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Brownian dynamics simulations of the particle diffusing in a long conical tube �the length of the
tube is much greater than its smallest radius� are used to study reduction of the three-dimensional
diffusion in tubes of varying cross section to an effective one-dimensional description. The authors
find that the one-dimensional description in the form of the Fick-Jacobs equation with a
position-dependent diffusion coefficient, D�x�, suggested by Zwanzig �J. Phys. Chem. 96, 3926
�1992��, with D�x� given by the Reguera-Rubí formula �Phys. Rev. E 64, 061106 �2001��, D�x�
=D /�1+R��x�2, where D is the particle diffusion coefficient in the absence of constraints, and R�x�
is the tube radius at x, is valid when �R��x���1. When �R��x���1, higher spatial derivatives of the
one-dimensional concentration in the effective diffusion equation cannot be neglected anymore as
was indicated by Kalinay and Percus �J. Chem. Phys. 122, 204701 �2005��. Thus the reduction to
the effective one-dimensional description is a useful tool only when �R��x���1 since in this case one
can apply the powerful standard methods to analyze the resulting diffusion equation. © 2007
American Institute of Physics. �DOI: 10.1063/1.2719193�

I. INTRODUCTION

The problem of diffusion in a tube of varying cross sec-
tion arises in different contexts. Examples include diffusion
of ions and macromolecular solutes through the channels in
biological membranes,1 transport in zeolites2 and nanostruc-
tures of complex geometry,3 controlled drug release,4 and
diffusion in man-made periodic porous materials.5 It is intu-
itively appealing to formulate the problem as one dimen-
sional, i.e., in terms of the effective one-dimensional concen-
tration of diffusing molecules that satisfies a one-
dimensional diffusion equation. However, reduction of the
three-dimensional diffusion equation with reflecting bound-
ary condition on the wall of the tube to the effective one-
dimensional one is a tricky problem, which has been dis-
cussed in the literature for a long time.6,7 Real progress in
understanding this reduction has been made in recent papers
by Zwanzig,8 Reguera and Rubí,9 and Kalinay and
Percus.10–13

The present paper deals with diffusion in a cylindrical
tube of varying cross section. Local concentration of diffus-
ing solute molecules, C�x ,y ,z , t�, satisfies the diffusion equa-
tion

�C�x,y,z,t�
�t

= D� �2

�x2 +
�2

�y2 +
�2

�z2�C�x,y,z,t� , �1.1�

where D is the solute diffusion coefficient in space with no
constraints, with reflecting boundary condition on the wall of
the tube. The description dramatically simplifies if one as-

sumes that the distribution of the solute in any cross section
of the tube is uniform as it is at equilibrium. The point is that
this assumption allows one to reduce the three-dimensional
problem with a complex boundary to the one-dimensional
problem of diffusion along the tube axis in the presence of an
entropy potential.8

Directing the x axis along the centerline of the tube and
denoting the cross-section area of the tube at x by A�x� one
can introduce the effective one-dimensional concentration of
the solute, c�x , t�,

c�x,t� = 	
A�x�

C�x,y,z,t�dydz . �1.2�

When distributions in the cross sections are uniform, this
concentration satisfies the Fick-Jacobs �FJ� equation6

�c�x,t�
�t

= D
�

�x

A�x�

�

�x
� c�x,t�

A�x� � , �1.3�

which is the Smoluchowski equation for diffusion in the en-
tropy potential U�x� defined as8

U�x� = − kBT ln
A�x�
A�x0�

, �1.4�

where kB and T are the Boltzmann constant and the absolute
temperature, and U�x� at x=x0 is taken to be zero.

Reduction to the one-dimensional description based on
the local equilibrium assumption is obviously oversimplified.
Zwanzig derived a corrected form of the FJ equation in
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which small deviations from local equilibrium are taken into
account.8 Assuming that the tube radius, R�x�, does not
change too fast, i.e., �R��x���1, he showed that c�x , t� satis-
fies the conservation probability equation

�c�x,t�
�t

= −
�j�x,t�

�x
, �1.5�

in which the flux, j�x , t�, is given by

j�x,t� = − A�x�D�x�
�

�x
� c�x,t�

A�x� � . �1.6�

The expression for the position-dependent effective diffusion
coefficient, D�x�, derived by Zwanzig, has the form

