logo

Astronomy Picture of the Day
Search Results for "Black Hole"




Found 196 items.

Thumbnail image of picture found for this day. APOD: 2008 December 11 - At the Center of the Milky Way
Explanation: At the center of our Milky Way Galaxy lies a supermassive black hole. Once a controversial claim, this conclusion is now solidly based on 16 years of observations that map the orbits of 28 stars very near the galactic center. Using European Southern Observatory telescopes and sophisticated near infrared cameras, astronomers patiently measured the positions of the stars over time, following one star, designated S2, through a complete orbit as it came within about 1 light-day of the center of the Milky Way. Their results convincingly show that S2 is moving under the influence of the enormous gravity of a compact, unseen object -- a black hole with 4 million times the mass of the Sun. Their ability to track stars so close to the galactic center accurately measures the black hole's mass and also determines the distance to the center to be 27,000 light-years. This deep, near-infrared image shows the crowded inner 3 light-years of the central Milky Way. Spectacular time-lapse animations of the stars orbiting within light-days of the galactic center can be found here.

Thumbnail image of picture found for this day. APOD: 2008 November 10 - Our Galaxy's Central Molecular Zone
Explanation: The central region of our Milky Way Galaxy is a mysterious and complex place. Pictured here in radio and infrared light, the galaxy's central square degree is highlighted in fine detail. The region is known as the Central Molecular Zone. While much of the extended emission is due to dense gas laced with molecules, also seen are emission nebulas lit up by massive young stars, glowing supernova remnants, and the curving Galactic Center Radio Arc in purple. The identity and root cause for many other features remains unknown. Besides a massive black hole named Sgr A*, the Galactic Center houses the galaxy's most active star forming region. This image is not just interesting scientifically. It's esthetic beauty won first prize this year in the AUI/NRAO Image Contest.

Thumbnail image of picture found for this day. APOD: 2008 August 22 - Active Galaxy NGC 1275
Explanation: Active galaxy NGC 1275 is the central, dominant member of the large and relatively nearby Perseus Cluster of Galaxies. A prodigious source of x-rays and radio emission, NGC 1275 accretes matter as entire galaxies fall into it, ultimately feeding a supermassive black hole at the galaxy's core. This stunning visible light image from the Hubble Space Telescope shows galactic debris and filaments of glowing gas, some up to 20,000 light-years long. The filaments persist in NGC 1275, even though the turmoil of galactic collisions should destroy them. What keeps the filaments together? Recent work indicates that the structures, pushed out from the galaxy's center by the black hole's activity, are held together by magnetic fields. To add x-ray data from the Chandra Observatory and radio data from the Very Large Array to the Hubble image, just slide your cursor over the picture. In the resulting composite, x-rays highlight the shells of hot gas surrounding the center of the galaxy, with radio emission filling giant bubble-shaped cavities. Also known as Perseus A, NGC 1275 spans over 100,000 light years and lies about 230 million light years away.

Thumbnail image of picture found for this day. APOD: 2008 August 11 - Black Hole Candidate Cygnus X-1
Explanation: Is that a black hole? Quite possibly. The Cygnus X-1 binary star system contains one of the best candidates for a black hole. The system was discovered because it is one of the brightest X-ray sources on the sky, shining so bright it was detected by the earliest rockets carrying cameras capable of seeing the previously unknown X-ray sky. The star's very name indicates that it is the single brightest X-ray source in the constellation of the Swan Cygnus. Data indicate that a compact object there contains about nine times the mass of the Sun and changes its brightness continually on several time scales, at least down to milliseconds. Such behavior is expected for a black hole, and difficult to explain with other models. Pictured above is an artistic impression of the Cygnus X-1 system. On the left is the bright blue supergiant star designated HDE 226868, which is estimated as having about 30 times the mass of our Sun. Cygnus X-1 is depicted on the right, connected to its supergiant companion by a stream of gas, and surrounded by an impressive accretion disk. The bright star in the Cygnus X-1 system is visible with a small telescope. Strangely, the Cygnus X-1 black hole candidate appears to have formed without a bright supernova explosion.

Thumbnail image of picture found for this day. APOD: 2008 June 27 - M81: Feeding a Black Hole
Explanation: This impressive color composite shows spiral galaxy M81 across the electromagnetic spectrum. It combines X-ray data (blue) from the Chandra Observatory, infrared data (pink) from the Spitzer Space Telescope, and an ultraviolet image (purple) from the GALEX satellite, with a visible light (green) Hubble image. The inset highlights X-rays from some of M81's black holes, including black holes in binary star systems with about 10 times the mass of the sun, as well as the central, supermassive black hole of over 70 million solar masses. Comparing computer models of the giant black hole's energy output to the multiwavelength data suggests that feeding that monster is relatively simple -- energy and radiation is generated as material in the central region swirls inwards forming an accretion disk. In fact, the process otherwise appears to be just like the accretion process feeding M81's stellar mass black holes, even though the central black hole is millions of times more massive. M81 itself is about 70,000 light-years across and only 12 million light-years away in the northern constellation Ursa Major.

Thumbnail image of picture found for this day. APOD: 2008 June 22 - Barred Spiral Galaxy NGC 1300
Explanation: Big, beautiful, barred spiral galaxy NGC 1300 lies some 70 million light-years away on the banks of the constellation Eridanus. This Hubble Space Telescope composite view of the gorgeous island universe is one of the largest Hubble images ever made of a complete galaxy. NGC 1300 spans over 100,000 light-years and the Hubble image reveals striking details of the galaxy's dominant central bar and majestic spiral arms. In fact, on close inspection the nucleus of this classic barred spiral itself shows a remarkable region of spiral structure about 3,000 light-years across. Unlike other spiral galaxies, including our own Milky Way, NGC 1300 is not presently known to have a massive central black hole.

Thumbnail image of picture found for this day. APOD: 2008 April 27 - The Galactic Center Radio Arc
Explanation: What causes this unusual structure near the center of our Galaxy? The long parallel rays slanting across the top of the above radio image are known collectively as the Galactic Center Radio Arc and jut straight out from the Galactic plane. The Radio Arc is connected to the Galactic center by strange curving filaments known as the Arches. The bright radio structure at the bottom right likely surrounds a black hole at the Galactic center and is known as Sagittarius A*. One origin hypothesis holds that the Radio Arc and the Arches have their geometry because they contain hot plasma flowing along lines of constant magnetic field. Images from the Chandra X-ray Observatory appear to show this plasma colliding with a nearby cloud of cold gas.

Thumbnail image of picture found for this day. APOD: 2008 January 10 - Active Galaxy Centaurus A
Explanation: A mere 11 million light-years away, Centaurus A is a giant elliptical galaxy - the closest active galaxy to Earth. This remarkable composite view of the galaxy combines image data from the x-ray ( Chandra), optical(ESO), and radio(VLA) regimes. Centaurus A's central region is a jumble of gas, dust, and stars in optical light, but both radio and x-ray telescopes trace a remarkable jet of high-energy particles streaming from the galaxy's core. The cosmic particle accelerator's power source is a black hole with about 10 million times the mass of the Sun coincident with the x-ray bright spot at the galaxy's center. Blasting out from the active galactic nucleus toward the upper left, the energetic jet extends about 13,000 light-years. A shorter jet extends from the nucleus in the opposite direction. Other x-ray bright spots in the field are binary star systems with neutron stars or stellar mass black holes. Active galaxy Centaurus A is likely the result of a merger with a spiral galaxy some 100 million years ago.

Thumbnail image of picture found for this day. APOD: 2007 December 16 - The Holographic Principle
Explanation: Is this picture worth a thousand words? According to the Holographic Principle, the most information you can get from this image is about 3 x 1065 bits for a normal sized computer monitor. The Holographic Principle, yet unproven, states that there is a maximum amount of information content held by regions adjacent to any surface. Therefore, counter-intuitively, the information content inside a room depends not on the volume of the room but on the area of the bounding walls. The principle derives from the idea that the Planck length, the length scale where quantum mechanics begins to dominate classical gravity, is one side of an area that can hold only about one bit of information. The limit was first postulated by physicist Gerard 't Hooft in 1993. It can arise from generalizations from seemingly distant speculation that the information held by a black hole is determined not by its enclosed volume but by the surface area of its event horizon. The term "holographic" arises from a hologram analogy where three-dimension images are created by projecting light though a flat screen. Beware, other people looking at the above image may not claim to see 3 x 1065 bits -- they might claim to see a teapot.

Thumbnail image of picture found for this day. APOD: 2007 September 6 - Time Tunnel
Explanation: Spiky stars are nearby, but fuzzy galaxies are strewn far across the Universe in this cosmic view. Spanning about 1/2 degree on the sky, the pretty picture is the result of astronomer Johannes Schedler's project to look back in time, toward a quasar 12.7 billion light-years away. The quasar is just visible in the full resolution image at the position marked by short vertical lines (center). The intrinsically bright nucleus of a young, active galaxy powered by a supermassive black hole, the quasar was recently identified as one of the most distant objects known. Since light travels at a finite speed, the galaxies receding into the distance are seen as they were in the increasingly remote past. The quasar appears as it did about 12.7 billion years ago, when the Universe was just 7 percent of its present age. Of course, the expansion of the Universe has redshifted the light. Schedler added image data extending to the near-infrared, acquired by collaborator Ken Crawford, to detect the distant quasar, with a measured redshift of 6.04.

Thumbnail image of picture found for this day. APOD: 2007 August 27 - Huge Void Implicated in Distant Universe
Explanation: What has created this huge empty volume in the universe? No one is yet sure, and even the extent of the estimated billion-light year void is being researched. The void is not a hole in space like a black hole, but rather a vast region of the universe that appears to be mostly devoid of normal matter and even dark matter. The void is still thought to contain dark energy, though, and is clearly traversable by light. The void's existence is being postulated following scientific curiosity about how unusually cold spots came to appear on WMAP's map of cosmic microwave background (CMB) radiation. One possibility was that this CMB region was not actually very cold but light from the spot somehow became more cosmologically redshifted than normal along the way. Other voids in the universe are known to exist, but this void appears to have an unusually large gravitational effect, and so might possibly be the largest in our entire visible universe. Investigating this, a recent study found an unusually low number of cosmic radio sources between Earth and the CMB cold spot, which led to the inference of this giant void. An artist's depiction of the huge cosmic void is shown above.

Thumbnail image of picture found for this day. APOD: 2007 July 29 - The Center of Centaurus A
Explanation: A fantastic jumble of young blue star clusters, gigantic glowing gas clouds, and imposing dark dust lanes surrounds the central region of the active galaxy Centaurus A. This mosaic of Hubble Space Telescope images taken in blue, green, and red light has been processed to present a natural color picture of this cosmic maelstrom. Infrared images from the Hubble have also shown that hidden at the center of this activity are what seem to be disks of matter spiraling into a black hole with a billion times the mass of the Sun! Centaurus A itself is apparently the result of a collision of two galaxies and the left over debris is steadily being consumed by the black hole. Astronomers believe that such black hole central engines generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. But for an active galaxy Centaurus A is close, a mere 10 million light-years away, and is a relatively convenient laboratory for exploring these powerful sources of energy.

Thumbnail image of picture found for this day. APOD: 2007 June 30 - Jumbled Galaxy Centaurus A
Explanation: At the center of this sharp skyscape, Centaurus A seems to be a fantastic jumble of old yellow stars, young blue star clusters, and imposing dark dust lanes. Spanning over 60,000 light-years, the peculiar elliptical galaxy is apparently the result of a collision of two otherwise normal galaxies. The left over cosmic debris is steadily being consumed by a black hole with a billion times the mass of the Sun which lies at the center of Centaurus A. It's likely that such black hole central engines generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. For an active galaxy Centaurus A is close, a mere 10 million light-years away, and is well-studied by earthbound astronomers.

Thumbnail image of picture found for this day. APOD: 2007 May 28 - A Hole in Mars
Explanation: Black spots have been discovered on Mars that are so dark that nothing inside can be seen. Quite possibly, the spots are entrances to deep underground caves capable of protecting Martian life, were it to exist. The unusual hole pictured above was found on the slopes of the giant Martian volcano Arsia Mons. The above image was captured three weeks ago by the HiRISE instrument onboard the Mars Reconnaissance Orbiter currently circling Mars. The holes were originally identified on lower resolution images from the Mars Odyssey spacecraft, The above hole is about the size of a football field and is so deep that it is completely unilluminated by the Sun. Such holes and underground caves might be prime targets for future spacecraft, robots, and even the next generation of human interplanetary explorers.

Thumbnail image of picture found for this day. APOD: 2007 May 24 - The Tulip in the Swan
Explanation: This expansive (1-degree wide) telescopic view looks out along the plane of our Milky Way Galaxy toward the nebula rich constellation Cygnus the Swan. It is centered on a bright hydrogen emission region recorded in the 1959 catalog by astronomer Stewart Sharpless as Sh2-101. About 8,000 light-years distant the nebula is popularly known as the Tulip Nebula, understandably not the only cosmic cloud to evoke the imagery of flowers. Complex and beautiful in visible light, the area also includes one of the brightest, most famous sources in the x-ray sky, Cygnus X-1. Discovered in the early 1970s, Cygnus X-1 is a bizarre binary system consisting of a massive, hot, supergiant star (seen here) in close orbit with a stellar mass black hole. The Cygnus X-1 system is also estimated to lie a comfortable 8,000 light-years away.

