
Interprocessor Communication with
Limited Memory

Ali Pinar, Member, IEEE Computer Society, and Bruce Hendrickson, Member, IEEE Computer Society

Abstract—Many parallel applications require periodic redistribution of workloads and associated data. In a distributed memory

computer, this redistribution can be difficult if limited memory is available for receiving messages. We propose a model for optimizing

the exchange of messages under such circumstances which we call the minimum phase remapping problem. We first show that the

problem is NP-Complete, and then analyze several methodologies for addressing it. First, we show how the problem can be phrased

as an instance of multicommodity flow. Next, we study a continuous approximation to the problem. We show that this continuous

approximation has a solution which requires at most two more phases than the optimal discrete solution, but the question of how to

consistently obtain a good discrete solution from the continuous problem remains open. We also devise a simple and practical

approximation algorithm for the problem with a bound of 1.5 times the optimal number of phases. We also present an empirical study of

variations of our algorithms which indicate that our approaches are quite practical.

Index Terms—Interprocessor communication, dynamic load balancing, data migration, scheduling, NP-completeness, approximation

algorithms.

�

1 INTRODUCTION

IN many parallel computations, the workload needs to be
periodically redistributed among the processors. When

computational work varies over time, the tasks must be
reassigned to keep the workload balanced. On a distributed
memory computer, this generally requires that data
structures associated with the computations be transferred
between processors. Many examples of this phenomena
occur in scientific computing, including adaptive mesh
refinement, particle simulations with short or long-range
forces, state-dependent physics models, and multiphysics
or multiphase simulations. For many such simulations, the
limiting resource is not computation but memory. Impor-
tant examples include differential equation solvers using
adaptive meshes, and large-scale particle simulations.
Scientists commonly choose to use the minimum number
of processors upon which a particular simulation can fit, or
they choose a problem size which fills the memory of a
particular number of processors. However, the dynamic
memory requirements of such applications make such
targeting difficult.

A number of algorithms and software tools have been
developed to repartition the work among processors (see,
for example, [1], [2] and references therein). However, the
mechanics of actually moving large amounts of data has
received much less attention. When the processors have
sufficient memory, the simplest way to transmit the data is
quite effective. Each processor can execute the following
steps:

1. Allocate space for my incoming data.
2. Post asynchronous receives for my incoming data.
3. Barrier.
4. Send all my outgoing data.
5. Free up space consumed by my outgoing data.
6. Wait for all my incoming data to arrive.

The barrier in Step 3 ensures that no messages arrive until

the processor is ready to receive them, so no buffering is

needed.
Unfortunately, this protocol can fail when memory is

limited. It requires a processor to have sufficient memory to

hold both the outgoing and the incoming data simulta-

neously, since incoming messages can arrive before space

for outgoing data is freed. An alternative way to view this

issue is that, for a period of time, the data being transferred

consumes space on both the sending and receiving

processors. A protocol that alleviates this problem is

desirable for three reasons. First, since many scientific

calculations are memory limited, reserving space for this

communication operation limits the size of the calculations

that can be performed. Second, the amount of memory

required by this protocol is unpredictable because the data

remapping requirements depend upon the computation.

Thus, one is forced to set aside a conservative amount of

space, which is likely to be wasteful. Third, a general

purpose tool for dynamic load balancing should be robust

in the presence of limited memory. On the hopefully

infrequent occasions when memory limitations prohibit

direct transfers, a good tool should apply an alternative

strategy instead of exiting. The construction of such a tool

(Zoltan [3]) inspired our interest in this problem. The desire

to impact Zoltan has a number of implications for this

research. We are interested in algorithms with attractive

practical performance, not just asymptotic bounds on

606 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

. A. Pinar is with the Computational Research Division of Lawrence
Berkeley National Laboratory, One Cyclotron Road, MS 50F, Berkeley, CA
94720. E-mail: apinar@lbl.gov.

. B. Hendrickson is with the Discrete Algorithms and Math Department,
Sandia National Laboratories, Albuquerque, NM 87185-1111.
E-mail: bah@cs.sandia.gov.

Manuscript received 12 May 2003; accepted 29 Oct. 2003.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDS-0074-0503.

1045-9219/04/$20.00 � 2004 IEEE Published by the IEEE Computer Society



worst-case behavior. We also need algorithms that are
straightforward and efficient to implement.

To address the deficiencies of the standard protocol, we
propose a simple modification. Instead of sending all of the
data at once, we will send it in phases. After each phase,
processors can free up the memory of the data they have
sent. That memory is now available for the next commu-
nication phase. Each phase adds an overhead due to the
latency costs, thus it is important to limit the total number
of phases, which is an approximation to minimize total
remapping time. The results in Section 7 will confirm that
the overall communication time is strongly effected by the
number of phases.

More formally, consider a set of P processors. The
amount of data that needs to be communicated between
processors is a transfer request. We will assume that the
request is feasible, that is, the end result of satisfying the
transfer request does not violate any processor’s memory
constraints. We will let Tij denote the total volume of data
to be transferred from processor i to processor j. We now
wish to perform the requested transfer in a sequence of
phases. Let tlij denote the volume of data transfer from
processor i to processor j in phase l, and let Al

i be the
memory available to processor i at the beginning of phase l.
We will also use Rl

i and Sl
i to denote the total volume of

data received and sent by processor i in phase l (i.e., Rl
i ¼PP

j¼1 t
l
ji and Sl

i ¼
PP

j¼1 t
l
ij). At each step, the finite-memory

constraint requires that Rl
i � Al

i for i ¼ 1; 2; . . . ; P . The
available memory after each phase can be computed as
Alþ1

i ¼ Al
i þ Sl

i �Rl
i. Our objective is to find a schedule of

transfers that obeys the memory constraint and satisfies the
transfer request in a minimal number of phases. We will
call this the minimum phase remapping problem.