DZw�x� = D�1 −
1

2
R��x�2� �

D

1 + �1/2�R��x�2 . �1.7�

Later Reguera and Rubí generalized Zwanzig’s result. Based
on heuristic arguments they suggested that D�x� entering into
Eq. �1.6� is given by9

DR−R�x� =
D

�1 + R��x�2
. �1.8�

The approximate expression for the flux in Eq. �1.6� con-
tains only the first spatial derivative of c�x , t�. However,
based on general ideas one might expect that the exact ex-
pression for the flux obtained by reduction to the one-
dimensional description must contain all derivatives,
�kc�x , t� /�xk, k=1,2 , . . .. Such an expression has been ob-
tained by Kalinay and Percus.10–13 Based on their analysis
we can write the flux as

j�x,t� = − A�x�D̂�x,
�

�x
� �

�x
� c�x,t�

A�x� � , �1.9�

where we have introduced the operator D̂�x ,� /�x� which we
will call the diffusivity operator.

To write an expression for this operator we first assume
that diffusion in the tube is highly anisotropic: it occurs
much slower along the tube axis than in the normal direction
so that corresponding diffusion coefficients, Dx and D�, sat-
isfy �=Dx /D��1. Then the diffusivity operator can be writ-
ten as

D̂�x,� �

�x
��� = Dx�1 − �

k=0

�

�k+1�k�x,��
�k

�xk� , �1.10�

where functions �k�x ,�� are also expressed as Taylor series in

�. The first three terms of the � expansion of D̂�x ,� /�x ���
are13

D̂�x,� �

�x
��� = Dx
1 −

�

2
R�2 −

�2R�

24
�R2R� + RR�R�

− 7R�3 + R�RR� + R�2�
�

�x
� . �1.11�

The diffusivity operator entering into Eq. �1.9� is the opera-
tor in Eq. �1.10� with Dx=D and �=1. The diffusivity opera-
tor reduces to DZw�x� in Eq. �1.7� if one approximates the
infinite sum in Eq. �1.10� by the first two terms. This is

justified when �R��x���1 �in spite of the fact that �=1� since
Zwanzig’s result gives the leading correction due to the de-
viation from local equilibrium in this limiting case.

In Ref. 13 Kalinay and Percus consider the stationary
flux through a long tube of varying cross section at fixed
concentrations of the molecules at the tube ends. They show
that the general relation between the stationary flux jst and
the stationary concentration cst�x�,

jst = − A�x�D̂�x,
�

�x
� �

�x
� cst�x�

A�x� � , �1.12�

dramatically simplifies. The infinite sum of the derivatives of
cst�x� /A�x� can be summed up and the stationary flux can be
written in the conventional form

jst = − A�x�Dst�x�
�

�x
� cst�x�

A�x� � . �1.13�

The effective position-dependent diffusion coefficient Dst�x�
can be found solving the equation

A�x�D̂�x,
�

�x
�� 1

A�x�Dst�x�� = 1. �1.14�

Introducing the inverse diffusivity operator, D̂�x ,� /�x�−1,
one can write the solution to Eq. �1.14� as

1

Dst�x�
= A�x�D̂�x,

�

�x
�−1� 1

A�x�� . �1.15�

Kalinay and Percus show that for a long conical tube
with R�x�=R�xL�+��x−xL�, where R�xL� is the tube radius at
x=xL and �=R��x� is a constant, Dst�x�=const, given by the
formula suggested by Reguera and Rubí, Eq. �1.8�,

Dst�x� =
D

�1 + �2
. �1.16�

Note that a conical tube may be considered as long when its
length is greater than variation of its radius, i.e., when �
�1.

