear solver will not converge - cut time step size drastically when this happens
- For robustness, have minimum specified value of time step size

Time Discretization - CVODE

- General purpose ODE solver for stiff and nonstiff ODEs
- Uses variable order multi-step backward differentiation (BDF) methods
- Time step sizes are based on the error estimates

$$
\left\|E_{n}\right\|_{r m s, w}=\left[\sum_{i=1}^{N} \frac{1}{N}\left(\omega_{i} E_{n, i}\right)^{2}\right]^{1 / 2}
$$

with

$$
\omega_{i}=\frac{1}{r t o l\left|y_{i}\right|+a t o l_{i}}
$$

- We have used PETSc interface to CVODE

Time-Implicit Newton-Krylov-Schwarz

For nonlinear robustness, NKS iteration is wrapped in time-stepping:

```
for (l = 0; l < n_time; l++) {
    select time step
    for (k = 0; k < n_Newton; k++) {
        compute nonlinear residual and Jacobian
        for (j = 0; j < n_Krylov; j++) {
            forall (i = 0; i < n_Precon ; i++) {
            solve subdomain problems concurrently
        } // End of loop over subdomains
        perform Jacobian-vector product
        enforce Krylov basis conditions
        update optimal coefficients
            check linear convergence
        } // End of linear solver
        perform DAXPY update
        check nonlinear convergence
    } // End of nonlinear loop
} // End of time-step loop
```


Sample 2D Test Problem

- Square region of inhomogeneous material
- Robin boundary condition (influx) applied at $\mathrm{t}=0$, and $\mathrm{x}=0$ to the initially cold material

Grid for Marshak Wave Problem

SIAM CSE 2005 Feb 13, 2005

Algorithmic Setting

- The time integration is carried out from $\mathrm{t}=0$ to $\mathrm{t}=5$ using backward Euler (BE) or CVODE
- Time step is cut in half if nonlinear convergence is not obtained in 50 iterations for BE
- Newton's Method solves the nonlinear problem at each time step with relative tolerance of 10^{-8}
- Analytical Jacobian
\square matrix-free slower for this case when derived from the same Jacobian matrix
\square we need to evaluate preconditioners based on other approximations to Jacobian matrix
- GMRES (80) solves the linear system
- Usually converges in less than 20 iterations with relative tolerance of 10^{-3}
- Block Jacobi with ILU(1) in each subdomain

Material Temperature Contours at $\mathrm{t}=1.0$ 2D Problem

Material Temperature Contours 2D Problem

Material Temperature Contours for 3D Problem

 Atomic number constant along z -axis 1,264,086 Elements and 237,160 Vertices

SIAM CSE 2005 Feb 13, 2005

Mesh Independence (2D code) Material Temperature Along $\mathrm{y}=0.5$ at $\mathrm{t}=3$

Mesh Independence (2D code) Material Temperature Along $\mathrm{x}=0.5$ at $\mathrm{t}=3$

Time Evolution (2D code) Material Temperature Along y $=0.5$

Time Evolution (2D code) Material Temperature Along $\mathrm{x}=0.5$

Time Integration Efficiency 2D Problem: 14,802 Elements and 7,502 Vertices

Rosenbrock Methods

- s-stage Rosenbrock method for

$$
\begin{aligned}
& \frac{d E}{d t}=f(E) \\
& E^{n+1}=E^{n}+\sum_{i=1}^{s} b_{i} k_{i} \\
& k_{i}=\Delta t^{n} f\left(E^{n}+\sum_{j=1}^{i-1} \alpha_{i j} k_{j}\right)+\Delta t^{n} J \sum_{j=1}^{i} \gamma_{i j} k_{j}
\end{aligned}
$$

- Many studies find that Rosenbrock method can be significantly more efficient than BDF methods
- Sandu, et al, "Benchmarking Stiff ODE Solvers for Atmospheric Chemistry Problems II: Rosenbrock Solvers", Report No. 90/1996, University of Iowa
- Bijl, et al., "Time Integration Schmes for the Unsteady Navier-Stokes Equations", AIAA-2001-2612 (ESDIRK: Explicit first stage, Single diagonal coefficient, Diagonally Implicit Runge Kutta)

Algorithmic Performance

3D Mesh: 1,264,086 Elements and 237,160 Vertices

- Linear iteration count per time step rises slowly from 16 to 256 processors
- Nonlinear iteration count per time stays steady at about 6.3

Parallel Performance on TeraGrid

Dual 1.5 GHz Intel Madison Processors with 6 MB cache

 3D Mesh: 1,264,086 Elements and 237,160 Vertices| Processors | Time in
 minutes | Speedup | Parallel
 Efficiency |
| :---: | :---: | :---: | :---: |
| 16 | 196.9 | 1.00 | 1.00 |
| 32 | 97.1 | 2.01 | 1.00 |
| 64 | 45.6 | 4.32 | 1.08 |
| 128 | 22.3 | 7.74 | 1.26 |
| 256 | 13.3 | 14.8 | 0.93 |

Note that we have used both processor per node for this case

Implications

- Super linear speedup shows that more work needs to be done on optimizing the code for memory hierarchy
- This will help when the per processor problem is relatively large (small number of processors)
- This is supported by the observation that this code achieves only a small fraction of machine peak

Primary PDE Solution Kernels

- Element-based loops
- residual evaluation
- approximate Jacobian evaluation
- Jacobian-vector product (often replaced with matrix-free form, involving residual evaluation)
- Vertex-based loops
- state vector and auxiliary vector updates
- Sparse, narrow-band recurrences
- approximate factorization and back substitution
- Vector inner products and norms
- orthogonalization/conjugation
- convergence progress and stability checks

Three Fundamental Limiting Factors to Peak Performance

- Memory Bandwidth
- Processor does not get data at the rate it requires
- Instruction Issue Rate
- If the loops are load/store bound, we will not be able to do a floating point operation in every cycle even if the operands are available in primary cache
- Several constraints (like primary cache latency, latency of floating point units etc.) are to be observed while coming up with an optimal schedule
- Fraction of Floating Point Operations
- Not every instruction is a floating point instruction

Realistic Measures of Peak Performance

Sparse Matrix Vector Product
One vector, matrix size, $m=90,708$, nonzero entries $n z=5,047,120$

Conclusions and Future Work

- Efficiency and robustness of time integration methods is critical to solve RT problems in reasonable amount of time
- Many recent studies show that Rosenbrock methods are more efficient than BDF for the stiff ODEs they addressed
- We plan to investigate these methods in the context of RT problems in future
- More work is needed on optimizing the per-processor performance of this code
- Most expensive phase is the Jacobian evaluation (~50-60 \% of execution time)
- Only 5% of the execution time is spent on sparse matrix vector products on 128 processors while it is about 20% on 16 processors

Acknowledgements

- Dimitri Mavriplis of University Of Wyoming for many helpful discussions
- DOE ASCI Project
- NSF for computer time on Teragrid
- Argonne National Laboratory for computer time on Jazz cluster

Material Temperature Contours at $\mathrm{t}=1.0$ 2D Problem: 14,802 Elements and 7,502 Vertices

Material Temperature Contours at $\mathrm{t}=3.0$ 2D Problem: 14,802 Elements and 7,502 Vertices

Material Temperature Contours for 2D Problem 14,802 Elements and 7,502 Vertices