In Section 2, we show that the problem of determining
whether a given transfer can be completed in a specified
number of phases is NP-Complete. The remainder of this
paper focuses on formulations and approximation algo-
rithms that could be used in practice. In Section 3, we present
a reduction of our problem to multicommodity flow. We
present a continuous relaxation of the problem in Section 4
and a practical approximation algorithm in Section 5.
Although the emphasis of this paper is a theoretical analysis,
we discuss some practical issues associated with the applica-
tion of our techniques in Section 6 and results of empirical
studies in Section 7. Earlier versions of some portions of this
paper have appeared in conference proceedings [4], [5].

Despite its practical importance, the problem of efficient
data transfers has not been well-studied. Some standard
collective communication operations can be implemented in
ways that limit memory usage, but the general problem we
consider seems to be new. Cypher and Konstantinidou
designed memory efficient message passing protocols [6].
However, their work addressed exchange of tokens as
opposed to variable sized messages, and they did not
explicitly consider the effect of finite memory in the
processors. Their work conceptually divides a process into
communication and application processes. Communication
processes receive unit-size messages and copy them to
application processes. It is assumed that application
processes have enough memory, and the goal is to limit

the memory requirement of the communication processes.

Very recently, Hall et al. studied the problem for large

storage systems [7]. They assume the total time for

subdividing a message and sending subdivided messages

is about the same as sending the entire message. So, they

study the problem on unit-size messages. This assumption

might hold for huge volumes of data to be transferred, as in

the case of reorganizing a database, however, it is far from

being true for dynamic load balancing applications due to

very high message setup times. Their model also restricts

each processor to send and receive only one message in a

phase.

2 COMPLEXITY

In this section, we show that determining whether a given

transfer can be completed in a specified number of phases is

NP-Complete. Our proof uses a reduction from the Hamilto-

nianCircuit problem,which is known to beNP-Complete [8].

Recall that a Hamiltonian Circuit is a cycle in a graph that

visits each vertex once. Given an instance of the Hamiltonian

Circuit problem, the basic idea of our reduction is to construct

an instance of thedata transfer problem inwhich there is but a

singleunit of usablememory. Thisunit is a token that is passed

between processors, and possession of the token allows a

processor to receive data in the next phase. A solution to the

data remappingproblemoccurs if andonly if the token canbe

passed in a cycle among all the processors, which implies the

existence of a Hamiltonian Circuit. To see how this can be

done, consider theHamiltonian Circuit problem posed in the

left portion of Fig. 1. From this instance,we construct the data

remappingproblem in the rightportionof the figure.Thedata

remapping problem contains the original graph as its core

(represented in the figure with dark lines) after replacing

vertices with processors and replacing edges with unit-

volume data transfers. It also contains a chain of processors to

the left. The bottom processor in this chain has free memory

thatwill percolate upwardswith each phase, finally allowing

all the data transfers to be completed. Given a graph

G ¼ ðV ;EÞ, we construct a data remapping problem as

follows:

. For each vertex vi in V there is a processor pi. We
refer to these processors as core processors. Each
edge of E is a unit-volume transfer.

PINAR AND HENDRICKSON: INTERPROCESSOR COMMUNICATION WITH LIMITED MEMORY 607

Fig. 1. Construction for NP-Completeness proof.



. Add a chain of jV j processors c1; . . . ; cjV j along with
transfer requests from ciþ1 to ci for i ¼ 1; 2; . . . jV j � 1,
each with volume jEj � jV j.

. Add a transfer request from each core processor pi to
the top of the chain cjV j. This transfer has volume
equal to one less than the in-degree of vi in G.

. Add a dummy processor d and a unit-weight
transfer connecting d to an arbitrary processor p� in
the core.

. Give jEj � jV j units of free memory to processor c1
and 1 unit of free memory to p�. No other processor
has free memory.

Consider what happens as the data remapping occurs. In
the first phase, c2 will send its data to c1, moving the free
memory one step up in the chain. After jV j � 1 phases, this
free memory will have arrived at cjV j, the top of the chain.
Meanwhile, the token, which started at p�, will have
meandered about, enabling some data to be transferred.
In phase jV j, processor cjV j has enough memory to receive
all it needs from the core processors. During this phase, the
token can take one more step. The messages sent to cjV j free
up memory in the core processors. Specifically, at the end of
phase jV j, each core processor pi has indegreeðpiÞ � 1 units
of free memory (one processor has an additional unit due to
the token). In phase jV j þ 1, core processor pi can now
receive all it needs, minus 1. The transfers to pi can be
completed in this phase if and only if one of the data
transfers to pi has previously been handled by the token.
But, the only way for the token to visit all the core
processors in jV j phases is to complete a Hamiltonian
Circuit of the core graph. Note that the token must end up
where it started, at processor p�, to enable the transfer from
d to occur at phase jV j þ 1. This argument leads to the
following result.

Theorem 1. Determining whether an instance of the data
remapping problem can complete in a specified number of
phases is NP-Complete.

Proof. Given an instance of the Hamiltonian Circuit
problem G ¼ ðV ;EÞ, construct a data remapping pro-
blem as described above. As sketched above, the data
remapping problem finishes in jV j þ 1 phases if the core
graph has a Hamiltonian Circuit. If the core graph does
not have a Hamiltonian Circuit, then one of its
processors will not have been visited by the token by
the end of phase jV j. That unvisited processor, pi, still
needs to receive indegreeðviÞ data, but has only indegree
ðviÞ � 1 units of available memory, so the data transfers
cannot complete in jV j þ 1 phases. The construction of
the data remapping problem is polynomial, so we can
conclude that the data remapping problem is NP-Hard.
A given solution can be verified in polynomial time, thus
the problem is in NP. tu

3 MULTICOMMODITY FLOW FORMULATION

In this section, we present a multicommodity flow (MCF)
formulation to determine whether a given transfer can
complete in a specified number of phases [9]. Once we can
solve the decision problem, the number of phases in an
optimal solution can be determined using parametric

search. This formulation enables use of MCF technology
to solve the minimum phase data remapping problem
optimally. This might be helpful for three reasons. First,
some MCF problems can be solved relatively quickly,
despite their intractability in the general case. Second, the
continuous version of the MCF problem can be solved in
polynomial time and the solution can be used as a heuristic
for the integer problem. Finally, MCF solvers will find an
optimal solution if runtime is not an issue.