Reduction to the effective one-dimensional diffusion
equation is a useful tool to analyze diffusion in a tube of
varying cross section only if this equation is not too compli-
cated. In this respect the conventional form of the one-
dimensional diffusion equation, Eqs. �1.5� and �1.6�, has an
important advantage over the generalized form, Eqs. �1.5�,
�1.9�, and �1.10�. The point is that powerful techniques have
been developed to analyze the conventional diffusion equa-
tion, while there are no standard methods of analysis of the
generalized version. The purpose of this study is to establish
the range of applicability of the reduction to the conventional
form of the diffusion equation and to indicate geometrical
constraints under which such a reduction is justified. It seems
natural to formulate the constraints in terms of R��x�. We will
see that although initially Zwanzig8 showed that the reduc-
tion is justified only when �R��x���1, in fact, the range of its
applicability is much broader, �R��x���1. Understanding
these constraints seems important for potential applications
of the effective one-dimensional diffusion equation, for ex-
ample, in studies of diffusion in quasi-one-dimensional peri-
odic porous structures.14
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In the present paper we report on our numerical study of
the reduction to the effective one-dimensional description us-
ing Brownian dynamics simulations. Our goal is to under-
stand �i� under which conditions one can neglect higher spa-
tial derivatives of c�x , t� and use conventional expression for
the flux given in Eq. �1.6� and �ii� the relation between the
effective diffusion coefficient found numerically and those
given by the Zwanzig and Reguera-Rubí formulas, Eqs. �1.7�
and �1.8�. Our main results are as follows. One can use the
conventional expression for the flux in Eq. �1.6� with D�x�
given in Eq. �1.8� when �R��x���1. For larger values of
�R��x�� higher spatial derivatives of c�x , t� cannot be ne-
glected. Note that even when �R��x��=1 Eqs. �1.7� and �1.8�
lead to close values of D�x�: DZw�x��0.66D, DR−R�x�
�0.71D, which are not much less than D.

II. RESULTS OF NUMERICAL STUDY

To study the reduction to the effective one-dimensional
description we run Brownian dynamics simulations in the
long conical tube of length L shown in Fig. 1. The tube
radius, R�x�, is given by

R�x� = 1 + �x, 0 � x � L , �2.1�

where we have chosen the radius of the narrow end of the
tube as a unit length and �=R��x� is a positive constant, �
	0. A cylindrical tube of unit radius corresponds to �=0.
Particle trajectories start from one end of the tube, which, as
well as the wall of the tube, is a perfectly reflecting bound-
ary, and are terminated at their first contact with the opposite
end, which is a perfectly absorbing boundary. In simulations
we find the mean first passage times from one end of the tube
to the other, 
��n→w� and 
��w→n�, where n and w denote
the narrow and wide ends of the tube, as functions of � for
L=20. When running simulations we take D=1 and the time
step �t=2�10−4, so that �2D�t=2�10−2�1. Each mean
first passage time is obtained by averaging the first passage
times of 104 trajectories whose starting points are uniformly
distributed over the reflecting end of the tube. To estimate the
accuracy of our numerical results we run 105 trajectories in
the cylindrical tube ��=0� and in the conical tube with �
=2. We divide the entire set of trajectories into the subsets of
104 trajectories and determine the mean first passage time for
each subset. For the cylindrical tube these times are com-
pared with the exact value, L2 / �2D�, while for the conical
tube the times are compared with the mean first passage time

found by averaging the times of all 105 trajectories. The
comparison shows that the relative error of the first passage
times found in our simulations is less than 2% in both cases.

The mean first passage times found in simulations are
used to determine the effective diffusion coefficients, D��n
→w� and D��w→n�, assuming that the flux entering into Eq.
�1.5� is given by the conventional expression in Eq. �1.6�. We
chose the conical geometry of the tube because for this ge-
ometry R��x�=�=const and, as a consequence, the effective
diffusion coefficient, D�x�, in Eq. �1.6� is constant. The fact
that the diffusion coefficient is independent of x allows us to
use standard simple expressions for the first passage times,


��n → w� =
L2

6D��n → w�
3 + �L

1 + �L
�2.2�

and


��w → n� =
L2

6D��w → n�
�3 + 2�L� . �2.3�

Respectively, the diffusion coefficients for transitions in both
directions are

D��n → w� =
L2

6
��n → w�
3 + �L

1 + �L
�2.4�

and

D��w → n� =
L2

6
��w → n�
�3 + 2�L� . �2.5�

The ratio D��w→n� /D��n→w�, determined from our simu-
lations of the first passage times according to Eqs. �2.4� and
�2.5�, may be considered as an indicator whether the conven-
tional expression for the flux is applicable or not. When the
expression is applicable the two diffusion coefficients are
equal and their ratio must be unity. Deviation of the ratio
from unity indicates that the conventional expression for the
flux is inapplicable, and higher spatial derivatives of c�x , t�
cannot be neglected.