Thumbnail image of picture found for this day. APOD: 2007 May 10 - SN 2006GY: Brightest Supernova
Explanation: The stellar explosion cataloged as supernova SN 2006gy shines in this wide-field image (left) of its host galaxy, NGC 1260, and expanded view (upper right panel) of the region surrounding the galaxy's core. In fact, given its estimated distance of 240 million light-years, SN 2006gy was brighter than, and has stayed brighter longer than, any previously seen supernova. The Chandra observations in the lower right panel establish the supernova's x-ray brightness and lend strong evidence to the theory that SN 2006gy was the death explosion of a star well over 100 times as massive as the Sun. In such an exceptionally massive star, astronomers suspect an instability producing matter-antimatter pairs led to the cosmic blast and obliterated the stellar core. Thus, unlike in other massive star supernovae, neither neutron star, or even black hole, would remain. Intriguingly, analogs in our own galaxy for SN 2006gy's progenitor may include the well-known, extremely massive star Eta Carinae.

Thumbnail image of picture found for this day. APOD: 2007 April 18 - Barred Spiral Galaxy NGC 1672
Explanation: Many spiral galaxies have bars across their centers. Even our own Milky Way Galaxy is thought to have a modest central bar. Prominently barred spiral galaxy NGC 1672, pictured above, was captured in spectacular detail in this recently released image taken by the orbiting Hubble Space Telescope. Visible are dark filamentary dust lanes, young clusters of bright blue stars, red emission nebulas of glowing hydrogen gas, a long bright bar of stars across the center, and a bright active nucleus that likely houses a supermassive black hole. Light takes about 60 million years to reach us from NGC 1672, which spans about 75,000 light years across. NGC 1672, which appears toward the constellation of the Swordfish (Dorado), is being studied to find out how a spiral bar contributes to star formation in a galaxy's central regions.

Thumbnail image of picture found for this day. APOD: 2007 March 28 - NGC 1365: Majestic Island Universe
Explanation: Barred spiral galaxy NGC 1365 is truly a majestic island universe some 200,000 light-years across. Located a mere 60 million light-years away toward the chemical constellation Fornax, NGC 1365 is a dominant member of the well-studied Fornax galaxy cluster. This impressively sharp color image shows intense star forming regions at the ends of the bar and along the spiral arms, as well as details of dust lanes cutting across the galaxy's bright core. At the core lies a supermassive black hole. Astronomers think NGC 1365's prominent bar plays a crucial role in the galaxy's evolution, drawing gas and dust into a star-forming maelstrom and ultimately feeding material into the central black hole.

Thumbnail image of picture found for this day. APOD: 2007 January 14 - Sgr A*: Fast Stars Near the Galactic Center
Explanation: Why are these stars moving so fast? Shown above is a time-lapse movie in infrared light detailing how stars in the central light-year of our Galaxy have moved over the past eight years. The yellow mark at the image center represents the location of a peculiar radio source named Sgr A*. If these fast stars are held to the Galactic Center by gravity, then the central object exerting this gravity must be both compact and massive. Analysis of the stellar motions indicates that over one million times the mass of our Sun is somehow confined to a region less than a fifth of a light-year across. Astronomers interpret these observations as strong evidence that the center of our Galaxy is home to a very massive black hole.

Thumbnail image of picture found for this day. APOD: 2006 December 1 - In the Arms of NGC 1097
Explanation: A smaller companion seems wrapped in the spiral arms of enigmatic galaxy NGC 1097. This amazingly deep image of the peculiar spiral system, also known as Arp 77, actually combines data from two telescopes, one in the northern and one in the southern hemisphere of planet Earth. The faint details revealed include hints of a mysterious jet emerging toward the top of the view. Seen to be about 42,000 light-years from the larger galaxy's center, the companion galaxy is gravitationally interacting with the spiral and will ultimately merge with it. NGC 1097's center also harbors a massive black hole. NGC 1097 is located about 45 million light-years away in the chemical constellation Fornax.

Thumbnail image of picture found for this day. APOD: 2006 August 27 - Barred Spiral Galaxy NGC 1300
Explanation: Big, beautiful, barred spiral galaxy NGC 1300 lies some 70 million light-years away on the banks of the constellation Eridanus. This Hubble Space Telescope composite view of the gorgeous island universe is one of the largest Hubble images ever made of a complete galaxy. NGC 1300 spans over 100,000 light-years and the Hubble image reveals striking details of the galaxy's dominant central bar and majestic spiral arms. In fact, on close inspection the nucleus of this classic barred spiral itself shows a remarkable region of spiral structure about 3,000 light-years across. Unlike other spiral galaxies, including our own Milky Way, NGC 1300 is not presently known to have a massive central black hole.

Thumbnail image of picture found for this day. APOD: 2006 August 10 - Galactic Center Star Clusters
Explanation: If you had x-ray vision, the central regions of our Galaxy would not be hidden from view by cosmic dust clouds. Instead, the Milky Way toward Sagittarius might look something like this. Pleasing to look at, the gorgeous false-color representation of x-ray data from the Chandra Observatory shows high energies in blue, medium in green, and low energy x-rays in red. The mosaic spans about 130 light-years at the 26,000 light-year distance of the Galactic Center. It reveals massive, x-ray emitting star clusters in a crowded environment. In particular, the Galactic Center cluster and the enormous black hole Sagittarius A* are within the bright region near the bottom. Two other star clusters, the Arches, and the Quintuplet lie near the top. Cluster interactions with dense molecular clouds in the region may produce some of the diffuse emission detected in the Chandra x-ray view.

Thumbnail image of picture found for this day. APOD: 2006 July 29 - The Swarm
Explanation: What do you call a group of black holes ... a flock, a brace, a swarm? Monitoring a region around the center of our Galaxy, astronomers have indeed found evidence for a surprisingly large number of variable x-ray sources - likely black holes or neutron stars in binary star systems - swarming around the Milky Way's own central supermassive black hole. Chandra Observatory combined x-ray image data from their monitoring program is shown above, with four variable sources circled and labeled A-D. While four sources may not make a swarm, these all lie within only three light-years of the central supermassive black hole known as Sgr A* (the bright source just above C). Their detection implies that a much larger concentration of black hole systems is present. Repeated gravitational interactions with other stars are thought to cause the black hole systems to spiral inward toward the Galactic Center region.

Thumbnail image of picture found for this day. APOD: 2006 July 16 - The Galactic Center in Infrared
Explanation: The center of our Galaxy is a busy place. In visible light, much of the Galactic Center is obscured by opaque dust. In infrared light, however, dust glows more and obscures less, allowing nearly one million stars to be recorded in the above photograph. The Galactic Center itself appears on the right and is located about 30,000 light years away towards the constellation of Sagittarius. The Galactic Plane of our Milky Way Galaxy, the plane in which the Sun orbits, is identifiable by the dark diagonal dust lane. The absorbing dust grains are created in the atmospheres of cool red-giant stars and grow in molecular clouds. The region directly surrounding the Galactic Center glows brightly in radio and high-energy radiation, and is thought to house a large black hole.

Thumbnail image of picture found for this day. APOD: 2006 July 1 - Wind from a Black Hole
Explanation: Binary star system GRO J1655-40 consists of a relatively normal star about twice as massive as the Sun co-orbiting with a black hole of about seven solar masses. This striking artist's vision of the exotic binary system helps visualize matter drawn from the normal star by gravity and swirling toward the black hole. But it also includes a wind of material escaping from the black hole's accretion disk. In fact, astronomers now argue that Chandra Observatory x-ray data indicate a high-speed wind is being driven from this system's disk by magnetic forces. Internal magnetic fields also help drive material in the swirling disk into the black hole itself. If you had x-ray eyes as good as Chandra's, you could find GRO J1655-40 about 11,000 light-years away in the constellation Scorpius.

Thumbnail image of picture found for this day. APOD: 2006 May 28 - GRO J1655 40: Evidence for a Spinning Black Hole
Explanation: In the center of a swirling whirlpool of hot gas is likely a beast that has never been seen directly: a black hole. Studies of the bright light emitted by the swirling gas frequently indicate not only that a black hole is present, but also likely attributes. The gas surrounding GRO J1655-40, for example, has been found to display an unusual flickering at a rate of 450 times a second. Given a previous mass estimate for the central object of seven times the mass of our Sun, the rate of the fast flickering can be explained by a black hole that is rotating very rapidly. What physical mechanisms actually cause the flickering -- and a slower quasi-periodic oscillation (QPO) -- in accretion disks surrounding black holes and neutron stars remains a topic of much research.

Thumbnail image of picture found for this day. APOD: 2006 May 20 - Elliptical Galaxy M87
Explanation: In spiral galaxies, majestic winding arms of young stars and interstellar gas and dust rotate in a flat disk around a bulging galactic nucleus. But elliptical galaxies seem to be simpler. Lacking gas and dust to form new stars, their randomly swarming older stars, give them an ellipsoidal (egg-like) shape. Still, elliptical galaxies can be very large. Over 120,000 light-years in diameter (larger than our own Milky Way), elliptical galaxy M87 is the dominant galaxy at the center of the Virgo Galaxy Cluster, some 50 million light-years away. M87 is likely home to a supermassive black hole responsible for the high-energy jet of particles emerging from the giant galaxy's central region.

Thumbnail image of picture found for this day. APOD: 2006 April 27 - NGC 4696: Energy from a Black Hole
Explanation: In many cosmic environments, when material falls toward a black hole energy is produced as some of the matter is blasted back out in jets. In fact, such black hole "engines" appear to be the most efficient in the Universe, at least on a galactic scale. This composite image illustrates one example of an elliptical galaxy with an efficient black hole engine, NGC 4696. The large galaxy is the brightest member of the Centaurus galaxy cluster, some 150 million light-years away. Exploring NGC 4696 in x-rays (red) astronomers can measure the rate at which infalling matter fuels the supermassive black hole and compare it to the energy output in the jets to produce giant radio emitting bubbles. The bubbles, shown here in blue, are about 10,000 light-years across. The results confirm that the process is much more efficient than producing energy through nuclear reactions - not to mention using fossil fuels. Astronomers also suggest that as the black hole pumps out energy and heats the surrounding gas, star formation is ultimately shut off, limiting the size of large galaxies like NGC 4696.

Thumbnail image of picture found for this day. APOD: 2006 April 12 - Binary Black Hole in 3C 75
Explanation: The two bright sources at the center of this composite x-ray (blue)/ radio (pink) image are co-orbiting supermassive black holes powering the giant radio source 3C 75. Surrounded by multimillion degree x-ray emitting gas, and blasting out jets of relativistic particles the supermassive black holes are separated by 25,000 light-years. At the cores of two merging galaxies in the Abell 400 galaxy cluster they are some 300 million light-years away. Astronomers conclude that these two supermassive black holes are bound together by gravity in a binary system in part because the jets' consistent swept back appearance is most likely due to their common motion as they speed through the hot cluster gas at 1200 kilometers per second. Such spectacular cosmic mergers are thought to be common in crowded galaxy cluster environments in the distant universe. In their final stages the mergers are expected to be intense sources of gravitational waves.

Thumbnail image of picture found for this day. APOD: 2006 March 4 - The Galaxy Within Centaurus A
Explanation: Peering deep inside Centaurus A, the closest active galaxy to Earth, the Spitzer Space Telescope's penetrating infrared cameras recorded this startling vista in February 2004. About 1,000 light-years across, the twisted cosmic dust cloud apparently shaped like a parallelogram is likely the result of a smaller spiral galaxy falling into the giant Centaurus A. The parallelogram lies along the active galaxy's central band of dust and stars visible in more familiar optical images. Astronomers believe that the striking geometric shape represents an approximately edge-on view of the infalling spiral galaxy's disk in the process of being twisted and warped by the interaction. Ultimately, debris from the ill-fated spiral galaxy should provide fuel for the supermassive black hole lurking at the center of Centaurus A.

Thumbnail image of picture found for this day. APOD: 2006 January 15 - The Sombrero Galaxy from HST
Explanation: Why does the Sombrero Galaxy look like a hat? Reasons include the Sombrero's unusually large and extended central bulge of stars, and dark prominent dust lanes that appear in a disk that we see nearly edge-on. Billions of old stars cause the diffuse glow of the extended central bulge. Close inspection of the bulge in the above photograph shows many points of light that are actually globular clusters. M104's spectacular dust rings harbor many younger and brighter stars, and show intricate details astronomers don't yet fully understand. The very center of the Sombrero glows across the electromagnetic spectrum, and is thought to house a large black hole. Fifty million-year-old light from the Sombrero Galaxy can be seen with a small telescope towards the constellation of Virgo.

Thumbnail image of picture found for this day. APOD: 2005 December 8 - X-Rays from the Perseus Cluster Core
Explanation: The Perseus Cluster of thousands of galaxies, 250 million light-years distant, is one of the most massive objects in the Universe and the brightest galaxy cluster in the x-ray sky. At its core lies the giant cannibal galaxy Perseus A (NGC 1275), accreting matter as gas and galaxies fall into it. This deep Chandra Observatory x-ray image spans about 300,000 light-years across the galaxy cluster core. It shows remarkable details of x-ray emission from the monster galaxy and surrounding hot (30-70 million degrees C) cluster gas. The bright central source is the supermassive black hole at the core of Perseus A itself. Low density regions are seen as dark bubbles or voids, believed to be generated by cyclic outbursts of activity from the central black hole. The activity creates pressure waves - sound waves on a cosmic scale- that ripple through the x-ray hot gas. Dramatically, the blue-green wisps just above centre in the false-color view are likely x-ray shadows of the remains of a small galaxy falling into the burgeoning Perseus A.