In our MCF formulation, each processor corresponds to a
commodity. Let P be the number of processors and L be the
number of phases. We must decide if a remapping can
complete in L phases. As depicted in Fig. 2, our MCF graph
contains a sequence of components, one for each phase.
Each component allows for the communication that occurs
in the corresponding phase.

The MCF graph G ¼ ðV ;EÞ has 2PL vertices. Each
processor is represented by 2L vertices: two processors (one
sender and one receiver) at each phase. We will use rli and sli
to denote receiver and sender, respectively, for processor i
in phase l. A sender vertex of the first phase is the source of
a commodity with volume equal to the total volume of the
data originally stored by this processor. A receiver vertex in
the last phase is a destination for a set of commodities that
corresponds to data to be stored by this processor after
remapping is complete.

In the MCF graph, there is an edge from rli to sli for
l ¼ 1; . . . ; L and i ¼ 1; . . . ; P . The capacity of an edge is
equal to the total memory on the respective processor.
There are also edges from each sender vertex sli to all other
receiver vertices rlj in the same phase to enable data
exchange between any pair of processors in a phase. These
edges have infinite capacities.

With this construction, all processors first receive the
data in a phase and then send their messages. This
corresponds to first allocating space for the data to be
received and then sending the outgoing data. The edges
from receivers to senders within a phase guarantee that
there is sufficient space to allocate memory for the incoming
data before releasing the space for the data being shipped
out, so that the memory constraints are guaranteed to be
satisfied.

Finally, there is an edge (with infinite capacity) from
each sender sli to the receiver in the next phase rli for

608 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 2. MCF graph for five processors and two phases.



l ¼ 1; . . . ; L� 1. The flow on these edges corresponds to
data that is already in the memory of a processor at the
beginning of a phase. The graph for P ¼ 5 and L ¼ 2 is
depicted in Fig. 2.

Theorem 2. There exists a solution to the remapping problem if
and only if there exists a solution to the MCF formulation.

Proof. We can replace a data transfer from processor i to
processor j in phase l with flow on edge ðsli; rljÞ of equal
volume. As argued above, memory constraints on the
processors are satisfied if and only if the capacity
constraints on the edges are satisfied in G. Thus, the
feasibility of one solution implies the feasibility of the
other. tu

In this formulation, the number of commodities is equal to
the number of processors, and thegraphhas 2PLvertices and
P 2L edges. The number of vertices and edges can be reduced
for a more efficient formulation. First, we can replace the
crossbar between senders and receivers in a phase l with a
vertex vl and edges from all senders of phase l to vl and edges
from vl to all receivers of phase l. Second, we can merge the
senders of phase l with receivers of phase lþ 1. The graph
after these reductions is depicted in Fig. 3. This improved
formulation has PLþ Lþ P vertices and ð3Lþ 1ÞP edges.

4 CONTINUOUS RELAXATION

Although the multicommodity flow formulation from Sec-
tion 3 provides a methodology for solving instances of the
minimum phase remapping problem, runtime can still be
exponential in theproblemsize. In this section,wedescribean
efficient solution for an approximation to the remapping
problem. In the approximation, integral constraints on the
volume of data transfers are relaxed to allow continuous
values. Naturally, the volume of transfer between two
processors in a phase must be an integer. But, integer
solutions near the continuous ones can be used as heuristics.
Note that the unit of data transfer is only a byte, whereas the
volume of data being transferred is often on the order of

megabytes. So, conversion from a continuous solution to an
integer solution will often be a small perturbation, and so
heuristics based upon this idea may be generally effective.
However, bad cases for this heuristic exist, as discussed at the
end of this section.

As defined in the introduction, Tij denotes the total
volume of data to be communicated from processor i to
processor j, and tlij denotes the volume of data transferred
from processor i to processor j in phase l. The memory
available to processor i at the beginning of phase l is
denoted by Al

i. We also use Ri and Si to denote the total
volume of data received and sent by processor i during
remapping.

Let T be the total volume of data to be transfered, and M
be the total volume of available memory in the system, then
L ¼ dTMe is a lower bound on the number of phases. We will
divide each message into L equal pieces, i.e., t0ij ¼ t1ij ¼
. . . ¼ tL�1

ij ¼ Tij

L and send a piece at each phase. If the
memory constraints are satisfied, then the data transfers
will complete in precisely L phases. However, there is no
guarantee that memory constraints will not be violated. As
a solution to this problem, we will use preprocessing and
postprocessing phases to ensure feasibility of the phases in
between.

Lemma 1. If the following conditions are satisfied, the continuous
version of the remapping problem can be completed in L ¼ dTMe
phases.

1. Si ¼ Ri for all processors.
2. A0

i � Ri

L .

Proof. At each phase, processor i will receive Ri

L units of
data. By the second condition, each processor has
sufficient memory for the first phase. By the first
condition, each processor ships out Si

L ¼ Ri

L units of data
at each phase, which frees up sufficient memory for the
next phase. tu

Lemma 2. A solution for a continuous version of the data
remapping problem for transfer requestR can be performed via
the following three steps:

1. One preprocessing phase.
2. A new transfer request R0, where Si ¼ Ri and

A0
i � Ri

L .
3. One postprocessing phase.