The results of our simulations are presented in Fig. 2
which shows the ratio of 
��n→w� and 
��w→n� to the
corresponding mean first passage time in the cylindrical tube
of uniform cross section given by L2 / �2D�. The squares rep-
resent our numerical results while solid curves show the de-
pendences obtained on the basis of the Fick-Jacobs equation,
Eq. �1.3�, and its modified version, Eqs. �1.5� and �1.6�, with
D�x� given in Eqs. �1.7� and �1.8�, as indicated by letters near
the curves. As might be expected 
��w→n� monotonously
increases with � �see Fig. 2�a��. This happens because both
the entropic repulsion and slowdown of diffusion lead to the
increase of 
��w→n� with �. Figure 2�a� shows that apply-
ing the Reguera-Rubí formula in Eq. �1.8� one can predict
variation of 
��w→n� over a broad range of times.

In contrast to the monotonic growth of 
��w→n� with �,
the � dependence of 
��n→w� is nonmonotonic. This can be
understood if one considers the effect of the entropy poten-
tial which pulls the particle towards the wider end that leads
to the decrease of 
��n→w� at small �. In the opposite lim-
iting case, �→�, the problem reduces to that of one-
dimensional diffusion. For this reason, 
��n→w� returns to

FIG. 1. Conical tube used in our Brownian dynamics simulations. The local
radius of the tube, R�x�, is given by Eq. �2.1�.
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its value for the cylindrical tube of uniform cross section that
corresponds to �=0. Equation �2.2� shows that the estima-
tion based on the Fick-Jacobs equation, which neglects slow-
down of diffusion with �, leads to the monotonic decrease of
the ratio 2D
��n→w� /L2 from unity at �=0 to 1/3 as �
→� �Fig. 2�b��. The slowdown of diffusion leads to the in-
crease of 
��n→w�. Competition between the decrease of
this time with � due to the entropy potential and its increase
with � due to the slowdown of diffusion determines the non-
monotonic behavior of the ratio 2D
��n→w� /L2 shown in
Fig. 2�b�.

From this figure one can see that the prediction based on
the conventional expression for the flux with D�x� given by
the Reguera-Rubí formula is in better agreement with the
numerical results than the two other predictions shown in the
figure. One can also see that even the best of the three pre-
dictions fails at ��1. The point is that Eq. �2.2� with D�x�
given in Eq. �1.8� leads to incorrect asymptotic behavior of

��n→w� as �→�. As we discussed earlier, in this limiting
case 
��n→w� tends to its value in the tube of uniform cross
section, L2 / �2D�, that corresponds to �=0, while Eq. �2.2�
predicts the linear growth of 
��n→w� with � at large �,

��n→w���L2 / �6D� as �→�.

To evaluate the range of applicability of the conventional

expression for the flux, in Fig. 3 we show the ratio of the
diffusion coefficients obtained by means of Eqs. �2.4� and
�2.5� using the mean first passage times found in simulation.
One can see that the ratio monotonically increases with �.
For �=1 the ratio is approximately 1.09. We consider �=1
as the upper boundary for the range of applicability of the
conventional expression for the flux with the Reguera-Rubí
formula for the diffusion coefficient. In Fig. 4 we show the
ratios of the two diffusion coefficients to DR−R. This figure
shows that D��n→w� deviates from DR−R much stronger
than D��w→n�. Nevertheless, the relative deviation does not
exceed 10% for ��1.

In summary, our numerical study of diffusion in a long
conical tube �the length of the tube is much greater than its
smallest radius� of varying cross section has shown that the
reduction to the effective one-dimensional description is jus-
tified when �R��x���1, where R�x� is the tube radius at x.
When this condition is fulfilled, one can use the conventional
expression for the flux, Eq. �1.6�, with D�x� given in Eq.
�1.8�. Such a reduction provides significant simplification of
the analysis of diffusion in periodic porous structures dis-

FIG. 2. The ratios of the mean first passage times between the two ends of
the conical tube, 
��w→n� and 
��n→w�, to the mean first passage time in
a tube of uniform cross section, L2 / �2D�, as functions of � �panels �a� and
�b�, respectively; see the details in the text�.

FIG. 3. The ratio of the diffusion coefficients, D��n→w� /D��w→n�, as a
function of �.

FIG. 4. The ratios of the diffusion coefficients, D��n→w� and D��w→n� to
DR−R=D /�1+�2, as functions of �. Squares and diamonds represent D��n
→w� /DR−R and D��w→n� /DR−R, respectively.
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cussed recently14 on the basis of the modified Fick-Jacobs
equation. When this approach fails, diffusion in periodic po-
rous structures can be analyzed using an alternative
approach,15 which in a sense is complementary to the first
one.
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