Thumbnail image of picture found for this day. APOD: 2005 October 23 - At the Center of the Milky Way
Explanation: At the center of our Milky Way Galaxy lies a black hole with over 2 million times the mass of the Sun. Once a controversial claim, this astounding conclusion is now virtually inescapable and based on observations of stars orbiting very near the galactic center. Using one of the Paranal Observatory's very large telescopes and a sophisticated infrared camera, astronomers patiently followed the orbit of a particular star, designated S2, as it came within about 17 light-hours of the center of the Milky Way (about 3 times the radius of Pluto's orbit). Their results convincingly show that S2 is moving under the influence of the enormous gravity of an unseen object that must be extremely compact -- a supermassive black hole. This deep near-infrared image shows the crowded inner 2 light-years of the Milky Way with the exact position of the galactic center indicated by arrows. The ability to track stars so close to the galactic center can accurately measure the black hole's mass and perhaps even provide an unprecedented test of Einstein's theory of gravity as astronomers watch a star orbit a supermassive black hole.

Thumbnail image of picture found for this day. APOD: 2005 October 17 - Short Gamma Ray Bursts Localized
Explanation: What causes gamma-ray bursts? The most energetic type of explosions known in the cosmos has been an enigma since discovered over 30 years ago. It now appears that there may not be one unique type of progenitor. Long duration gamma-ray bursts (GRBs) have been localized, over the past few years, to blue regions in the universe rich in star formation. Massive young stars nearing the end of their short lives commonly explode in these regions. Astronomers associate these long duration GRBs, that can last from seconds to minutes, with a type of stellar explosion common in young massive stars. Over the past few months, short duration GRBs have finally been localized and found to occur in different types of regions -- not only blue regions rich in star formation. Many astronomers therefore now theorize that short GRBs, which typically last less than one second, are the result of a different progenitor process than long GRBs. A leading model is that a short GRB will occur when a neutron star either impacts another neutron star or a black hole. Such collisions may occur well after star-forming regions have otherwise burned out. Pictured in the above illustration, two energized neutrons stars finally approach each other in their orbits, a death spiral that might end with a short GRB.

Thumbnail image of picture found for this day. APOD: 2005 October 16 - Astronomy Quilt of the Week
Explanation: Demonstrating her mastery of a traditional astronomical imaging technique quilter and astronomy enthusiast Judy Ross has produced this spectacular composition of "Astronomy Quilt Piece of the Week". Her year-long effort resulted in an arrangement for a six by seven foot quilt consisting of 52 individual pieces (11 inches by 8 inches), one for each week, which she reports were inspired by her steady diet of APOD's daily offerings. Some of the pieces are based on actual pictures, such as the Hubble Space Telescope's view of planet forming AB Aurigae or Bill Keel's image of the nearby Pinwheel Galaxy. Others, with titles like the Blue Carpet Nebula and Duck Contemplates Black Hole, are from her own creative imaginings.

Thumbnail image of picture found for this day. APOD: 2005 October 1 - NGC 613: Spiral of Dust and Stars
Explanation: When morning twilight came to the Paranal Observatory in Chile, astronomers Mark Neeser and Peter Barthel interrupted their search for faint quasars, billions of light-years away. And just for a moment, they used Very Large Telescopes at the European Southern Observatory to appreciate the beauty of the nearby Universe. One result was this stunning view of beautiful barred spiral galaxy NGC 613, a mere 65 million light-years away in the southern constellation Sculptor. Over 100 thousand light-years across, NGC 613 seems to have more than its fair share of spiral arms laced with cosmic dust clouds and bright star forming regions near the ends of a dominant central bar. Radio emission indicates the presence of a massive black hole at the center of NGC 613.

Thumbnail image of picture found for this day. APOD: 2005 July 30 - M106 in Canes Venatici
Explanation: Close to the Great Bear (Ursa Major) and surrounded by the stars of the Hunting Dogs (Canes Venatici), this celestial nebula was discovered in 1781 by the metric French astronomer Pierre Mechain. Later, it was added to the catalog of his friend and colleague Charles Messier as M106. Modern deep telescopic views reveal it to be an island universe -- a spiral galaxy around 30 thousand light-years across located only about 21 million light-years beyond the stars of the Milky Way. Youthful blue star clusters and reddish stellar nurseries trace the striking spiral arms of M106. Seen so clearly in this beautiful image, the galaxy's bright core is also visible across the spectrum from radio to x-rays, making M106 a nearby example of the Seyfert class of active galaxies. The bright core of a Seyfert galaxy is believed to be powered by matter falling into a massive central black hole.

Thumbnail image of picture found for this day. APOD: 2005 July 25 - Unusual Gas Filaments Surround Galaxy NGC 1275
Explanation: How were the unusual gas filaments surrounding galaxy NGC 1275 created? No one is sure. Galaxy NGC 1275 is the central dominant galaxy of the Perseus Cluster of Galaxies, a cluster with many member galaxies visible in the above image. In visible light, NGC 1275 appears to show a spectacular collision between two distinct galaxies. The galaxy and cluster are also bright emitters of X-rays. The unusual gas filaments are shown above in a very specific color of light emitted by hydrogen, here artificially colored pink. Possible origins for the filaments may involve details of the collision between the two galaxies, or alternatively, interactions between a galactic center black hole and the surrounding intracluster gas. NGC 1275, pictured above, spans about 100,000 light years and lies about 230 million light years distant toward the constellation of Perseus.

Thumbnail image of picture found for this day. APOD: 2005 July 19 - A Nearby Supernova in M51
Explanation: One of the nearest supernovas of recent years was discovered late last month in the bright nearby galaxy M51. It is visible on the right of the above before and after images of the picturesque spiral. Can you spot it? The supernova, discovered originally by Wolfgang Kloehr and now dubbed 2005cs, is still near its maximum brightness and visible with a telescope toward the constellation of the Hunting Dogs (Canes Venatici). The supernova has been identified as a Type II but has an unusual brightness history, creating speculation that is similar in nature to the brightest supernova of modern times: 1987A. The progenitor star has been identified as a bright blue star. Although hundreds of supernovas are discovered each year by automated searches, nearby supernova are rare and important because they frequently become bright enough to be studied by many telescopes and are near enough for their (former) host star and immediate surroundings to be spatially resolved. Supernova 2005cs may have left behind a core that has been compressed into a neutron star or black hole.

Thumbnail image of picture found for this day. APOD: 2005 July 17 - The Center of Centaurus A
Explanation: A fantastic jumble of young blue star clusters, gigantic glowing gas clouds, and imposing dark dust lanes surrounds the central region of the active galaxy Centaurus A. This mosaic of Hubble Space Telescope images taken in blue, green, and red light has been processed to present a natural color picture of this cosmic maelstrom. Infrared images from the Hubble have also shown that hidden at the center of this activity are what seem to be disks of matter spiraling into a black hole with a billion times the mass of the Sun! Centaurus A itself is apparently the result of a collision of two galaxies and the left over debris is steadily being consumed by the black hole. Astronomers believe that such black hole central engines generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. But for an active galaxy Centaurus A is close, a mere 10 million light-years away, and is a relatively convenient laboratory for exploring these powerful sources of energy.

Thumbnail image of picture found for this day. APOD: 2005 June 28 - The Giant Radio Lobes of Fornax A
Explanation: Together, the radio lobes span over one million light years -- what caused them? In the center is a large but peculiar elliptical galaxy dubbed NGC 1316. Detailed inspection of the NGC 1316 system indicates that it began absorbing a small neighboring galaxy about 100 million years ago. Gas from the galactic collision has fallen inward toward the massive central black hole, with friction heating the gas to 10 million degrees. For reasons not yet well understood, two oppositely pointed fast moving jets of particles then developed, eventually smashing into the ambient material on either side of the giant elliptical galaxy. The result is a huge reservoir of hot gas that emits radio waves, observed as the orange (false-color) radio lobes in the above image. The radio image is superposed on an optical survey image of the same part of the sky. Strange patterns in the radio lobes likely indicate slight changes in the directions of the jets.

Thumbnail image of picture found for this day. APOD: 2005 April 3 - The Galactic Center Radio Arc
Explanation: What causes this unusual structure near the center of our Galaxy? The long parallel rays slanting across the top of the above radio image are known collectively as the Galactic Center Radio Arc and jut straight out from the Galactic plane. The Radio Arc is connected to the Galactic center by strange curving filaments known as the Arches. The bright radio structure at the bottom right likely surrounds a black hole at the Galactic center and is known as Sagittarius A*. One origin hypothesis holds that the Radio Arc and the Arches have their geometry because they contain hot plasma flowing along lines of constant magnetic field. Recent images from the Chandra X-ray Observatory appear to show this plasma colliding with a nearby cloud of cold gas.

Thumbnail image of picture found for this day. APOD: 2005 April 2 - Cyg X-1: Can Black Holes Form in the Dark?
Explanation: The formation of a black hole from the collapsing core of a massive star is thought to be heralded by a spectacular supernova explosion. Such an extremely energetic collapse is also a leading explanation for the mysterious cosmic gamma-ray bursts. But researchers now suggest that the Milky Way's most famous black hole, Cygnus X-1, was born when a massive star collapsed -- without any supernova explosion at all. Their dynamical evidence is summarized in this color image of a gorgeous region in Cygnus, showing Cyg X-1 and a cluster of massive stars (yellow circles) known as Cygnus OB3. Arrows compare the measured direction and speed of Cyg X-1 and the average direction and speed of the massive stars of Cyg OB3. The similar motions indicate that Cyg X-1's progenitor star was itself a cluster member and that its path was not altered at all when it became a black hole. In contrast, if Cyg X-1 were born in a violent supernova it would have likely received a fierce kick, changing its course. If not a supernova, could the formation of the Cyg X-1 black hole have produced a dark gamma-ray burst in the Milky Way?

Thumbnail image of picture found for this day. APOD: 2005 March 30 - ULXs in M74
Explanation: In visual appearance, M74 is a nearly perfect face-on spiral galaxy, about 30 million light-years away toward the constellation Pisces. The red blotches seen in this composite view are ultraluminous x-ray sources (ULXs) mapped by the Chandra X-ray Observatory. The ULXs are so called because they actually do radiate 10 to 1,000 times more x-ray power than "ordinary" x-ray binary stars, which harbor a neutron star or stellar mass black hole. In fact, watching these ULXs change their x-ray brightness over periods of 2 hours or so, astronomers conclude that ULXs could well be intermediate mass black holes -- black holes with masses 10,000 times or so greater than the Sun, but still much less than the million solar mass black holes which lurk in the centers of large spiral galaxies. How did these intermediate mass black holes get there? One intriguing suggestion is that they are left over from the cores of much smaller galaxies that are merging with spiral galaxy M74.

Thumbnail image of picture found for this day. APOD: 2005 March 12 - Accretion Disk Simulation
Explanation: Don't be fooled by the familiar pattern. The graceful spiral structure seen in this computer visualization does not portray winding spiral arms in a distant galaxy of stars. Instead, the graphic shows spiral shock waves in a three dimensional simulation of an accretion disk -- material swirling onto a compact central object that could represent a white dwarf star, neutron star, or black hole. Such accretion disks power bright x-ray sources within our own galaxy. They form in binary star systems which consist of a donor star (not shown above), supplying the accreting material, and a compact object whose strong gravity ultimately draws the material towards its surface. For known x-ray binary systems the size of the accretion disk itself might fall somewhere between the diameter of the Sun (about 1,400,000 kilometers) and the diameter of the Moon's orbit (800,000 kilometers). One interesting result of the virtual reality astrophysics illustrated here is that the simulated disk develops instabilities which tend to smear out the pronounced spiral shocks.

Thumbnail image of picture found for this day. APOD: 2005 January 30 - The Holographic Principle
Explanation: Is this image worth a thousand words? According to the Holographic Principle, the most information you can get from this image is about 3 x 1065 bits for a normal sized computer monitor. The Holographic Principle, yet unproven, states that there is a maximum amount of information content held by regions adjacent to any surface. Therefore, counter-intuitively, the information content inside a room depends not on the volume of the room but on the area of the bounding walls. The principle derives from the idea that the Planck length, the length scale where quantum mechanics begins to dominate classical gravity, is one side of an area that can hold only about one bit of information. The limit was first postulated by physicist Gerard 't Hooft in 1993. It can arise from generalizations from seemingly distant speculation that the information held by a black hole is determined not by its enclosed volume but by the surface area of its event horizon. The term "holographic" arises from a hologram analogy where three-dimension images are created by projecting light through a flat screen. Beware, other people looking at the above image may not claim to see 3 x 1065 bits -- they might claim to see a teapot.

Thumbnail image of picture found for this day. APOD: 2005 January 28 - The Swarm
Explanation: What do you call a group of black holes ... a flock, a brace, a swarm? Monitoring a region around the center of our Galaxy, astronomers have indeed found evidence for a surprisingly large number of variable x-ray sources - likely black holes or neutron stars in binary star systems - swarming around the Milky Way's own central supermassive black hole. Chandra Observatory combined x-ray image data from their monitoring program is shown above, with four variable sources circled and labeled A-D. While four sources may not make a swarm, these all lie within only three light-years of the central supermassive black hole known as Sgr A* (the bright source just above C). Their detection implies that a much larger concentration of black hole systems is present. Repeated gravitational interactions with other stars are thought to cause the black hole systems to spiral inward toward the Galactic Center region.

Thumbnail image of picture found for this day. APOD: 2005 January 12 - Barred Spiral Galaxy NGC 1300
Explanation: Big, beautiful, barred spiral galaxy NGC 1300 lies some 70 million light-years away on the banks of the constellation Eridanus. This Hubble Space Telescope composite view of the gorgeous island universe was released at this week's meeting of the American Astronomical Society as one of the largest Hubble images ever made of a complete galaxy. NGC 1300 spans over 100,000 light-years and the Hubble image reveals striking details of the galaxy's dominant central bar and majestic spiral arms. In fact, on close inspection the nucleus of this classic barred spiral itself shows a remarkable region of spiral structure about 3,000 light-years across. Unlike other spiral galaxies, including our own Milky Way, NGC 1300 is not presently known to have a massive central black hole.