Proof. In the preprocessing phase we will reorganize the
data to satisfy conditions 1 and 2 from Lemma 1, and
define a new mapping of the data. After the new
mapping is complete, a single postprocessing phase will
be sufficient to get all of the data to the correct processor.

In the preprocessing step, all processors i with Ri < Si

will transfer some of their outgoing data to processors j
in which Rj > Sj, so that in subsequent phases Ri ¼ Si.
Note that, if the transfer request is feasible, then
Rj � Sj � A0

j . Thus, this rearrangement can be completed
in a single phase.

Next, as second part of the preprocessing step, all
processors i with Ai <

Ri

L will transfer some of their
outgoing data to processors j with Aj >

Rj

L . To avoid
disturbing the first property, the sending processors will
also pass equal amounts of receiving assignment. Once

PINAR AND HENDRICKSON: INTERPROCESSOR COMMUNICATION WITH LIMITED MEMORY 609

Fig. 3. MCF graph after reduction.



again, this step can be completed in one phase, since by
construction, the receiving processors have sufficient
space.

Notice that the actual data being transferred is
irrelevant—we are just trying to balance the numbers—
so a send and receive operation can cancel each other.
This enables merging of the two steps above into one
phase.

After the new transfer request R0 is realized, we must
correct for the transfer of receiving assignments. This
correction is the purpose of the postprocessing phase.
Under the transfer of receiving assignments, each
processor is either a sender or a receiver of such
assignments. So, during postprocessing, each processor
will either receive or send data, but not both. Since the
initial remapping is feasible, each processor has enough
memory for the data to be received, thus the postproces-
sing can be completed in one phase. tu
The complexity of constructing the solution for the

preprocessing phase is linear in the number of processors.
To see this, divide the processors into two lists: those with
Ri < Si and those with Rj > Sj. Now, step through the lists
together, transferring sending responsibility from a proces-
sor in the i list to one in the j list. Each transfer balances Ri

and Si for a processor in one of the lists. The same can be
applied to balance initial available memories. Notice that
the preprocessing step uniquely describes the postproces-
sing phase, and remapping for R0 is straightforward.

Theorem 3. Given a transfer request R, the continuous version
of the data remapping problem can be completed in dTMe þ 2
phases.

Proof. By Lemma 2, R can be completed by pre and
postprocessing steps, along with a transfer request R0

satisfying conditions of Lemma 1. Notice that the total
volume of data to be transferred, T 0 in R0 is no greater
than T in R, and the total available memory in the
system does not change: M ¼ M 0. Hence, by Lemma 1,
R0 can be completed in dT 0

Me � dTMe phases. Together with
one preprocessing and one postprocessing phases,
remapping can be completed in dTMe þ 2 phases. tu
It is worth noting that a good solution for this continuous

approximation may not yield a good solution for the true
discrete problem. For instance, consider the example
depicted in Fig. 4.

This example consists of two groups of processors, with
no communication between the groups, and there is only
one unit of available memory. Available memory must be
possessed by each component in turn, and this requires
temporarily moving some data from one component to the
other to transfer the free memory, as will be discussed in
more detail in the next section. In the preprocessing step
described in the proof of Lemma 2, this available memory

will be divided into two groups of processors, but the
fractional transfers that follow give no insight into the
correct way to orchestrate the data transfers for this
instance. Specifically, in the continuous solution, all
processors are identical, so no information is gleaned about
the necessity of working on components in turn.

5 EFFICIENT APPROXIMATION ALGORITHMS

In this section, we describe the basics of a family of efficient
algorithms that provide solutions, in which the number of
phases is at most 1.5 times that of an optimal solution. The
algorithm is motivated by some simple observations. First,
the maximum amount of data that can be transferred in a
phase is equal to the total amount of free memory in the
parallel machine. LetM be the total available memory in the
parallel machine, and let T be the total volume of data to be
moved. Note that M does not change between phases.

Lemma 3. The minimum number of phases in a solution is dTMe.

This bound can only be achieved only if available
memory is used to receive messages at each phase. Thus,
free memory is wasted if it resides on a processor that has
no data to receive. Our algorithm works by redistributing
free memory to processors that can use it. Equivalently,
data is parked on a processor with free memory, which it
cannot use, to free up memory on processors that can use it.
We will park only data that must be transferred eventually.

5.1 Parking

Parking aims to utilize memory that would otherwise be
wasted. Consider a processor that has received all its data
and still has available memory. This memory cannot be
utilized in subsequent phases, which decreases the total
memory usable for communication, thus potentially in-
creasing the number of phases. Instead, another processor
can temporarily move some of its data to this processor to
free up space for messages. An example is illustrated in
Fig. 5. In this simple example, the top two processors want
to exchange 100 units of data, but each has only one unit of
available memory. A simplistic approach will require
100 phases. However, the third processor has 100 units of
free memory. By parking data on this third processor (i.e.,
transferring free memory to another processor), the number
of phases can be reduced to three.

More formally, if a processor has k units of data left to
receive andm units of free memory, then it has parking space
of maxð0;m� kÞ units. A processor has data to park if the
incoming data exceeds available memory, and the quantity

610 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 4. Catastrophic instance for continuous relaxation.

Fig. 5. Example of the utility of parking.



of this parkable data is maxð0; k�mÞ units. The parkable
data consists of data that eventually must be sent to another
processor. Note that, if the transfer request is feasible, then a
processor must send outmaxð0; k�mÞ units. Any processor
that has parking space can store parkable data from another
processor, thereby maximizing the amount of usable free
memory. This parked data merely takes an extra step on the
way to its final destination. Exploiting this observation will
allow us to construct an approximation algorithm.

In our algorithm, we merely store data in a parking
space, and then forward it to its correct destination when
the destination processor has available memory. Note that it
is inconsequential which processor owns the parked data.
In other words, parking spaces are indistinguishable. What
potentially effects performance is which processors shunt
their data to a parking space.

