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In this paper we study diffusion in a tube formed by
periodic contacting spherical cavities of radius R �Fig. 1�
over the entire range of the entropy barrier height. On times
when the mean squared displacement of a diffusing particle
is much greater than the tube period l, the particle motion
can be characterized by an effective diffusion constant Deff,
which is smaller than the particle diffusion constant D in
space with no constrains. When the tube period increases, the
radius a of the circular aperture connecting neighboring cavi-
ties decreases, a=�R2− �l2 /4�, 0� l�2R. As a result, the
entropy barrier increases, and the ratio Deff /D gets smaller.
One can find Deff analytically for high and low entropy bar-
riers. For high entropy barriers Deff has been derived in Ref.
1. Here we derive Deff for low entropy barriers. We also run
Brownian dynamics simulations to find Deff as a function of
the ratio a /R and to compare the numerical results with those
predicted by different analytical expressions. The major goal
of our analysis is to establish the range of applicability of
different approximate expressions for Deff.

For high entropy barriers �small apertures, a�R� Be-
rezhkovskii, Zitserman, and Shvartsman �BZS� derived the
following expression for the effective diffusion constant:

Deff
BZS =

6Da

�R
. �1�

In the opposite limiting case of low entropy barrier, i.e.,
when �R−a��R, one can find Deff by approximately reduc-
ing the three-dimensional problem of diffusion in the tube of
varying cross section to an effective one-dimensional prob-
lem of diffusion along the tube axis. Significant progress in
understanding the reduction has been made in recent
years.2–5 Directing the x-axis along the center line of the
tube, one can write an approximate one-dimensional effec-
tive diffusion equation as

�c�x,t�
�t

=
�

�x
�D�x�A�x�

�

�x
� c�x,t�

A�x� �	 , �2�

where D�x� is a position-dependent diffusion coefficient,
A�x�=��r�x��2 is the cross-section area of the tube of radius
r�x�, and c�x , t� is the effective one-dimensional concentra-
tion of the diffusing particles at given x, which is related to

the three-dimensional concentration C�x ,y ,z , t� by

c�x,t� = 

A�x�

C�x,y,z,t�dy dz . �3�

Equation �2� with position-independent diffusion coefficient,
D�x�=D, is known as the Fick–Jacobs �FJ� equation.6 Zwan-
zig �Zw� derived an expression for D�x� assuming that the
tube radius r�x� is a slowly varying function, �r��x���1,2

FIG. 1. Entropy potential for tubes with �a /R�=0.1 �panel �a�� and �a /R�
=0.5 �panel �b��. The dimensionless heights of the entropy barriers are
�U / �kBT�=2 ln 10=4.6 �panel �a�� and �U / �kBT�=2 ln 2=1.4 �panel �b��.
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DZw�x� =
D

1 + r��x�2/2
. �4�

Reguera and Rubí �RR� generalized this result.3 Based on
heuristic arguments they suggested

DRR�x� =
D

�1 + r��x�2
. �5�

Equation �2� can be considered as the Smoluchowski equa-
tion for diffusion in the entropy potential U�x� defined as

U�x� = − kBT ln
A�x�
A�x0�

, �6�

where kB and T are the Boltzmann constant and the absolute
temperature, and U�x� at x=x0 is taken to be zero, U�x0�=0.
Potentials U�x� with high and low entropy barriers are shown
in Fig. 1. Since our system is periodic, it follows from Eqs.
�4�–�6� that both U�x� and D�x� are periodic functions of x,
U�x+ l�=U�x� and D�x+ l�=D�x�. Therefore, we can find Deff

using the Lifson–Jackson formula,7 which is an exact result
for the one-dimensional Smoluchowski equation with peri-
odic U�x� and D�x�. According to this formula Deff is given
by

Deff
−1 = ��D�x�A�x��−1�A�x� , �7�

where �f�x�= �1 / l��0
l f�x�dx. We use Eq. �7� to obtain three

different expressions for Deff.
Assuming that D�x�=D we find Deff

FJ , which corresponds
to the FJ equation

D

Deff
FJ = � 1

A�x���A�x� =
2 + �a/R�2

6�1 − �a/R�2
ln

1 + �1 − �a/R�2

1 − �1 − �a/R�2
.

�8�

Using DZw�x� �Eq. �4��, we obtain Deff
Zw given by

D

Deff
ZW =

D

Deff
FJ +

1

2
� r��x�2

A�x� ��A�x�

=
2 + �a/R�2

12 � 1

�a/R�2

+
3

2�1 − �a/R�2
ln

1 + �1 − �a/R�2

1 − �1 − �a/R�2� . �9�

Respectively, DRR�x� in Eq. �5� leads to Deff
RR given by

D

Deff
RR = ��1 − r��x�2

A�x� ��A�x� =
2 + �a/R�2

3�a/R�
. �10�

The results in Eqs. �8�–�10� were obtained assuming that the
entropy barrier is low and the difference R−a is small com-
pared to R. It is interesting to compare the behavior predicted
by these equations in the opposite limit when a→0 and the
entropy barrier is high, with Deff

BZS in Eq. �1�, which is as-
ymptotically exact in this limit. Comparison shows that
Deff

FJ /Deff
BZS→�, Deff

Zw /Deff
BZS→0, Deff

RR /Deff
BZS→� /4. Thus, Deff

RR

in Eq. �10� is a good candidate for a unique formula that

covers the entire range of a /R, 0�a /R�1, while both Deff
FJ

and Deff
Zw fail as a /R→0.

We compare different expressions for Deff �Eqs. �1� and
�8�–�10��, with Deff

sim found in Brownian dynamics simula-
tions. Numerically we compute the mean squared displace-
ment along the channel axis of 2.5�104 particles as a func-
tion of time, ��x2�t�= ��x�t�−x�0��2, assuming that the
particle starting points are uniformly distributed over the
cavity. We determine Deff

sim from the long-time behavior of
��x2�t�. The results presented in Fig. 2 show that Deff

sim is in
excellent agreement with Deff

BZS for a /R�0.1, reasonably
well described by both Deff

BZS and Deff
RR for a /R=0.2, and close

to Deff
RR for a /R�0.3.
To summarize, Deff

RR in Eq. �10� found on the basis of the
generalized Fick–Jacobs equation �Eq. �2�� with D�x� given
by the RR formula �Eq. �5�� provides a reasonably good
approximation for Deff over the entire range of the size of the
aperture. For small windows �high entropy barriers� Deff

sim

found numerically is in excellent agreement with Deff
BZS in Eq.

�1�. We hope that the results of our analysis will be of use
when interpreting experiments on controlled drug release and
migration in porous media.
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FIG. 2. Effective diffusion constants found numerically �circles� and pre-
dicted by Eqs. �1� and �8�–�10� �solid curves�. The inset shows the ratio of
Deff

BZS and Deff
RR predicted by Eqs. �1� and �10�, respectively, to Deff

sim from
�a /R�=0.025 to �a /R�=0.3.
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