Thumbnail image of picture found for this day. APOD: 2005 January 4 - Milky Way Illustrated
Explanation: What does our Milky Way Galaxy look like from afar? Since we are stuck inside, and since opaque dust truncates our view in visible light, nobody knows for sure. Drawn above, however, is a good guess based on many different types of observations. In the Milky Way's center is a very bright core region centered on a large black hole. The Milky Way's bright central bulge is now thought to be an asymmetrical bar of relatively old and red stars. The outer regions are where the spiral arms are found, dominated in appearance by open clusters of young, bright, blue stars, by red emission nebula, and by dark dust. The spiral arms reside in a disk dominated in mass by relatively dim stars and loose gas composed mostly of hydrogen. What is not depicted is a huge spherical halo of invisible dark matter that dominates the mass of the Milky Way as well as the motions of stars away from the center.

Thumbnail image of picture found for this day. APOD: 2004 December 27 - Andromeda's Core
Explanation: The center of the Andromeda galaxy is beautiful but strange. Andromeda, indexed as M31, is so close to our own Milky Way Galaxy that it gives a unique perspective into galaxy composition by allowing us to see into its core. Billions of stars swarm around a center that has two nuclei and likely houses a supermassive black hole over 5 million times the mass of our Sun. M31 is about two million light years away and visible with the unaided eye towards the constellation of Andromeda, the princess. Pictured above, dark knots of dust are seen superposed on the inner 10,000 light years of M31's core. The brighter stars are foreground stars located in our Milky Way Galaxy.

Thumbnail image of picture found for this day. APOD: 2004 December 26 - GRO J165540: Evidence for a Spinning Black Hole
Explanation: In the center of a swirling whirlpool of hot gas is likely a beast that has never been seen directly: a black hole. Studies of the bright light emitted by the swirling gas frequently indicate not only that a black hole is present, but also likely attributes. The gas surrounding GRO J1655-40, for example, has been found to display an unusual flickering at a rate of 450 times a second. Given a previous mass estimate for the central object of seven times the mass of our Sun, the rate of the fast flickering can be explained by a black hole that is rotating very rapidly. What physical mechanisms actually cause the flickering -- and a slower quasi-periodic oscillation (QPO) -- in accretion disks surrounding black holes and neutron stars remains a topic of much research.

Thumbnail image of picture found for this day. APOD: 2004 December 11 - M87's Energetic Jet
Explanation: An energetic jet from the core of giant elliptical galaxy M87 stretches outward for 5,000 light-years. This monstrous jet appears in the panels above to be a knotted and irregular structure, detected across the spectrum, from x-ray to optical to radio wavelengths. In all these bands, the observed emission is likely created as high energy electrons spiral along magnetic field lines, so called synchrotron radiation. But what powers this cosmic blowtorch? Ultimately, the jet is thought to be produced as matter near the center of M87 swirls toward a spinning, supermassive black hole. Strong electromagnetic forces are generated and eject material away from the black hole along the axis of rotation in a narrow jet. Galaxy M87 is about 50 million light-years away and reigns as the large central elliptical galaxy in the Virgo cluster.

Thumbnail image of picture found for this day. APOD: 2004 November 7 - The Galactic Center in Infrared
Explanation: The center of our Galaxy is a busy place. In visible light, much of the Galactic Center is obscured by opaque dust. In infrared light, however, dust glows more and obscures less, allowing nearly one million stars to be recorded in the above photograph. The Galactic Center itself appears on the right and is located about 30,000 light years away towards the constellation of Sagittarius. The Galactic Plane of our Milky Way Galaxy, the plane in which the Sun orbits, is identifiable by the dark diagonal dust lane. The absorbing dust grains are created in the atmospheres of cool red-giant stars and grow in molecular clouds. The region directly surrounding the Galactic Center glows brightly in radio and high-energy radiation, and is thought to house a large black hole.

Thumbnail image of picture found for this day. APOD: 2004 November 6 - X-Rays from the Galactic Core
Explanation: Using the orbiting Chandra X-ray Observatory, astronomers have taken this long look at the core of our Milky Way galaxy, some 26,000 light-years away. The spectacular false-color view spans about 130 light-years. It reveals an energetic region rich in x-ray sources and high-lighted by the central source, Sagittarius A*, known to be a supermassive black hole with 3 million times the mass of the Sun. Given its tremendous mass, Sagittarius A* is amazingly faint in x-rays in comparison to central black holes observed in distant galaxies, even during its frequent x-ray flares. This suggests that this supermassive black hole has been starved by a lack of infalling material. In fact, the sharp Chandra image shows clouds of multi-million degree gas dozens of light-years across flanking (upper right and lower left) the central region -- evidence that violent events have cleared much material from the vicinity of the black hole.

Thumbnail image of picture found for this day. APOD: 2004 September 16 - Microquasar in Motion
Explanation: Microquasars, bizarre binary star systems generating high-energy radiation and blasting out jets of particles at nearly the speed of light, live in our Milky Way galaxy. The energetic microquasar systems seem to consist of a very compact object, either a neutron star or a black hole, formed in a supernova explosion but still co-orbiting with an otherwise normal star. Using a very long array of radio telescopes, astronomers are reporting that at least one microquasar, LSI +61 303, can be traced back to its probable birthplace -- within a cluster of young stars in the constellation Cassiopeia. About 7,500 light-years from Earth, the star cluster and surrounding nebulosity, IC 1805, are shown in the deep sky image above. The cluster stars are identified by yellow boxes and circles. A yellow arrow indicates the common apparent motion of the cluster stars, the green arrow shows the deduced sky motion of the microquasar system, and the red arrow depicts the microquasar's motion relative to the star cluster itself. Seen nearly 130 light-years from the cluster it once called home, a powerful kick from the original supernova explosion likely set this microquasar in motion.

Thumbnail image of picture found for this day. APOD: 2004 September 8 - Molecular Torus Surrounds Black Hole
Explanation: Why do some black hole surroundings appear brighter than others? In the centers of active galaxies, supermassive black holes at least thousands of times the mass of our Sun dominate. Many, called Seyfert Type I, are very bright in visible light. Others, called Seyfert Type II, are rather dim. The difference might be caused by some black holes accreting much more matter than others. Alternatively, the black holes in the center of Seyfert Type II galaxies might be obscured by a surrounding torus. To help choose between these competing hypotheses, the nearby Seyfert II galaxy NGC 4388 has been observed in X-ray light recently by many recent Earth-orbiting X-ray observatories, including CGRO, SIGMA, BeppoSAX, INTEGRAL, Chandra, and XMM-Newton. Recent data from INTEGRAL and XMM-Newton have found that the X-ray flux in some X-ray colors varies rapidly, while flux in other X-ray colors is quite steady. The constant flux and apparent absorption of very specific X-ray colors by cool iron together give evidence that the central black hole in NGC 4388 is seen through a thick torus composed of molecular gas and dust.

Thumbnail image of picture found for this day. APOD: 2004 July 1 - NGC 7331: A Galaxy So Inclined
Explanation: If our own Milky Way galaxy were 50 million light-years away with its disk inclined slightly to our line of sight, it would look a lot like large spiral galaxy NGC 7331. In fact, seen here in a false-color infrared image from the Spitzer Space Telescope, NGC 7331 is interesting in part because it is thought to be so similar to the Milky Way. Light from older, cooler stars, shown in blue, dominates the central bulge of NGC 7331, while Spitzer data also indicates the presence of a black hole within this galaxy's central regions - about the same size as the black hole at our own galactic core. Shown in red and brown, radiation from complex molecules associated with dust traces NGC 7331's star forming spiral arms. The arms span around 100,000 light-years, about the size of the Milky Way. Curiously, a further star forming ring is visible in yellowish hues, 20,000 light-years or so from the center of NGC 7331, but it is not known if such a structure exists within our own galaxy.

Thumbnail image of picture found for this day. APOD: 2004 June 24 - The Galaxy Within Centaurus A
Explanation: Peering deep inside Centaurus A, the closest active galaxy to Earth, the Spitzer Space Telescope's penetrating infrared cameras recorded this startling vista. About 1,000 light-years across, the twisted cosmic dust cloud apparently shaped like a parallelogram is likely the result of a smaller spiral galaxy falling into the giant Centaurus A. The parallelogram lies along the active galaxy's central band of dust and stars visible in more familiar optical images. Astronomers believe that the striking geometric shape represents an approximately edge-on view of the infalling spiral galaxy's disk in the process of being twisted and warped by the interaction. Ultimately, debris from the ill-fated spiral galaxy should provide fuel for the supermassive black hole lurking at the center of Centaurus A.

Thumbnail image of picture found for this day. APOD: 2004 April 11 - Journey to the Center of the Galaxy
Explanation: In Jules Verne's science fiction classic A Journey to the Center of the Earth, Professor Liedenbrock and his fellow explorers encounter many strange and exciting wonders. What wonders lie at the center of our Galaxy? Astronomers know of some of the bizarre objects that exist there, like vast cosmic dust clouds, bright star clusters, swirling rings of gas, and even a supermassive black hole. Much of the Galactic Center is shielded from our view in visible light by the intervening dust and gas, but it can be explored using other forms of electromagnetic radiation. This haunting wide angle image of the Galactic Center region in infrared light was constructed using data from the Midcourse Space Experiment (MSX) satellite. The image maps three mid-infrared bands, otherwise invisible to human eyes, into visible blue, green, and red colors revealing the thermal emission from dust clouds near the galactic center that have been heated by starlight. The galactic plane runs along the middle of this image while the galactic center itself is the bright spot at picture center. The field of view of this cropped picture is about 1.5 by 2.5 degrees.

Thumbnail image of picture found for this day. APOD: 2004 February 24 - X-Rays Indicate Star Ripped Up by Black Hole
Explanation: What could rip a star apart? A black hole. Giant black holes in just the right mass range would pull on the front of a closely passing star much more strongly than on the back. Such a strong tidal force would stretch out a star and likely cause some of the star's gasses to fall into the black hole. The infalling gas has been predicted to emit just the same blast of X-rays that have recently been seen in the center of galaxy RX J1242-11. Above, an artist's illustration depicts the sequence of destruction (assuming that image-distorting gravitational-lens effects of the black hole are somehow turned off). Most of the stellar remains would be flung out into the galaxy. Such events are rare, occurring perhaps only one in 10,000 years for typical black holes at the center of typical galaxies.

Thumbnail image of picture found for this day. APOD: 2004 February 13 - NGC 613: Spiral of Dust and Stars
Explanation: When morning twilight came to the Paranal Observatory in Chile, astronomers Mark Neeser and Peter Barthel interrupted their search for faint quasars, billions of light-years away. And just for a moment, they used Very Large Telescopes at the European Southern Observatory to appreciate the beauty of the nearby Universe. One result was this stunning view of beautiful barred spiral galaxy NGC 613, a mere 65 million light-years away in the southern constellation Sculptor. Over 100 thousand light-years across, NGC 613 seems to have more than its fair share of spiral arms laced with cosmic dust clouds and bright star forming regions near the ends of a dominant central bar. Radio emission indicates the presence of a massive black hole at the center of NGC 613.

Thumbnail image of picture found for this day. APOD: 2004 February 3 - X-Rays From Antennae Galaxies
Explanation: A bevy of black holes and neutron stars shine as bright, point-like sources against bubbles of million degree gas in this false-color x-ray image from the orbiting Chandra Observatory. The striking picture spans about 80 thousand light-years across the central regions of two galaxies, NGC 4038 and NGC 4039, locked in a titanic collision some 60 million light-years away in the constellation Corvus. In visible light images, long, luminous, tendril-like structures emanating from the wreckage lend the pair their popular moniker, the Antennae Galaxies. Galactic collisions are now thought to be fairly common, but when they happen individual stars rarely collide. Instead gas and dust clouds merge and compress, triggering furious bursts of massive star formation with thousands of resulting supernovae. The exploding stars litter the scene with bubbles of shocked gas enriched in heavy elements, and collapsed stellar cores. Transfixed by this cosmic accident astronomers watch and are beginning to appreciate the collision-driven evolution of galaxies, not unlike our own.

Thumbnail image of picture found for this day. APOD: 2003 November 28 - The Most Distant X-Ray Jet
Explanation: A false-color x-ray image inset at upper left reveals emission from a cosmic jet of high-energy particles, 100,000 light-years in length, emerging from quasar GB1508+5714. An estimated 12 billion (12,000,000,000) light-years away, this appears to be the most distant energetic jet in the known Universe. Astrophysical jets of many sizes seem to be produced in a range of environments where significant accretion, or infalling matter is thought to arrange itself in a disk, from contracting star-forming clouds to supermassive black holes in active galactic nuclei. Here, as depicted in the illustration, the accretion disk is thought to surround a supermassive black hole, accelerating particles to near the speed of light in two jets at right angles to the disk itself. In the case of this quasar, the jet tilted towards us is visible in x-rays as the particles collide with low energy photons from the cosmic background radiation. The collisions boost the photons to higher x-ray energies and scatter some of them in our direction.

Thumbnail image of picture found for this day. APOD: 2003 October 17 - Astronomy Quilt of the Week
Explanation: Demonstrating her mastery of a traditional astronomical imaging technique quilter and astronomy enthusiast Judy Ross has produced this spectacular composition of "Astronomy Quilt Piece of the Week". Her year-long effort resulted in an arrangement for a six by seven foot quilt consisting of 52 individual pieces (11 inches by 8 inches), one for each week, which she reports were inspired by her steady diet of APOD's daily offerings. Some of the pieces are based on actual pictures, such as the Hubble Space Telescope's view of planet forming AB Aurigae or Bill Keel's image of the nearby Pinwheel Galaxy. Others, with titles like the Blue Carpet Nebula and Duck Contemplates Black Hole, are from her own creative imaginings.