Lemma 4. It is sufficient to park data at most once to obtain an

optimal solution.

Proof. Assume there is a solution that parks some data D
twice. Let p1 and p2 be the first and second processors on
which D is parked. After data is moved from p1 to p2, if
no other processor uses available memory at p1, then
there was never a need to move data to p2. If another
processor pi, parks data on p1, then we can rearrange the
data movement with D staying in p1, and pi parking on
p2, due to indistinguishability of parking spaces. tu
It is worth noting that parking is not just a heuristic, but a

requirement in some cases. Consider the example in Fig. 5,
modified so that there is no available memory in the top
two processors. In this case, the transfer request is still
feasible, but realizing the remapping requires parking.

5.2 An Approximation Algorithm

In this section, we describe an algorithm that obtains a
solution with at most 1.5 times the optimal number of
phases. The algorithm is quite generic and allows for a
number of possible enhancements.

Algorithm 1:

. A processor receives as much data as it can in each
phase (i.e., if a processor has available memory at the
end of a phase, then this processor does not have any
more data to receive).

. If the transfer request cannot be completed in the
next phase, then park as much data as possible (i.e.,
park the minimum of the total parkable data and the
total parking space).

Note that many details about the algorithm are un-
specified: If I have more incoming data than free memory,
which messages should I receive in the current phase? If
several processors want to park data, but limited parking
spaces are available, which should succeed? We will show
below that, with any answers to these questions, the
resulting algorithm generates a solution with no more than
1.5 times the optimal number of phases. Intelligent answers
to these questions could be used to devise algorithms with
better practical (or perhaps theoretical) performance.

Lemma 5. The total volume of data transferred by Algorithm 1 is

at most d3T2 e.
Proof. Let Tp be the volume of data transferred through

parking, and let Td be the data transferred directly. Data

is transferred either directly or through parking, thus

T ¼ Tp þ Td.

It is enough to park data once due to Lemma 4, thus

parked data is moved twice, and the total volume of data

moved is 2Tp þ Td ¼ T þ Tp. Recall that, by definition of

parkable data, data is parked only if it will help receiving

more data in the next phase. Thus, each parked unit of

data enables at least one direct transfer, the algorithm
guarantees that Tp � Td. Thus, at most half of T can be

transferred through parking, i.e., Tp � T
2 , and the total

volume of data moved is T þ Tp � T þ T
2 ¼ 3T

2 . tu
Theorem 4. Algorithm 1 constructs a solution with at most

d 3T2Me þ 1 phases.

Proof. The algorithm makes use of all M units of available

memory until the amount of parkable data is less than

the amount of parking space. It then completes in at most

two additional phases, one in which some data is parked,

and a final phase in which each processor has enough

memory to receive all its messages. By Lemma 5, we

know that the total volume of data transferred in the

algorithm is at most d3T2 e. With M units of transfer in all

but the last two phases, the process can be completed in

at most d 3T2Me þ 2 phases.
We will now decrease the bound to d 3T2Me þ 1. Let l be

the number of phases for the algorithm to complete the
data remapping process. The total volume of data
transferred is ðl� 2ÞM þ x, where x is the volume of
data transferred in the last two phases: 1 < x � 2M.
From Lemma 5, we know that

ðl� 2ÞM þ x

M

� �
� 3T

2M

� �
:

But, simple algebra reveals that

l� 1 � ðl� 2ÞM þ x

M

� �
:

Combining these inequalities

l� 1 � 3T

2M

� �
;

and the result follows. tu
Combined with Lemma 3, Theorem 4 shows that

Algorithm 1 is a 3=2 approximation algorithm for the

minimum phase remapping problem. Without a better

lower bound, this value of 3=2 is tight as illustrated by the

example in Fig. 6.
This example consists of an odd number of processors P .

All but one of them are organized in pairs which exchange a

single unit of data. Only the unpaired processor has a single

PINAR AND HENDRICKSON: INTERPROCESSOR COMMUNICATION WITH LIMITED MEMORY 611

Fig. 6. Example to show the tightness of the 1.5 bound.



unit of available memory. The total volume of data to be
moved isT ¼ P � 1. The onlyway for a pair to exchange their
data is first to park a unit elsewhere, so a total of P�1

2 units of
parking are needed. Hence, the total volume of data
transferred is 3ðP�1Þ

2 ¼ 3T
2 , and the number of phases is 3T

2M,
sinceM ¼ 1.

6 PRACTICAL CONSIDERATIONS

In this section, we consider some more practical aspects of
the minimum phase remapping problem, setting the stage
for experimental results in the subsequent section. First, we
discuss practical aspects of algorithms for scheduling the
communication phases, and efficient implementations of
heuristics based on the templates of the preceding sections.
Then, we consider how to implement parking and, finally,
we address some practical limitations of our model and
how to address them.

6.1 Distributed and Centralized Heuristics

Algorithms for minimizing the number of phases can be
either centralized or distributed. Centralized heuristics
reduce the problem onto one processor, construct a solution
on this processor, and then broadcast the solution to all
processors. Reducing the whole problem onto a single
processor enables the use of sophisticated algorithms to
construct optimal or near optimal solutions. However, these
methods invariably suffer from the gather and scatter
overhead due to collecting the information on one processor
and broadcasting the solution. Moreover, the remaining
processors wait idle while one processor is constructing a
schedule, which hinders scalability.

An alternative is a distributed method, where processors
collectively produce a solution using local information. A
distributed approach is more scalable, but the lack of global
information is likely to lead to lower quality solutions. We
present experiments that compare the performance of the
two approaches in the next section. Here, we discuss how to
implement a distributed scheduling algorithm efficiently.
Fig. 7 presents a distributed algorithm for interprocessor
communication with limited memory. Notice that there are
no global operations in this algorithm; processors commu-
nicate only with their neighbors—processors they need to
exchange data with. This locality is important for scal-
ability.

