

IBM T.J. Watson Research Center

Potential Show-Stoppers for Transactional Synchronization

Christoph von Praun

- 1) Technical Challenges for TM
- 2) Environment, "Killer Apps"

Technical challenges for TM

- Semantics and simplicity of the programming interface:
 - handling of irreversible operations, compensation actions
 - modularity and nesting
 - conditional synchronization, communication with concurrent transactions
 - interaction of transactional and non-transactional code
 - large transactions, contention management
- Performance and implementation:
 - reduce overheads
 - 'right' combination of software and hardware mechanisms
 - → tremendous progress over the past years

Multicore workloads (1/2)

Web-Services

- The growth field in commercial computing:
 - large investments that can drive technological advances
 - lots of web-service developers from emerging economies
- Programming model:
 - "containerized" application frameworks, e.g., J2EE
 (concurrency not exposed to programmer)
 - "shared nothing architectures", e.g., PHP, Ruby on Rails, ...
- → very high pressure to develop scalable middleware

Web-Services continued ...

- Middleware is tuned for scalable concurrency now.
- Alternative technologies to enable scalable concurrency are becoming common practice:
 - non-blocking algorithms, libraries for concurrency utilities
 - advanced locking schemes
 - speculative lock elision
 - read-copy-update, ...
- The bar for TM is rising: TM has to offer *very significant advantage* over alternative technologies to justify cost of change.
 - better programmability
 - higher performance
- → IT moves fast, timing matters
- → TM currently behind the train

Multicore workloads (2/2)

Scientific applications

- Focused usage context
 - programmers willing to rewrite some code
 - semantic limitations of TM are acceptable
- Users care about performance
- Parallel computing and algorithms are established in the community
 - several factors can limit scalability, TM may solve one of them

Game workloads [Tim Sweeney, POPL'06]

- Focused usage context
 - (S)TM seems right match for parallel game simulation
 - alternatives to transactional synchronization are unattractive
- Users care about simplicity of the programming interface, programmability (rapid development)

Summary

- TM is a great technology
 - technical challenges are not show-stoppers
- Success or failure of TM not only decided on technical merit
- Critical for widespread adoption of novel technology (TM) is economic context (need "killer-application")
- Different domains have different challenges:
 - middleware for web-services: timing
 - scientific applications: performance
 - games: simplicity of the programming interface, programmability

praun@us.ibm.com