Thumbnail image of picture found for this day. APOD: 2003 October 8 - The Sombrero Galaxy from HST
Explanation: Why does the Sombrero Galaxy look like a hat? Reasons include the Sombrero's unusually large and extended central bulge of stars, and dark prominent dust lanes that appear in a disk that we see nearly edge-on. Billions of old stars cause the diffuse glow of the extended central bulge. Close inspection of the bulge in the above photograph shows many points of light that are actually globular clusters. M104's spectacular dust rings harbor many younger and brighter stars, and show intricate details astronomers don't yet fully understand. The very center of the Sombrero glows across the electromagnetic spectrum, and is thought to house a large black hole. Fifty million-year-old light from the Sombrero Galaxy can be seen with a small telescope towards the constellation of Virgo.

Thumbnail image of picture found for this day. APOD: 2003 September 12 - A Note on the Perseus Cluster
Explanation: A truly enormous collection of thousands of galaxies, the Perseus Cluster - like other large galaxy clusters - is filled with hot, x-ray emitting gas. The x-ray hot gas (not the individual galaxies) appears in the left panel above, a false color image from the Chandra Observatory. The bright central source flanked by two dark cavities is the cluster's supermassive black hole. At right, the panel shows the x-ray image data specially processed to enhance contrasts and reveals a strikingly regular pattern of pressure waves rippling through the hot gas. In other words, sound waves, likely generated by bursts of activity from the black hole, are ringing through the Perseus Galaxy Cluster. Astronomers infer that these previously unknown sound waves are a source of energy which keeps the cluster gas so hot. So what note is the Perseus Cluster playing? Estimates of the distance between the wave peaks and sound speed in the cluster gas suggests the cosmic note is about 57 octaves below B-flat above middle C.

Thumbnail image of picture found for this day. APOD: 2003 September 7 - The Galactic Center in Infrared
Explanation: The center of our Galaxy is a busy place. In visible light, much of the Galactic Center is obscured by opaque dust. In infrared light, however, dust glows more and obscures less, allowing nearly one million stars to be recorded in the above photograph. The Galactic Center itself appears on the right and is located about 30,000 light years away towards the constellation of Sagittarius. The Galactic Plane of our Milky Way Galaxy, the plane in which the Sun orbits, is identifiable by the dark diagonal dust lane. The absorbing dust grains are created in the atmospheres of cool red-giant stars and grow in molecular clouds. The region directly surrounding the Galactic Center glows brightly in radio and high-energy radiation, and is thought to house a large black hole.

Thumbnail image of picture found for this day. APOD: 2003 July 12 - X-Ray Milky Way
Explanation: If you had x-ray vision, the center regions of our Galaxy would not be hidden from view by the immense cosmic dust clouds opaque to visible light. Instead, the Milky Way toward Sagittarius might look something like this stunning mosaic of images from the orbiting Chandra Observatory. Pleasing to look at, the gorgeous false-color representation of the x-ray data shows high energy x-rays in blue, medium energies in green, and low energies in red. Hundreds of white dwarf stars, neutron stars, and black holes immersed in a fog of multimillion-degree gas are included in the x-ray vista. Within the white patch at the image center lies the Galaxy's central supermassive black hole. Chandra's sharp x-ray vision will likely lead to a new appreciation of our Milky Way's most active neighborhood and has already indicated that the hot gas itself may have a temperature of a mere 10 million degrees Celsius instead of 100 million degrees as previously thought. The full mosaic is composed of 30 separate images and covers a 900 by 400 light-year swath at the galactic center.

Thumbnail image of picture found for this day. APOD: 2003 July 11 - NGC 1068 and the X-Ray Flashlight
Explanation: At night, tilting a flashlight up under your chin hides the glowing bulb from the direct view of your friends. Light from the bulb still reflects from your face though, and can give you a startling appearance. Spiral Galaxy NGC 1068 may be playing a similar trick on a cosmic scale, hiding a central powerful source of x-rays -- likely a supermassive black hole -- from direct view. X-rays are still scattered into our line-of-sight though, by a dense torus of material surrounding the black hole. The scenario is supported by x-ray data from the Chandra Observatory combined with a Hubble Space Telescope optical image in this false-color composite picture. Optical data in red shows spiral structure across NGC 1068's inner 7 thousand light-years with the x-ray data overlaid in blue and green. A hot wind of gas streaming from the galaxy's core is seen as the broad swath of x-ray emission while material lit up by the hidden black hole source is within the central cloud of more intense x-rays. Also well known as M77, NGC 1068 lies a mere 50 million light-years away toward the constellation Cetus.

Thumbnail image of picture found for this day. APOD: 2003 July 5 - Centaurus A: X-Rays from an Active Galaxy
Explanation: Its core hidden from optical view by a thick lane of dust, the giant elliptical galaxy Centaurus A was among the first objects observed by the orbiting Chandra X-ray Observatory. Astronomers were not disappointed, as Centaurus A's appearance in x-rays makes its classification as an active galaxy easy to appreciate. Perhaps the most striking feature of this Chandra false-color x-ray view is the jet, 30,000 light-years long. Blasting toward the upper left corner of the picture, the jet seems to arise from the galaxy's bright central x-ray source -- suspected of harboring a black hole with a million or so times the mass of the Sun. Centaurus A is also seen to be teeming with other individual x-ray sources and a pervasive, diffuse x-ray glow. Most of these individual sources are likely to be neutron stars or solar mass black holes accreting material from their less exotic binary companion stars. The diffuse high-energy glow represents gas throughout the galaxy heated to temperatures of millions of degrees C. At 11 million light-years distant in the constellation Centaurus, Centaurus A (NGC 5128) is the closest active galaxy.

Thumbnail image of picture found for this day. APOD: 2003 June 13 - Neptune: Still Springtime After All These Years
Explanation: In the 1960s spring came to the southern hemisphere of Neptune, the Solar System's outermost gas giant planet. Of course, since Neptune orbits the Sun once every 165 earth-years, it's still springtime for southern Neptune, where each season lasts over four decades. Astronomers have found that in recent years Neptune has been getting brighter, as illustrated in this Hubble Space Telescope image made in 2002. Compared to Hubble pictures taken as early as 1996, the 2002 image shows a dramatic increase in reflective white cloud bands in Neptune's southern hemisphere. Neptune's equator is tilted 29 degrees from the plane of its orbit, about the same as Earth's 23.5 degree tilt, and Neptune's weather seems to be dramatically responding to the similar relative seasonal increase in sunlight -- even though sunlight is 900 times less intense for the distant gas giant than for planet Earth. Meanwhile, summer is really just around the corner, coming to Neptune's southern hemisphere in 2005.

Thumbnail image of picture found for this day. APOD: 2003 June 12 - Cyg X-1: Can Black Holes Form in the Dark?
Explanation: The formation of a black hole from the collapsing core of a massive star is thought to be heralded by a spectacular supernova explosion. Such an extremely energetic collapse is also a leading explanation for the mysterious cosmic gamma-ray bursts. But researchers now suggest that the Milky Way's most famous black hole, Cygnus X-1, was born when a massive star collapsed -- without any supernova explosion at all. Their dynamical evidence is summarized in this color image of a gorgeous region in Cygnus, showing Cyg X-1 and a cluster of massive stars (yellow circles) known as Cygnus OB3. Arrows compare the measured direction and speed of Cyg X-1 and the average direction and speed of the massive stars of Cyg OB3. The similar motions indicate that Cyg X-1's progenitor star was itself a cluster member and that its path was not altered at all when it became a black hole. In contrast, if Cyg X-1 were born in a violent supernova it would have likely received a fierce kick, changing its course. If not a supernova, could the formation of the Cyg X-1 black hole have produced a dark gamma-ray burst in the Milky Way?

Thumbnail image of picture found for this day. APOD: 2003 June 1 - GRO J1655 40: Evidence for a Spinning Black Hole
Explanation: In the center of a swirling whirlpool of hot gas is likely a beast that has never been seen directly: a black hole. Studies of the bright light emitted by the swirling gas frequently indicate not only that a black hole is present, but also likely attributes. The gas surrounding GRO J1655-40, for example, has been found to display an unusual flickering at a rate of 450 times a second. Given a previous mass estimate for the central object of seven times the mass of our Sun, the rate of the fast flickering can be explained by a black hole that is rotating very rapidly. What physical mechanisms actually cause the flickering -- and a slower quasi-periodic oscillation (QPO) -- in accretion disks surrounding black holes and neutron stars remains a topic of much research.

Thumbnail image of picture found for this day. APOD: 2003 May 18 - The Holographic Principle
Explanation: Is this image worth a thousand words? According to the Holographic Principle, the most information you can get from this image is about 3 x 1065 bits for a normal sized computer monitor. The Holographic Principle, yet unproven, states that there is a maximum amount of information content held by regions adjacent to any surface. Therefore, counter-intuitively, the information content inside a room depends not on the volume of the room but on the area of the bounding walls. The principle derives from the idea that the Planck length, the length scale where quantum mechanics begins to dominate classical gravity, is one side of an area that can hold only about one bit of information. The limit was first postulated by physicist Gerard 't Hooft in 1993. It can arise from generalizations from seemingly distant speculation that the information held by a black hole is determined not by its enclosed volume but by the surface area of its event horizon. The term "holographic" arises from a hologram analogy where three-dimension images are created by projecting light though a flat screen. Beware, other people looking at the above image may not claim to see 3 x 1065 bits -- they might claim to see a teapot.

Thumbnail image of picture found for this day. APOD: 2003 May 1 - The Energetic Jet from Centaurus A
Explanation: The center of well-studied active galaxy Centaurus A is hidden from the view of optical telescopes by a cosmic jumble of stars, gas, and dust. But both radio and x-ray telescopes can trace the remarkable jet of high-energy particles streaming from the galaxy's core. With Cen A's central region at the lower right, this composite false-color image shows the radio emission in red and x-rays in blue over the inner 4,000 light-years of the jet. One of the most detailed images of its kind, the picture shows how the x-ray and radio emitting sites are related along the jet, providing a road map to understanding the energetic stream. Extracting its energy from a supermassive black hole at the galaxy's center, the jet is confined to a relatively narrow angle and seems to produce most of its x-rays (bluer colors) at the upper left, farther from the core, where the jet begins to collide with Centaurus A's denser gas.

Thumbnail image of picture found for this day. APOD: 2003 April 17 - M106 in Canes Venatici
Explanation: Close to the Great Bear (Ursa Major) and surrounded by the stars of the Hunting Dogs (Canes Venatici), this celestial nebula was discovered in 1781 by the metric French astronomer Pierre Mechain and later added to the catalog of his friend and colleague Charles Messier as M106. Modern deep telescopic views reveal it to be an island universe -- a spiral galaxy around 30 thousand light-years across located only about 21 million light-years beyond the stars of the Milky Way. Youthful blue star clusters and reddish stellar nurseries trace the striking spiral arms of M106. Seen so clearly in this beautiful image, the galaxy's bright core is also visible across the spectrum from radio to x-rays, making M106 a nearby example of the Seyfert class of active galaxies. The bright core of a Seyfert galaxy is believed to be powered by matter falling into a massive central black hole.

Thumbnail image of picture found for this day. APOD: 2003 February 6 - X-Rays from M83
Explanation: Bright and beautiful spiral galaxy M83 lies a mere twelve million light-years from Earth, toward the headstrong constellation Hydra. Sweeping spiral arms, prominent in visible light images, lend this galaxy its popular moniker -- the Southern Pinwheel. In fact, the spiral arms are still apparent in this Chandra Observatory false-color x-ray image of M83, traced by diffuse, hot, x-ray emitting gas. But more striking in the x-ray image is the galaxy's bright central region. The central emission likely represents even hotter gas created by a sudden burst of massive star formation. Point-like neutron star and black hole x-ray sources, final stages in the life cycles of massive stars, also show a concentration near the center of M83 and offer further evidence for a burst of star formation at this galaxy's core. Light from this burst of star formation would have first reached Earth some 20 million years ago.

Thumbnail image of picture found for this day. APOD: 2003 January 8 - X-Rays from the Galactic Core
Explanation: Using the orbiting Chandra X-ray Observatory, astronomers have taken this long look at the core of our Milky Way galaxy, some 26,000 light-years away. The spectacular false-color view spans about 130 light-years. It reveals an energetic region rich in x-ray sources and high-lighted by the central source, Sagittarius A*, known to be a supermassive black hole with 3 million times the mass of the Sun. Given its tremendous mass, Sagittarius A* is amazingly faint in x-rays in comparison to central black holes observed in distant galaxies, even during its frequent x-ray flares. This suggests that this supermassive black hole has been starved by a lack of infalling material. In fact, the sharp Chandra image shows clouds of multi-million degree gas dozens of light-years across flanking (upper right and lower left) the central region -- evidence that violent events have cleared much material from the vicinity of the black hole.

Thumbnail image of picture found for this day. APOD: 2002 November 28 - The Supermassive Black Holes of NGC 6240
Explanation: The Hubble optical image on the left shows NGC 6240 in the throes of a titanic galaxy - galaxy collision 400 million light-years away. As the cosmic catastrophe plays out, the merging galaxies spew forth distorted tidal tails of stars, gas, and dust and undergo frantic bursts of star formation. Using the orbiting Chandra Observatory's x-ray vision to peer within the bright central regions of NGC 6240 astronomers believe they have uncovered, for the first time, not one but two enormous orbiting black holes, by detecting the characteristic x-ray radiation from the interstellar debris swirling toward them. In the false-color close-up view at right, the x-ray data clearly show the black hole sources (shaded blue) separated by about 3,000 light-years. Einstein's theory of gravity predicts that such a pair of black holes must spiral closer together, and ultimately coalesce into a single, even more massive black hole after several hundred million years. In the final moments the merging supermassive black holes will produce an extremely powerful burst of gravitational radiation.