The number of phases is determined by how available
memory is apportioned to the processors, which is not
specified in Fig. 7. Below, we describe five heuristics that
rely only on local information. No extra communication is
required to make apportionment decisions. Four of our
heuristics are nonpreemptive, that is, we chose a processor

and grant it as much memory as it requires or is available,
and repeat the process while there is available memory. We
experimented with the following four criteria for choosing a
sender:

. First-fit (FF): Choose the first processor on the list of
senders.

. Max-first (MF): Choose the processor that has the
most to send.

. Random (RD): Choose a processor uniformly at
random.

. Fortune Wheel (FW): Choose a processor randomly,
but the probability of a processor being chosen is
directly proportional to how much it has to send.

We also have a preemptive heuristic, where we grant
allotments so that the maximum remaining volume to be
sent by any sender is minimized. For example, if processor 1
has five units whereas processor 2 has four units to send,
we grant five units of available memory as three units to
processor 1 and two units to processor 2, which leaves three
units to send for each processor. We refer to this heuristic as
the Min-max (MM) heuristic. We compare practical perfor-
mances of these heuristics in the experimental results
section.

6.2 Parking

Parking helps to decrease the number of phases by utilizing
available memory on processors that do not have more to
receive. However, the parking operation itself can be
expensive for several reasons. First, the total volume of
communication increases, since data being parked are
moved twice. More importantly, parking is a global
operation: any processor needing to receive can park data
on any other processor with available memory, and so some
kind of global oversight and control is necessary.

Implementation of a parking algorithm requires three
steps: making parking decisions, moving parked data, and
updating send/receive information. An algorithm that
follows these steps is presented in Fig. 8. This algorithm
uses a root processor to make the parking decisions.
Moving data is straightforward, since processors already
know to whom to send and from whom to receive. Finally,
we can update receive lists by communicating with the
neighbor processors. As can be seen, parking is not a simple

612 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 7. Template of a distributed algorithm for memory-constrained
interprocessor communication.

Fig. 8. Template for parking.



operation, and as will be shown in Section 7, its overhead
cannot always be compensated for by decrease in the
number of phases.

6.3 Limitations of the Model

The preceding sections of this paper have concentrated on
the amount of available memory, ignoring how that
memory is organized. However, the adaptive applications
that require periodic data redistribution typically make
extensive use of dynamic memory management. As a
consequence, the available memory may not be contiguous,
which limits the immediate practical utility of our techni-
ques. In the following discussion, we assume that the
message passing software requires outgoing/incoming
messages to be read from/to a single, contiguous block of
memory. This is typical of current implementations of MPI.

The complexity of memory layout adds several compli-
cations to our simple theoretical model. First, outgoing data
will not generally be contiguous, so space to buffer it on the
sending processor will be needed. Second, if available
memory is fragmented, then incoming messages can only
be as large as the fragments, not the entire free memory.
Once data has arrived, it may need to be copied into
noncontiguous portions of an application data structure.
Finally, our analysis assumed that total available memory at
the end of a phase could be updated simply by the
difference between the total amounts of outgoing and
incoming data. Although this may be true, it says nothing
about fragment sizes, which are the true, practical limit on
useful memory for message passing.

Despite these caveats, our model and algorithms can
sometimes be applied without modifications. Consider the
case where the application controls memory and packs all
data contiguously. Available memory will then consist of a
single, contiguous block. If the application data structures
allow for the memory to be reorganized to make outgoing
message data contiguous, then no further buffering of
outgoing data will be necessary. Once messages have
arrived, memory can be locally reorganized to place them
into the application data structures in the appropriate way,
while keeping the available memory contiguous. In this
way, the objections raised above are circumvented and our
model and techniques are directly applicable.

However, most applications do not allow for such
straightforward memory management techniques. For such
applications, our theoretical model provides guidance, but
not robust theoretical guarantees of performance. In Fig. 9,
we sketch an algorithm that performs robustly, but without
the certainty of bounds on the number of phases. The basic
idea is to have each processor determine its available
memory at the beginning of each phase and to restrict the
sizes of incoming messages to ensure that this memory is
not exceeded. No assumptions are necessary about the
amount of available memory in subsequent phases. We will
not report results on the performance of this heuristic, since
its performance directly depends on memory segmentation.

7 EXPERIMENTAL RESULTS

We have implemented the algorithms discussed in Section 6,
and performed a series of empirical studies on the LBL/
NERSC Alvarez Cluster, an 80 node Pentium III Myrinet

cluster with two processors in each node. All methods were
implemented in C, and use MPI for message passing.

The problem instances in our experiments come from the
data distribution associated with load balancing the opera-
tion a particular preconditioner known as overlapped
Schwartz domain decomposition. The communication in-
volved can be described in a fairly simple way. Initially, a
graph is partitioned in such a way that each processor has
about the same number of vertices. Now, imagine that each
processor needs to perform an operation that depends on
the number of vertices it owns plus the number of vertices
on other processors that are adjacent to ones it owns. These
“overlapped subdomains” will not generally be well
balanced. But, with a modest adjustment to the original
partition, the overlapped domains can be made balanced
(see [10] for details). The communication operation we are
using in our experiments is that of transforming the original
partition into a balanced overlapped partition.

This communication is typical of those encountered in
dynamic load balancing. The communication pattern is
sparse and unstructured. Note also that different initial
partitions lead to different communication patterns, so it is
easy to generate a set of different, but related remapping
instances. In all our experiments, we used the matrix
ocean, which has 143,437 rows and 819,186 nonzeros, with
eight double-precision numbers for each mesh node.

We report our results on four sets of experiments. The
objective of the first set of experiments is to determine
whether or not minimizing the number of phases truly is a
valid metric for reducing overall communication cost. Our
second experiment studies the relative merits of distributed
and centralized approaches as discussed in Section 6.1.
Third, we study the performance of several different
distributed heuristics, including those introduced in
Section 6.1. Finally, we consider the practical merits of
parking.

