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Radiation Diffusion Equations
• Govern the evolution of photon radiation in an optically thick 

medium
• Derived by integrating over all energy frequencies, assuming

Isotropy (angle dependence averaged out)
Small mean-free photon paths

• Very important in the simulation of 
forest fires
inertial confinement fusion (http://fusion.gat.com/icf)
Astrophysical phenomenon

• Suitable for analyzing the effectiveness of a nonlinear solution
algorithm

We use them to simulate the radiation penetration from hot source 
to cold medium
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Organization of the Presentation

• Introduction
• Discretization of 2T Radiation Diffusion Equations
• Solution Algorithm
• Performance Issues
• Conclusions and Future Work 
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Two Equation Model
• Based on Mousseau, Knoll, and Rider (LA-UR-99-4230)
• Photon Energy Equation

• Material Energy Equation

• where

• Atomic number (z) depends on the location
• Solve the nonlinear equation, R = 0 at every time step
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Space Discretization

• Linear P1 elements on triangles (2D) and tetrahedrons (3D) 
giving second order spatial accuracy

• Various ways to evaluate the diffusion coefficients
We express them in terms of basis functions

Preserves the second order accuracy
Care is needed not to overestimate the diffusion coefficients
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Time Discretization- BE
• Backward Euler

with

• May permit large time step size and nonlinear solver will not converge 
– cut time step size drastically when this happens

• For robustness, have minimum specified value of time step size
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Time Discretization - CVODE

• General purpose ODE solver for stiff and nonstiff ODEs
• Uses variable order multi-step backward differentiation 

(BDF) methods 
• Time step sizes are based on the error estimates

with

• We have used PETSc interface to CVODE 
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Time-Implicit Newton-Krylov-Schwarz
For nonlinear robustness, NKS iteration is wrapped in time-stepping:

for (l = 0; l < n_time; l++) { # n_time ~ 2500
select time step
for (k = 0; k < n_Newton; k++) { # n_Newton ~ 5

compute nonlinear residual and Jacobian
for (j = 0; j < n_Krylov; j++) { # n_Krylov ~ 20

forall (i = 0; i < n_Precon ; i++) {
solve subdomain problems concurrently

} // End of loop over subdomains 
perform Jacobian-vector product
enforce Krylov basis conditions
update optimal coefficients 
check linear convergence

} // End of linear solver
perform DAXPY update 
check nonlinear convergence

} // End of nonlinear loop
} // End of time-step loop



DD-16

Sample 2D Test Problem

• Square region of inhomogeneous material
• Robin boundary condition (influx) applied at t = 0, and 

x=0 to the initially cold material
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Grid for Marshak Wave Problem
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Algorithmic Setting
• The time integration is carried out from t=0 to t=5 using 

backward Euler (BE) or CVODE
Time step is cut in half if nonlinear convergence is not obtained in 
50 iterations for BE

• Newton’s Method solves the nonlinear problem at each time step 
with relative tolerance of 10-8

Analytical Jacobian
matrix-free slower for this case when derived from the same Jacobian matrix
we need to evaluate preconditioners based on other approximations to Jacobian
matrix

• GMRES (80) solves the linear system 
Usually converges in less than 20 iterations with relative tolerance 
of 10-3

• Block Jacobi with ILU(1) in each subdomain
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Material Temperature Contours at t = 1.0 
2D Problem
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Material Temperature Contours 
2D Problem

t = 2 t = 3

t = 4 t = 5
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Material Temperature Contours for 3D Problem 
Atomic number constant along z-axis
1,264,086 Elements and 237,160 Vertices

At t  = 1 At t  = 3
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Mesh Independence (2D code) 
Material Temperature Along y=0.5 at t=3
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Mesh Independence (2D code) 
Material Temperature Along x=0.5 at t=3
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Time Evolution (2D code) 
Material Temperature Along y = 0.5
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Time Evolution (2D code) 
Material Temperature Along x = 0.5
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Time Integration Efficiency
2D Problem: 14,802 Elements and 7,502 Vertices

tim e step num ber
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Rosenbrock Methods
• s-stage Rosenbrock method for 

• Many studies find that Rosenbrock method can be significantly more 
efficient than BDF methods

Sandu, et al, “Benchmarking Stiff ODE Solvers for Atmospheric Chemistry 
Problems II: Rosenbrock Solvers”, Report No. 90/1996, University of Iowa
Bijl, et al., “Time Integration Schmes for the Unsteady Navier-Stokes 
Equations”, AIAA-2001-2612 (ESDIRK: Explicit first stage, Single diagonal 
coefficient, Diagonally Implicit Runge Kutta)
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Algorithmic Performance
3D Mesh: 1,264,086 Elements and 237,160 Vertices

• Linear iteration count 
per time step rises 
slowly from 16 to 256 
processors

• Nonlinear iteration 
count per time stays 
steady at about 6.3
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Parallel Performance on TeraGrid
Dual 1.5 GHz Intel Madison Processors with 6 MB cache

3D Mesh: 1,264,086 Elements and 237,160 Vertices

Processors
Time in
minutes

Speedup Parallel 
Efficiency

1.00 1.00

1.00

1.08

1.26

0.93

2.01

4.32

128 22.3 7.74

256 13.3 14.8

16 196.9

32 97.1

64 45.6

Note that we have used both processor per node for this case
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Implications

• Super linear speedup shows that more work needs to 
be done on optimizing the code for memory hierarchy

This will help when the per processor problem is 
relatively large (small number of processors)

• This is supported by the observation that this code 
achieves only a small fraction of machine peak
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Primary PDE Solution Kernels
• Element-based loops 

residual evaluation
approximate Jacobian evaluation
Jacobian-vector product (often replaced with matrix-free form, 
involving residual evaluation)

• Vertex-based loops
state vector and auxiliary vector updates

• Sparse, narrow-band recurrences
approximate factorization and back substitution

• Vector inner products and norms
orthogonalization/conjugation
convergence progress and stability checks
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Three Fundamental Limiting Factors to 
Peak Performance

• Memory Bandwidth
Processor does not get data at the rate it requires

• Instruction Issue Rate
If the loops are load/store bound, we will not be able to 
do a floating point operation in every cycle even if the 
operands are available in primary cache
Several constraints (like primary cache latency, latency 
of floating point units etc.) are to be observed while 
coming up with an optimal schedule

• Fraction of Floating Point Operations
Not every instruction is a floating point instruction
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

One vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Conclusions and Future Work

• Efficiency and robustness of time integration methods is critical 
to solve RT problems in reasonable amount of time

Many recent studies show that Rosenbrock methods are more 
efficient than BDF for the stiff ODEs they addressed
We plan to investigate these methods in the context of RT problems 
in future

• More work is needed on optimizing the per-processor 
performance of this code

Most expensive phase is the Jacobian evaluation (~50-60 % of 
execution time)
Only 5% of the execution time is spent on sparse matrix vector 
products on 128 processors while it is about 20% on 16 processors
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Material Temperature Contours at t = 1.0 
2D Problem: 14,802 Elements and 7,502 Vertices
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Material Temperature Contours at t = 3.0 
2D Problem: 14,802 Elements and 7,502 Vertices
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Material Temperature Contours for 2D Problem
14,802 Elements and 7,502 Vertices
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