Thumbnail image of picture found for this day. APOD: 2002 October 25 - Journey to the Center of the Galaxy
Explanation: In Jules Verne's science fiction classic A Journey to the Center of the Earth, Professor Hardwigg and his fellow explorers encounter many strange and exciting wonders. What wonders lie at the center of our Galaxy? Astronomers know of some of the bizarre objects which exist there, like vast cosmic dust clouds, bright star clusters, swirling rings of gas, and even a supermassive black hole. Much of the Galactic Center is shielded from our view in visible light by the intervening dust and gas, but it can be explored using other forms of electromagnetic radiation. This haunting wide angle image of the Galactic Center region in infrared light was constructed using data from the Midcourse Space Experiment (MSX) satellite. The image maps three mid-infrared bands, otherwise invisible to human eyes, into visible blue, green, and red colors revealing the thermal emission from dust clouds near the galactic center that have been heated by starlight. The galactic plane runs along the middle of this image while the galactic center itself is the bright spot at picture center. The field of view of this cropped picture is about 1.5 by 2.5 degrees.

Thumbnail image of picture found for this day. APOD: 2002 October 18 - At the Center of the Milk Way
Explanation: At the center of our Milky Way Galaxy lies a black hole with over 2 million times the mass of the Sun. Once a controversial claim, this astounding conclusion is now virtually inescapable and based on observations of stars orbiting very near the galactic center. Using one of the Paranal Observatory's very large telescopes and the sophisticated infrared camera NACO, astronomers patiently followed the orbit of a particular star, designated S2, as it came within about 17 light-hours of the center of the Milky Way (17 light-hours is only about 3 times the radius of Pluto's orbit). Their results convincingly show that S2 is moving under the influence of the enormous gravity of an unseen object which must be extremely compact -- a supermassive black hole. This deep NACO near-infrared image shows the crowded inner 2 light-years of the Milky Way with the exact position of the galactic center indicated by arrows. NACO's ability to track stars so close to the galactic center can accurately measure the black hole's mass and perhaps even provide an unprecedented test of Einstein's theory of gravity as astronomers watch a star orbit a supermassive black hole.

Thumbnail image of picture found for this day. APOD: 2002 October 12 - Chandra Deep Field
Explanation: Officially the Chandra Deep Field - South, this picture represents the deepest ever x-ray image of the Universe. One million seconds of accumulated exposure time with the orbiting Chandra X-ray Observatory went in to its making. Concentrating on a single, otherwise unremarkable patch of sky in the constellation Fornax, this x-ray image corresponds to the visible light Hubble Deep Field - South released in 1998. Chandra's view, color coded with low energies in red, medium in green, and high-energy x-rays in blue, shows many faint sources of relatively high-energy x-rays. These are likely active galaxies feeding supermassive central black holes and large clusters of galaxies at distances of up to 12 billion light-years. The stunning picture supports astronomers' ideas of a youthful universe in which massive black holes were much more dominant than at present.

Thumbnail image of picture found for this day. APOD: 2002 October 8 - The X-Ray Jets of XTE J1550
Explanation: The motion of ultra-fast jets shooting out from a candidate black hole star system have now been documented by observations from the orbiting Chandra X-ray Observatory. In 1998, X-ray source XTE J1550-564 underwent a tremendous outburst. Jets of material sent streaming into space at near light-speed impacted existing gas heating it so much it glowed in X-ray light. The panels on the left of the above image show in X-rays that the hot spots have moved out by more than three light years in the time since the explosion, with the left jet recently fading below detectability. The drawing of the right depicts the binary star system that likely produced the X-ray jets, with a normal red star on the left dumping matter into an accretion disk around the black hole on the right. The jets are thought to be emitted along the spin axis of the black hole.

Thumbnail image of picture found for this day. APOD: 2002 October 5 - X-Ray Cygnus A
Explanation: Amazingly detailed, this false-color x-ray image is centered on the galaxy Cygnus A. Recorded by the orbiting Chandra Observatory, Cygnus A is seen here as a spectacular high energy x-ray source. But it is actually more famous at the low energy end of the electromagnetic spectrum as one of the brightest celestial radio sources. Merely 700 million light-years distant, Cygnus A is the closest powerful radio galaxy and the false-color radio image (inset right) shows remarkable similarity to Chandra's x-ray view. Central in both pictures, the center of Cygnus A shines brightly while emission extends 300,000 light-years to either side along the same axis. Near light speed jets of atomic particles produced by a massive central black hole are believed to cause the emission. In fact, the x-ray image reveals "hot spots" suggestive of the locations where the particle jets are stopped in surrounding cooler, denser gas. The x-ray image also shows that the jets have cleared out a huge cavity in the surrounding gas. Bright swaths of emission within the cavity likely indicate x-ray hot material ... swirling toward the central black hole.

Thumbnail image of picture found for this day. APOD: 2002 September 28 - X-Ray Rainbows
Explanation: A drop of water or prism of glass can spread out visible sunlight into a rainbow of colors. In order of increasing energy, the well known spectrum of colors in a rainbow runs red, orange, yellow, green, blue, indigo, violet. X-ray light too can be spread out into a spectrum ordered by energy ... but not by drops of water or glass. Instead, the orbiting Chandra X-ray Observatory uses a set of 540 finely ruled, gold gratings to spread out the x-rays, recording the results with digital detectors. The resulting x-ray spectrum reveals much about the compositions, temperatures, and motions within cosmic x-ray sources. This false color Chandra image shows the x-ray spectrum of a star system in Ursa Major cataloged as XTE J1118+480 and thought to consist of a sun-like star orbiting a black hole. Unlike the familiar appearance of a prism's visible light rainbow, the energies here are ordered along radial lines with the highest energy x-rays near the center and lowest energies near the upper left and lower right edges of the image. The central spiky region itself is created by x-rays from the source which are not spread out by the array of gratings.

Thumbnail image of picture found for this day. APOD: 2002 September 27 - Accretion Disk Simulation
Explanation: Don't be fooled by the familiar symmetry. The graceful spiral structure seen in this computer visualization does not portray winding spiral arms in a distant galaxy of stars. Instead, the graphic shows spiral shock waves in a three dimensional simulation of an accretion disk -- material swirling onto a compact central object that could represent a white dwarf star, neutron star, or black hole. Such accretion disks power bright x-ray sources within our own galaxy. They form in binary star systems which consist of a donor star (not shown above), supplying the accreting material, and a compact object whose strong gravity ultimately draws the material towards its surface. For known x-ray binary systems the size of the accretion disk itself might fall somewhere between the diameter of the Sun (about 1,400,000 kilometers) and the diameter of the Moon's orbit (800,000 kilometers). One interesting result of the virtual reality astrophysics illustrated here is that the simulated disk develops instabilities which tend to smear out the pronounced spiral shocks.

Thumbnail image of picture found for this day. APOD: 2002 September 8 - Too Close to a Black Hole
Explanation: What would you see if you went right up to a black hole? Above are two computer generated images highlighting how strange things would look. On the left is a normal star field containing the constellation Orion. Notice the three stars of nearly equal brightness that make up Orion's Belt. On the right is the same star field but this time with a black hole superposed in the center of the frame. The black hole has such strong gravity that light is noticeably bent towards it - causing some very unusual visual distortions. In the distorted frame, every star in the normal frame has at least two bright images - one on each side of the black hole. In fact, near the black hole, you can see the whole sky - light from every direction is bent around and comes back to you. Black holes are thought to be the densest state of matter, and there is indirect evidence for their presence in stellar binary systems and the centers of globular clusters, galaxies, and quasars.

Thumbnail image of picture found for this day. APOD: 2002 August 3 - The Galactic Center A Radio Mystery
Explanation: Tuning in to the center of our Milky Way galaxy, radio astronomers explore a complex, mysterious place. A premier high resolution view, this startlingly beautiful picture covers a 4x4 degree region around the galactic center. It was constructed from 1 meter wavelength radio data obtained by telescopes of the Very Large Array near Socorro, New Mexico, USA. The galactic center itself is at the edge of the extremely bright object labeled Sagittarius (Sgr) A, suspected of harboring a million solar mass black hole. Along the galactic plane which runs diagonally through the image are tortured clouds of gas energized by hot stars and bubble-shaped supernova remnants (SNRs) - hallmarks of a violent and energetic cosmic environment. But perhaps most intriguing are the arcs, threads, and filaments which abound in the scene. Their uncertain origins challenge present theories of the dynamics of the galactic center.

Thumbnail image of picture found for this day. APOD: 2002 July 21 - Nearby Spiral Galaxy NGC 4945
Explanation: For such a close galaxy, NGC 4945 is easy to miss. NGC 4945 is a spiral galaxy in the Centaurus Group of galaxies, located only six times farther away than the prominent Andromeda Galaxy. The thin disk galaxy is oriented nearly edge-on, however, and shrouded in dark dust. Therefore galaxy-gazers searching the southern constellation of Centaurus need a telescope to see it. The above picture was taken with a large telescope testing a new wide-angle, high-resolution CCD camera. Most of the spots scattered about the frame are foreground stars in our own Galaxy, but some spots are globular clusters orbiting the distant galaxy. NGC 4945 is thought to be quite similar to our own Milky Way Galaxy. X-ray observations reveal, however, that NGC 4945 has an unusual, energetic, Seyfert 2 nucleus that might house a large black hole.

Thumbnail image of picture found for this day. APOD: 2002 July 11 - M51: X Rays from the Whirlpool
Explanation: Fresh from yesterday's episode, a popular pair of interacting galaxies known as the Whirlpool debut here beyond the realm of visible light -- imaged at high energies by the orbiting Chandra X-ray Observatory. Still turning in a remarkable performance, over 80 glittering x-ray stars are present in the Chandra image data from the region. The number of luminous x-ray sources, likely neutron star and black hole binary systems within the confines of M51, is unusually high for normal spiral or elliptical galaxies and suggests this cosmic whirlpool has experienced intense bursts of massive star formation. The bright cores of both galaxies, NGC 5194 and NGC 5195 (right and left respectively), also exhibit high-energy activity in this false-color x-ray picture showing a diffuse glow from multi-million degree gas. An expanded view of the region near the core of NGC 5194 reveals x-rays from a supernova remnant, the debris from a spectacular stellar explosion, first detected by earthbound astronomers in 1994.

Thumbnail image of picture found for this day. APOD: 2002 June 17 - NGC 4697: X-Rays from an Elliptical Galaxy
Explanation: The many bright, point-like sources in this Chandra Observatory x-ray image lie within NGC 4697, an elliptical galaxy some 40 million light-years away towards Virgo. Like other normal elliptical galaxies, NGC 4697 is a spherical ensemble of mainly older, fainter, low mass stars, with little star forming gas and dust compared to spiral galaxies. But the luminous x-ray sources in the Chandra image indicate that NGC 4697 had a wilder youth. Powering the x-ray sources are neutron stars and black holes in binary star systems, where x-rays are generated as matter from a more ordinary companion star falls in to these bizarre, compact objects. Since neutron stars and black holes are the endpoints in the lives of massive stars, NGC 4697 must have had many bright, massive stars in its past. An exceptionally large number of NGC 4697's x-ray binaries are found in the galaxy's globular star clusters, suggesting that dense star clusters are a good place for neutron stars and black holes to capture a companion. Stellar winds and supernovae explosions of massive stars could also have produced the hot gas responsible for this galaxy's diffuse x-ray glow.

Thumbnail image of picture found for this day. APOD: 2002 May 21 - The Galactic Center Radio Arc
Explanation: What causes this unusual structure near the center of our Galaxy? The long parallel rays slanting across the top of the above radio image are known collectively as the Galactic Center Radio Arc and jut straight out from the Galactic plane. The Radio Arc is connected to the Galactic center by strange curving filaments known as the Arches. The bright radio structure at the bottom right likely surrounds a black hole at the Galactic center and is known as Sagittarius A*. One origin hypothesis holds that the Radio Arc and the Arches have their geometry because they contain hot plasma flowing along lines of constant magnetic field. Recent images from the Chandra X-ray Observatory appear to show this plasma colliding with a nearby cloud of cold gas.

Thumbnail image of picture found for this day. APOD: 2002 April 30 - The Holographic Principle
Explanation: Is this image worth a thousand words? According to the Holographic Principle, the most information you can get from this image is about 3 x 1065 bits for a normal sized computer monitor. The Holographic Principle, yet unproven, states that there is a maximum amount of information content held by regions adjacent to any surface. Therefore, counter-intuitively, the information content inside a room depends not on the volume of the room but on the area of the bounding walls. The principle derives from the idea that the Planck length, the length scale where quantum mechanics begins to dominate classical gravity, is one side of an area that can hold only about one bit of information. The limit was first postulated by physicist Gerard 't Hooft in 1993. It can arise from generalizations from seemingly distant speculation that the information held by a black hole is determined not by its enclosed volume but by the surface area of its event horizon. The term "holographic" arises from a hologram analogy where three-dimension images are created by projecting light though a flat screen. Beware, other people looking at the above image may not claim to see 3 x 1065 bits -- they might claim to see a teapot.