. Experiment 1: Model Validation. On the first set of
experiments, we investigated the relation between
the number of phases and the communication time.
For scheduling methods, we implemented the
Random, Fortune Wheel, and First Fit techniques from
Section 6.1. Keeping the communication pattern the
same, we reduced the amount of memory the
algorithms were allowed to use, which increased
the number of phases, but kept the volume of data
transfer unchanged.

PINAR AND HENDRICKSON: INTERPROCESSOR COMMUNICATION WITH LIMITED MEMORY 613

Fig. 9. Template for a robust algorithm for memory-constrained

interprocessor communication.



The results of these experiments are presented in

Fig. 10. In this figure, the horizontal axis correspond

to the number of phases, and the vertical axis

correspond to the reorganization time normalized

with respect to reorganization time without memory

limitations, i.e., communication in a single phase.

Each point in these graphs corresponds to a single

instance in our experiments. It is important to note

that decision making part in this heuristics take

almost no time, thus the runtimes are essentially

only the communication times. The results show that

runtimes grow roughly linearly with increasing

number of phases, and that the the cost of each

phase is a nonnegligible fraction of the single phase

communication cost (particularly for the larger

numbers of processors). Thus, minimizing the

number of phases is a valid objective for scheduling.
. Experiment 2: Centralized Versus Distributed Methods.

In Fig. 11, we compare centralized and distributed
methods. In this figure, times for the centralized
methods are broken down to four components:
“gather” is the time to collect problem information
on one processor, “solve” is the time that one
processor spends constructing a schedule, and
“scatter” is the time to inform all processors of the
schedule. We experimented with the centralized and
distributed implementations of the five heuristics
described in Section 6.1 on eight problem instances.
To take maximal advantage of the availability of all
the information on a single processor, the centralized
methods used parking to minimize the number of

phases. The distributed methods in this experiment
did not use parking.

For comparison purposes, times are normalized
with respect to the total runtime of the centralized
implementation. We have not observed significant
differences in the relative performances of the
different methods, so we present only the averages
of normalized times in Fig. 11. As seen in the figure,
the overhead for the centralizedmethods is quite high
due to the gather and scatter time, and the serial
algorithmic bottleneck. However, the centralized
method is able to produce modestly better schedules.
Our data indicates that distributed methods are
generally more efficient. However, if the schedule is
to be reused, then perhaps the significant overhead
induced by the centralized method could be justified.

. Experiment 3: Different Distributed Methods. We have
implemented and compared the five distributed
heuristics introduced in Section 6.1, as well as the
continuous relaxation method (CR) described in
Section 4. Since we are interested in a general
purpose tool, our principle concern is with the total
time consumed by a collection of invocations. For
this reason, we ran the algorithms on 10 problem
instances, counting the number of phases in the
communication schedules they produce. The results
of the average number of phases for each method are
displayed in Fig. 12a. It can be seen that randomized
techniques (RD and FW) have the best performance,
followed by the min-max technique (MM). The
continuous relaxation method suffers from its
pessimistic nature, since it always requires two extra
phases, even for very simple problems. The first-fit
heuristic (FF) suffers from the fact that communica-
tion lists are often sorted, and so all processors will
try to communicate with the lowest numbered
processors first. The poor performance of max-first
(MF) can be attributed to natural communication
patterns of dynamic load balancing. Dynamic
balancing shifts load from overloaded processors to
underloaded processors, thus some overloaded
processors send a lot of data, but receive (almost)
none. The max-first technique is likely to give
priority to such processors, and so lead to poor
distribution of the communication load.

Although the number of phases is our primary
metric, the runtime of each phase is also important.
The number of messages in a phase can effect
performance due to large message setup times.
Thus, schedules with fewer number of messages

614 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 10. Correlation between number of phases and communication times. (a) 32 processors, (b) 64 processors, and (c) 128 processors.

Fig. 11. Centralized and distributed methods.



are preferred. Fig. 12b compares the heuristics in
terms of the number of messages. As before,
numbers are computed as the average of 10 different
instances, but here the results are normalized by the
number of communicating pairs of processors (i.e.,
the number of messages without memory limita-
tions). As expected, the number of messages is very
high for the min-max and continuous relaxation
heuristics. Performances of the other heuristics are
very close. Recall that the continuous relaxation
technique reorganizes data in pre and postproces-
sing phases, thus the total volume of communication
is higher than what is required. We observed that, in
practice, the additional data movement for this
method is very high—52 percent, 46 percent, and
44 percent for 32, 64, and 128 processors, respec-
tively. Overall, we can conclude that randomized
techniques perform better than the other heuristics.

. Experiment 4: Parking. As discussed in Section 5,
parking utilizes memory that would otherwise be
wasted, potentially decreasing the number of
phases. Our experimental results as presented in
Fig. 13, show that in practice the decrease in number
of phases due to parking can be very significant. In
many cases, the number of phases can be halved by
using parking.

We have already discussed the overhead due to
parking in Section 6.2. In our implementation,
parking requires a centralized algorithm, and so
bears the costs associated with gathering data and
broadcasting an answer as discussed above. In

addition, parking increases the total volume of
communication since data are routed through an
intermediate processor instead of being sent directly
to their destination. Our experiments showed that
this is not a significant problem. The total volume of
communication increases by only an average of 1
percent for 32 processors, 3 percent for 64 proces-
sors, and 3 percent for 128 processors, which can
easily be compensated for by the significant decrease
in the number of phases. The important problem is
how to limit the cost of the parking operation itself.