Thumbnail image of picture found for this day. APOD: 2002 April 21 - The Center of Centaurus A
Explanation: A fantastic jumble of young blue star clusters, gigantic glowing gas clouds, and imposing dark dust lanes surrounds the central region of the active galaxy Centaurus A. This mosaic of Hubble Space Telescope images taken in blue, green, and red light has been processed to present a natural color picture of this cosmic maelstrom. Infrared images from the Hubble have also shown that hidden at the center of this activity are what seem to be disks of matter spiraling into a black hole with a billion times the mass of the Sun! Centaurus A itself is apparently the result of a collision of two galaxies and the left over debris is steadily being consumed by the black hole. Astronomers believe that such black hole central engines generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. But for an active galaxy Centaurus A is close, a mere 10 million light-years away, and is a relatively convenient laboratory for exploring these powerful sources of energy.

Thumbnail image of picture found for this day. APOD: 2002 March 9 - A Quasar Portrait Gallery
Explanation: Quasars (QUASi-stellAR objects) lie near the edge of the observable Universe. Discovered in 1963, astronomers were astounded that such objects could be visible across billions of light-years, as this implies they must emit prodigious amounts of energy. Where does the energy come from? Many believe the quasar's central engine is a giant black hole fueled by tremendous amounts of infalling gas, dust, and stars. This gallery of quasar portraits from the Hubble Space Telescope offers a look at their local neighborhoods: the quasars themselves appear as the bright star-like objects with diffraction spikes. The images in the center and right hand columns reveal quasars associated with disrupted colliding and merging galaxies which should provide plenty of debris to feed a hungry black hole.

Thumbnail image of picture found for this day. APOD: 2002 February 26 - Jets from Radio Galaxy 3C296
Explanation: Jets of streaming plasma expelled by the central black hole of a massive elliptical galaxy likely light up this composite image of 3C296. The jets emanating from NGC 5532 and are nearly a million light years long. Exactly how the central black hole expels the infalling matter is still unknown. After clearing the galaxy, however, the jets inflate large radio bubbles that could glow for millions of years. If excited by a passing front, radio bubbles can even light up again after a billion years. Visible light is depicted in the above image in blue, while radio waves are shown in red. The radio map was created with the Very Large Array of radio telescopes.

Thumbnail image of picture found for this day. APOD: 2002 February 17 - The Local Bubble and the Galactic Neighborhood
Explanation: What surrounds the Sun in this neck of the Milky Way Galaxy? Our current best guess is depicted in the above map of the surrounding 1500 light years constructed from various observations and deductions. Currently, the Sun is passing through a Local Interstellar Cloud (LIC), shown in violet, which is flowing away from the Scorpius-Centaurus Association of young stars. The LIC resides in a low-density hole in the interstellar medium (ISM) called the Local Bubble, shown in black. Nearby, high-density molecular clouds including the Aquila Rift surround star forming regions, each shown in orange. The Gum Nebula, shown in green, is a region of hot ionized hydrogen gas. Inside the Gum Nebula is the Vela Supernova Remnant, shown in pink, which is expanding to create fragmented shells of material like the LIC. Future observations should help astronomers discern more about the local Galactic Neighborhood and how it might have affected Earth's past climate.

Thumbnail image of picture found for this day. APOD: 2002 February 8 - PKS 1127-145: Quasar View
Explanation: The quasar known as PKS 1127-145 lies ten billion light-years from our fair planet. A Hubble Space Telescope view in the left panel shows this quasar along with other galaxies as they appear in optical light. The quasar itself is the brightest object in the lower right corner. In the right panel is a Chandra Observatory x-ray picture, exactly corresponding to the Hubble field. While the more ordinary galaxies are not seen in the Chandra image, a striking jet, nearly a million light-years long, emerges from the quasar to dominate the x-ray view. Bright in both optical and x-ray light, the quasar is thought to harbor a supermassive black hole which powers the jet and makes PKS 1127-145 visible across the spectrum -- a beacon from the distant cosmos.

Thumbnail image of picture found for this day. APOD: 2002 February 2 - Centaurus A: The Galaxy Deep Inside
Explanation: Deep inside Centaurus A, the closest active galaxy to Earth, lies ... another galaxy! Cen A is a giant elliptical galaxy a mere 10 million light-years distant with a central jumble of stars, dust, and gas that probably hides a massive black hole. This composite combines an optical picture of Cen A with dark lines tracing lobes of radio emission and an infrared image from the ISO satellite (in red). The ISO data maps out the dust in what appears to be a barred spiral galaxy about the size of the prominent nearby spiral M33. The discoverers believe that the giant elliptical's gravity helps this barred spiral galaxy maintain its shape. In turn, material funneled along the spiral's bar fuels the central black hole which powers the elliptical's radio lobes. This apparently intimate association between two distinct and dissimilar galaxies suggests a truly cosmic symbiotic relationship.

Thumbnail image of picture found for this day. APOD: 2002 January 16 - Abell 2597 s Cosmic Cavities
Explanation: Typical of large galaxy clusters billions of light-years away, Abell 2597 features hundreds of galaxies embedded in a cloud of multimillion degree gas which glows in x-rays. This Chandra Observatory x-ray image shows the hot gas in this cluster's central regions and also reveals two large dark cavities within the x-ray glow; one below and right of center, the other above and left. Not a comment on dental health, Abell 2597's cavities are about 60,000 light-years across. They are thought to be remnants of a 100 million year old explosion originating from a supermassive black hole at the cluster's core. But the dim ghost cavities are not completely empty or they would have collapsed long ago. Instead they are likely filled with hotter gas, high energy particles, and magnetic fields and are moving away from the cluster center, like bubbles rising in champagne. Over the life of a galaxy cluster such explosions may happen over and over, creating a series of cavities which transport magnetic fields away from the cluster center. In fact, radio observations suggest another explosion has since occurred in the center of Abell 2597.

Thumbnail image of picture found for this day. APOD: 2002 January 10 - X-Ray Milky Way
Explanation: If you had x-ray vision, the center regions of our Galaxy would not be hidden from view by immense cosmic dust clouds opaque to visible light. Instead, the Milky Way toward Sagittarius might look something like this stunning mosaic of images from the orbiting Chandra Observatory. Pleasing to look at, the gorgeous false-color representation of the x-ray data shows high energy x-rays in blue, medium energies in green, and low energies in red. Hundreds of white dwarf stars, neutron stars, and black holes immersed in a fog of multimillion-degree gas are included in the x-ray vista. Within the white patch at the image center lies the Galaxy's central supermassive black hole. Chandra's sharp x-ray vision will likely lead to a new appreciation of our Milky Way's most active neighborhood and has already indicated that the hot gas itself may have a temperature of a mere 10 million degrees Celsius instead of 100 million degrees as previously thought. The full mosaic is composed of 30 separate images and covers a 900 by 400 light-year swath at the galactic center.

Thumbnail image of picture found for this day. APOD: 2001 December 10 - Globular Cluster M15
Explanation: Stars, like bees, swarm around the center of bright globular cluster M15. This ball of over 100,000 stars is a relic from the early years of our Galaxy, and continues to orbit the Milky Way's center. M15, one of about 150 globular clusters remaining, is noted for being easily visible with only binoculars, having at its center one of the densest concentrations of stars known, and containing a high abundance of unusual variable stars and pulsars. The above image, taken in ultraviolet light with the WIYN Telescope, spans about 120 light years and shows the gradual increase in stars toward the cluster's center. M15 lies about 35,000 light years away toward the constellation of Pegasus. Recent evidence indicates that a massive black hole might reside as the center of M15.

Thumbnail image of picture found for this day. APOD: 2001 November 1 - M87's Energetic Jet
Explanation: An energetic jet from the core of giant elliptical galaxy M87 stretches outward for 5,000 light-years. This monstrous jet appears in the panels above to be a knotted and irregular structure, dectected across the spectrum, from x-ray to optical to radio wavelengths. In all these bands, the observed emission is likely created as high energy electrons spiral along magnetic field lines, so called synchrotron radiation. But what powers this cosmic blowtorch? Ultimately, the jet is thought to be produced as matter near the center of M87 swirls toward a spinning, supermassive black hole. Strong electromagnetic forces are generated and eject material away from the black hole along the axis of rotation in a narrow jet. Galaxy M87 is about 50 million light-years away and reigns as the large central elliptical galaxy in the Virgo cluster.

Thumbnail image of picture found for this day. APOD: 2001 October 29 - Spinning Black Holes and MCG 6 30 15
Explanation: What makes the core of galaxy MCG-6-30-15 so bright? Some astronomers believe the answer is a massive spinning black hole. If so, this would be the first observational indication that it is possible to make a black hole act like a battery -- and tap into its rotational energy. MCG-6-30-15 is a distant galaxy that has recently been observed with the orbiting XMM-Newton satellite in X-ray light. These observations show the galaxy's nucleus not only to be very bright but also to show evidence that much of the light is climbing out of a deep gravitational well. A spinning black hole could explain both effects. A strong magnetic field could be the mediator transferring rotational energy from the black hole to the surrounding gas. Pictured above is an artist's illustration of a black hole surrounded by an accretion disk. For clarity, the illustration does not include distorting gravitational lens effects.

Thumbnail image of picture found for this day. APOD: 2001 October 21 - The Sombrero Galaxy from VLT
Explanation: Why does the Sombrero Galaxy look like a hat? Reasons include the Sombrero's unusually large and extended central bulge of stars, and dark prominent dust lanes that appear in a disk that we see nearly edge-on. Billions of old stars cause the diffuse glow of the extended central bulge. Close inspection of the bulge in the above photograph shows many points of light that are actually globular clusters. M104's spectacular dust rings harbor many younger and brighter stars, and show intricate details astronomers don't yet fully understand. The very center of the Sombrero glows across the electromagnetic spectrum, and is thought to house a large black hole. Fifty million-year-old light from the Sombrero Galaxy can be seen with a small telescope towards the constellation of Virgo.

Thumbnail image of picture found for this day. APOD: 2001 September 21 - Where a Black Hole Roams
Explanation: Black hole candidate XTE J1118+480 is known to roam the halo of our Milky Way Galaxy. This exotic system - thought to be a stellar mass black hole consuming matter from a companion star - was discovered only last year as a flaring celestial x-ray source. Suggestively termed a microquasar, recent radio and archival optical observations of its motion through the sky have now allowed its orbit to be calculated. Illustrated above, the black hole's present galactic location is indicated by the purple dot, with the Sun's position in yellow. A mere 6,000 light-years from the Sun now, XTE J1118+480's orbit is traced by the orange line, backtracked for some 230 million years into the past based on models of the Galaxy. Astronomers note this black hole's orbit about the galactic center, looping high above and below the Galaxy's plane of gas, dust,and stars, is similar to orbits of globular star clusters, ancient denizens of our Galaxy. It seems likely that XTE J1118+480 too has its origins in the early history and halo of the Milky Way.

Thumbnail image of picture found for this day. APOD: 2001 September 10 - Galactic Center Flicker Indicates Black Hole
Explanation: Why would the center of our Galaxy flicker? Many astronomers believe the only credible answer involves a black hole. During observations of Sagittarius A* with the orbiting Chandra X-ray Observatory, the bright X-ray source at the very center of our Milky Way brightened dramatically for a few minutes. Sagittarius A* is visible as the bright dot near the center of the above image. Since large objects cannot vary quickly, a small source is implicated in the variation. Evidence including the motions of central stars indicates that the center of our Galaxy is a massive place, however, estimated to be over a million times the mass of our Sun. Only one known type of object can fit so much mass in so small a volume: a black hole. This short flicker therefore provides additional evidence that a black hole does indeed reside at our Galaxy's center. If true, the flicker might have been caused by an object disrupting as it fell toward the disruptive monster.

Thumbnail image of picture found for this day. APOD: 2001 August 16 - Centaurus A: X-Rays from an Active Galaxy
Explanation: Its core hidden from optical view by a thick lane of dust, the giant elliptical galaxy Centaurus A was among the first objects observed by the orbiting Chandra X-ray Observatory. Astronomers were not disappointed, as Centaurus A's appearance in x-rays makes its classification as an active galaxy easy to appreciate. Perhaps the most striking feature of this Chandra false-color x-ray view is the jet, 30,000 light-years long. Blasting toward the upper left corner of the picture, the jet seems to arise from the galaxy's bright central x-ray source -- suspected of harboring a black hole with a million or so times the mass of the Sun. Centaurus A is also seen to be teeming with other individual x-ray sources and a pervasive, diffuse x-ray glow. Most of these individual sources are likely to be neutron stars or solar mass black holes accreting material from their less exotic binary companion stars. The diffuse high-energy glow represents gas throughout the galaxy heated to temperatures of millions of degrees C. At 11 million light-years distant in the constellation Centaurus, Centaurus A (NGC 5128) is the closest active galaxy.

Thumbnail image of picture found for this day. APOD: 2001 July 8 - The Galactic Center in Infrared
Explanation: The center of our Galaxy is a busy place. In visible light, much of the Galactic Center is obscured by opaque dust. In infrared light, however, dust glows more and obscures less, allowing nearly one million stars to be recorded in the above photograph. The Galactic Center itself appears on the right and is located about 30,000 light years away towards the constellation of Sagittarius. The Galactic Plane of our Milky Way Galaxy, the plane in which the Sun orbits, is identifiable by the dark diagonal dust lane. The absorbing dust grains are created in the atmospheres of cool red-giant stars and grow in molecular clouds. The region directly surrounding the Galactic Center glows brightly in radio and high-energy radiation, and is thought to house a large black hole.