To retain the benefits, but reduce the cost, we
tried using parking less frequently to decrease its
cost, but still be able limit the number of phases.
Fig. 14 presents the results for these experiments. In
this figure, P1 corresponds to parking at each phase
and P2 (P3) corresponds to parking at every second
(third) phase. The total available memory decreases
from left to right for the problem instances. The
times are normalized with respect to the times of
solutions without parking. The results show that
parking can decrease overall data reorganization
times, especially when memory is very limited.

8 CONCLUSION

We have addressed the problem of migrating data in the
case of limited memory. When migrating data in an
adaptive computation, it can happen that processors do
not have enough memory to allocate space for their
incoming data before they can release the space consumed
by their outgoing data. In this case, the remapping
operation must be decomposed into phases so that
processors free up memory for the data they shipped out
at end of a phase, making it available for the incoming data
in the next phase.

In this paper, we studied how to complete the remapping
operation in theminimumnumber of phases, the problemwe
call minimum phase remapping. We showed that the
problem of determining whether a given transfer can be
completed ina specifiednumberofphases isNP-Complete.A
reduction of the minimum phase remapping problem to
multicommodity flow was presented. We showed how a
continuous relaxation of the problem admitted a simple
solution with two more phases than that of an optimal
solution, but it might be difficult to obtain a good discrete
solution from this continuousone.Wealsodevisedapractical

PINAR AND HENDRICKSON: INTERPROCESSOR COMMUNICATION WITH LIMITED MEMORY 615

Fig. 12. Comparison of scheduling heuristics. (a) Number of phases and (b) number of messages.

Fig. 13. Effect of parking on the number of phases.



approximation algorithm with a bound of 1.5 times the

optimal solution.
We then conducted a series of empirical studies to

validate the relevance of the number of phases as a metric of

communication cost, and to study the performance of

different versions of our algorithms. These experiments

indicate that our methods can be implemented efficiently in

parallel, and that multiphase remapping can be performed

inexpensively.
Our interest in this problem arises from our collaborative

efforts to build general purpose libraries to support

complicated parallel applications. Specifically, we are

interested in providing additional robustness to parallel

libraries. The functionality described here is now being

added into Zoltan, a public-domain dynamic load balancing

tool [3].

ACKNOWLEDGMENTS

This work was funded by the Applied Mathematical

Sciences progam, US Department of Energy, Office of

Energy Research and Corporation, a Lockheed-Martin

Company, for the US DOE under contract number DE-

AC-94AL85000. The first author is also supported by the

Director, Office of Science, Division of Mathematical,

Information, and Computational Sciences of the US Depart-

ment of Engergy under contract DE-AC03-76SF00098.

REFERENCES

[1] G. Cybenko, “Dynamic Load Balancing for Distributed Memory
Multiprocessors,” J. Parallel Distributed Computing, vol. 7, pp. 279-
301, 1989.

[2] B. Hendrickson and K. Devine, “Dynamic Load Balancing in
Computational Mechanics,” Computer Methods in Applied Me-
chanics and Eng., vol. 184, nos. 2-4, pp. 485-500, 2000.

[3] K.D. Devine, B. Hendrickson, E.G. Boman, M.M. St. John, and C.
Vaughan, “Zoltan: A Dynamic Load-Balancing Library for Parallel
Applications—User’s Guide,” Technical Report SAND99-1377,
Sandia Nat’l Laboratories, Albuquerque, New Mexico, http://
www.cs.sandia.gov/Zoltan/, 1999.

[4] A. Pinar and B. Hendrickson, “Interprocessor Communication
with Memory Constraints,” Proc. 12th ACM Symp. Parallel
Algorithms and Architectures, pp. 39-45, July 2000.

[5] A. Pinar and B. Hendrickson, “Communication Support for
Adaptive Computation,” Proc. 10th SIAM Conf. Parallel Processing
for Scientific Computing, Mar. 2001.

[6] R. Cypher and S. Konstantinidou, “Bounds on the Efficiency of
Message-Passing Protocols for Parallel Computers,” SIAM J.
Computing, vol. 25, no. 5, pp. 1082-1104, 1996.

[7] J. Hall, J. Hartline, A. Karlin, J. Saia, and J. Wilkes, “On Algorithms
for Efficient Data Migration,” Proc. Symp. Discrete Algorithms, 2001.

[8] R.M. Karp, “Reducibility among Combinatorial Problems,” Com-
plexity of Computer Computations,R.E.Miller and J.W. Thatcher, eds.,
pp. 85-103, New York: Plenum Press, 1972.

[9] R.K. Ahuja, R.L. Magnanti, and J.B. Orlin, Network Flows: Theory,
Algorithms and Applications. Englewood Cliffs, N.J.: Prentice Hall,
1993.

[10] A. Pinar and B. Hendrickson, “Partitioning for Complex Objec-
tives,” Proc. 15th Int’l Parallel and Distributed Processing Symp.,
2001.

Ali Pinar received the BS and MS degrees in
computer engineering from Bilkent University,
Turkey, and the PhD degree in computer
science from the University of Illinois at Urba-
na-Champaign. He is currently working at
Lawrence Berkeley National Laboratory. His
research interests include combinatorial scien-
tific computing, combinatorial algorithms, and
parallel algorithms. He is a member of the IEEE
Computer Society, SIAM, and ACM.

Bruce Hendrickson received degrees in math
and physics from Brown Univeristy, followed by
the PhD degree in computer science from
Cornell University. He has been at Sandia Labs
in Albuquerque, New Mexico for the past 13
years, where he is a distinguished member of
technical staff and acting manager of the
Discrete Algorithms and Math Department. He
also has an appointment in the Computer
Science Department at the University of New

Mexico. He is an editor of several leading journals in scientific and
parallel computing, and has helped to organize numerous international
meetings. His research interests include combinatorial scientific
computing, linear algebra, and parallel algorithms. He is a member of
the IEEE Computer Society, SIAM, and ACM.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

616 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 15, NO. 7, JULY 2004

Fig. 14. Effect of parking on the number of phases.