Thumbnail image of picture found for this day. APOD: 2001 June 14 - Around The Arches Cluster
Explanation: The most compact cluster of stars known in our galaxy, the Arches cluster, boasts 100 or so massive, young stars contained within a diameter of one light-year. Seen toward the constellation Sagittarius, the Arches cluster is about 25,000 light-years from planet Earth and lies within a scant 100 light-years of the supermassive black hole believed to lurk in our Milky Way Galaxy's center. This combination of images in radio, infrared, and x-ray light illustrates this star cluster's bizarre galactic neighborhood. Shown in red, radio emission traces the filamentary arching structures near the galactic center around the Arches cluster location. Within the zoomed inset box, infrared image data shows some of the cluster's individual stars as bright point-like sources. The diffuse emission in blue surrounding the cluster stars is a false-color x-ray image of an enveloping cloud of 60 million degree gas -- the first time such an energetic star cluster halo has been detected. Astronomers consider the tightly packed and relatively nearby Arches cluster, an analog of the furious star forming regions in galaxies millions of light-years away.

Thumbnail image of picture found for this day. APOD: 2001 June 7 - NGC 253: X-Ray Zoom
Explanation: Astronomers now report that Chandra X-ray Observatory observations of galaxies known to be frantically forming stars show that these galaxies also contain luminous x-ray sources -- thought to be intermediate mass black holes and immense clouds of superheated gas. Take the lovely island universe NGC 253 for example. At distance of a mere 8 million light-years, NGC 253's prodigious starforming activity has been well studied using high-resolution optical images like the one seen here at lower left. Zooming in on this energetic galaxy's central region, Chandra's x-ray detectors reveal hidden details indicated in the inset at right. In the false-color image, x-ray hot gas clouds glow near the core and at least four very powerful x-ray sources lie within 3,000 light-years of the center of the galaxy. Much more luminous than black hole binary star systems in our own galaxy, these extreme x-ray sources may be gravitating toward NGC 253's center. As a result, NGC 253 and other similar starforming galaxies could ultimately develop a single, central, supermassive black hole, transforming their cores into quasars.

Thumbnail image of picture found for this day. APOD: 2001 May 24 - X-Ray Stars of 47 Tucanae
Explanation: A deep optical image (left) of 47 Tucanae shows an ancient globular star cluster so dense and crowded that individual stars can not be distinguished in its closely packed core. An x-ray image of its central regions (inset right) from the Chandra Observatory reveals a wealth of x-ray stars hidden there. Color-coded by energy, low energies are red, medium are green, and high energy cosmic x-ray sources are blue, while whitish sources are bright across the x-ray energy bands. The x-ray stars here are double stars or "compact" binary star systems. They are so called because one of the pair of stellar companions is a normal star and the other a compact object -- a white dwarf, neutron star, or possibly a black hole. Chandra's x-ray vision detects the presence of an unexpectedly large number of these exotic star systems within 47 Tucanae, but it also indicates the apparent absence of a large central black hole. The finding suggests that compact binary star systems of 47 Tucanae may be ejected from the cluster before coalescing to form a large black hole at its core.

Thumbnail image of picture found for this day. APOD: 2001 May 16 - The Center of the Circinus Galaxy in X-Rays
Explanation: Are black holes the cause of X-rays that pour out from the center of the Circinus galaxy? A new high-resolution image from the orbiting Chandra X-ray Observatory has resolved the inner regions of this nearby galaxy into several smaller sources. The image is shown above in representative-color. Extended X-ray emission from the center appears to match optical light and appears consistent with a model where hot gas is escaping from a supermassive black hole at Circinus' center. At least one of the other sources varies its X-ray brightness as expected from a binary star system, indicating that the system is small yet massive, and giving credence to a model where a black hole is surrounded by doughnut-shaped ring. The region shown spans about 5000 light-years across.

Thumbnail image of picture found for this day. APOD: 2001 May 11 - X-Ray Rainbows
Explanation: A drop of water or prism of glass can spread out visible sunlight into a rainbow of colors. In order of increasing energy, the well known spectrum of colors in a rainbow runs red, orange, yellow, green, blue, indigo, violet. X-ray light too can be spread out into a spectrum ordered by energy ... but not by drops of water or glass. Instead, the orbiting Chandra X-ray Observatory uses a set of 540 finely ruled, gold gratings to spread out the x-rays, recording the results with digital detectors. The resulting x-ray spectrum reveals much about the compositions, temperatures, and motions within cosmic x-ray sources. This false color Chandra image shows the x-ray spectrum of a star system in Ursa Major cataloged as XTE J1118+480 and thought to consist of a sun-like star orbiting a black hole. Unlike the familiar appearance of a prism's visible light rainbow, the energies here are ordered along radial lines with the highest energy x-rays near the center and lowest energies near the upper left and lower right edges of the image. The central spiky region itself is created by x-rays from the source which are not spread out by the array of gratings.

Thumbnail image of picture found for this day. APOD: 2001 May 8 - GRO J1655 40: Evidence for a Spinning Black Hole
Explanation: In the center of a swirling whirlpool of hot gas is likely a beast that has never been seen directly: a black hole. Studies of the bright light emitted by the swirling gas frequently indicate not only that a black hole is present, but also likely attributes. The gas surrounding GRO J1655-40, for example, has recently been found to display an unusual flickering at a rate of 450 times a second. Given a previous mass estimate for the central object of seven times the mass of our Sun, the rate of the fast flickering can be explained by a black hole that is rotating very rapidly. What physical mechanisms actually cause the flickering -- and a slower quasi-periodic oscillation (QPO) -- in accretion disks surrounding black holes and neutron stars remains a topic of much research.

Thumbnail image of picture found for this day. APOD: 2001 March 28 - Chandra Deep Field
Explanation: Officially the Chandra Deep Field - South, this picture represents the deepest ever x-ray image of the Universe. One million seconds of accumulated exposure time with the orbiting Chandra X-ray Observatory went in to its making. Concentrating on a single, otherwise unremarkable patch of sky in the constellation Fornax, this x-ray image corresponds to the visible light Hubble Deep Field - South released in 1998. Chandra's view, color coded with low energies in red, medium in green, and high-energy x-rays in blue, shows many faint sources of relatively high-energy x-rays. These are likely active galaxies feeding supermassive central black holes and large clusters of galaxies at distances of up to 12 billion light-years. The stunning picture supports astronomers' ideas of a youthful universe in which massive black holes were much more dominant than at present.

Thumbnail image of picture found for this day. APOD: 2001 January 19 - Black Holes Are Black
Explanation: Q: Why are black holes black? A: Because they have an event horizon. The event horizon is that one-way boundary predicted by general relativity beyond which nothing, not even light, can return. X-ray astronomers using the space-based Chandra Observatory now believe they have direct evidence for event horizons - therefore black holes - in binary star systems which can be detected in x-ray light. These binaries, sometimes called x-ray novae, are known to consist of relatively normal stars dumping material on to massive, compact companions. As illustrated, the material swirls toward the companion in an accretion disk which itself glows in x-rays. If the compact companion is a neutron star (right), the material ultimately smashes into the solid surface and glows even more brightly in high energy x-rays. But if it is indeed a black hole with a defining event horizon, then the x-ray hot material approaches the speed of light as it swirls past the surface of no return and is lost from view. Recent work describes observations of two classes of x-ray binaries, one class 100 times fainter than the other. The results imply the presence of an event horizon in the fainter class which causes the extreme difference in x-ray brightness.

Thumbnail image of picture found for this day. APOD: 2000 December 20 - Sgr A: Fast Stars Near the Galactic Center
Explanation: Why are these stars moving so fast? Shown above is a time-lapse movie in infrared light detailing how stars in the central light-year of our Galaxy have moved over the past eight years. The yellow mark at the image center represents the location of a peculiar radio source named Sgr A*. If these fast stars are held to the Galactic Center by gravity, then the central object exerting this gravity must be both compact and massive. Analysis of the stellar motions indicates that over one million times the mass of our Sun is somehow confined to a region less than a fifth of a light-year across. Astronomers interpret these observations as strong evidence that the center of our Galaxy is home to a very massive black hole.

Thumbnail image of picture found for this day. APOD: 2000 December 10 - Too Close to a Black Hole
Explanation: What would you see if you went right up to a black hole? Above are two computer generated images highlighting how strange things would look. On the left is a normal star field containing the constellation Orion. Notice the three stars of nearly equal brightness that make up Orion's Belt. On the right is the same star field but this time with a black hole superposed in the center of the frame. The black hole has such strong gravity that light is noticeably bent towards it - causing some very unusual visual distortions. In the distorted frame, every star in the normal frame has at least two bright images - one on each side of the black hole. In fact, near the black hole, you can see the whole sky - light from every direction is bent around and comes back to you. Black holes are thought to be the densest state of matter, and there is indirect evidence for their presence in stellar binary systems and the centers of globular clusters, galaxies, and quasars.

Thumbnail image of picture found for this day. APOD: 2000 December 4 - The Circinus Galaxy
Explanation: Powerful forces are at play in the nearby Circinus Galaxy. Hot gas, colored pink, is being ejected out of the spiral galaxy from the central region. Much of Circinus' tumultuous gas, however, is concentrated in two rings. The outer ring, located about 700 light-years from the center, appears mostly red and is home to tremendous bursts of star formation. A previously unseen inner ring, inside the green disk above, is visible only 130 light years from the center on this recently released, representative color image taken by the Hubble Space Telescope. At the very center is an active galactic nucleus, where matter glows brightly before likely spiraling into a massive black hole. Although only 15 million light years distant, the Circinus Galaxy went unnoticed until 25 years ago because it is so obscured by material in the plane of our own Galaxy. The galaxy can be seen with a small telescope, however, in the constellation of Circinus.

Thumbnail image of picture found for this day. APOD: 2000 November 10 - X-Ray Cygnus A
Explanation: Amazingly detailed, this false-color x-ray image is centered on the galaxy Cygnus A. Recorded by the orbiting Chandra Observatory, Cygnus A is seen here as a spectacular high energy x-ray source. But it is actually more famous at the low energy end of the electromagnetic spectrum as one of the brightest celestial radio sources. Merely 700 million light-years distant, Cygnus A is the closest powerful radio galaxy and the false-color radio image (inset right) shows remarkable similarity to Chandra's x-ray view. Central in both pictures, the center of Cygnus A shines brightly while emission extends 300,000 light-years to either side along the same axis. Near light speed jets of atomic particles produced by a massive central black hole are believed to cause the emission. In fact, the x-ray image reveals "hot spots" suggestive of the locations where the particle jets are stopped in surrounding cooler, denser gas. The x-ray image also shows that the jets have cleared out a huge cavity in the surrounding gas. Bright swaths of emission within the cavity likely indicate x-ray hot material ... swirling toward the central black hole.

Thumbnail image of picture found for this day. APOD: 2000 November 9 - The Cosmic X-Ray Background
Explanation: Early on, x-ray satellites revealed a surprising cosmic background glow of x-rays and astronomers have struggled to understand its origin. Now, peering through a hole in the obscuring gas and dust of our own Milky Way Galaxy, the powerful orbiting XMM-Newton telescope has recorded this deep image of the x-ray sky, resolving some of the mysterious background into many faint individual sources. The tantalizing image is color-coded, with red representing relatively low energy x-rays, photons with 500 or so times the energy of visible light. Green and blue colors correspond to increasingly energetic x-rays with up to about 10,000 times visible light energies. Notably, the faint sources tend to be green and blue, showing x-ray characteristics of huge amounts of material falling into massive black holes in very distant galaxies. Do massive black holes reside in the hearts of all large galaxies? The XMM-Newton results add to the growing consensus that they do and that, from across the universe, x-rays produced as matter feeds these black holes account for the cosmic x-ray background.

Thumbnail image of picture found for this day. APOD: 2000 October 31 - The Perseus Cluster s X Ray Skull
Explanation: This haunting image from the orbiting Chandra Observatory reveals the Perseus Cluster of Galaxies in x-rays, photons with a thousand or more times the energy of visible light. Three hundred twenty million light-years distant, the Perseus Cluster contains thousands of galaxies, but none of them are seen here. Instead of mere galaxies, a fifty million degree cloud of intracluster gas, itself more massive than all the cluster's galaxies combined, dominates the x-ray view. From this angle, voids and bright knots in the x-ray hot gas cloud lend it a very suggestive appearance. Like eyes in a skull, two dark bubbles flank a bright central source of x-ray emission. A third elongated bubble (at about 5 o'clock) forms a toothless mouth. The bright x-ray source is likely a supermassive black hole at the cluster center with the bubbles blown by explosions of energetic particles ejected from the black hole and expanding into the immense gas cloud. Fittingly, the dark spot forming the skull's "nose" is an x-ray shadow ... the shadow of a large galaxy inexorably falling into the cluster center. Over a hundred thousand light-years across, the Perseus Cluster's x-ray skull is a bit larger than skulls you may see tonight. Have a safe and happy Halloween!

Thumbnail image of picture found for this day. APOD: 2000 October 17 - Gemini North Images Bow Shock Near Galactic Center
Explanation: What's going on near the center of our Galaxy? Glowing across the electromagnetic spectrum, the center of our Milky Way Galaxy is thought to be home to massive stars, rotating gas rings, and a massive black hole. Now the central Galactic zoo just got larger. The 8-meter Gemini North telescope in Hawaii in its first scientific observation has just imaged the Galactic Center and revealed a star only three light years out colliding with gas and dust. The bow shock, similar to that caused by a boat moving through water, appears arrow-shaped and is visible on the upper right of the above photograph taken in representative infrared colors. Gemini's new flexible-mirror technology has imaged this structure, known as IRS8, in finer detail than ever before.

Thumbnail image of picture found for this day. APOD: 2000 October 1 - The Center of Centaurus A
Explanation: A fantastic jumble of young blue star clusters, gigantic glowing gas clouds, and imposing dark dust lanes surrounds the central region of the active galaxy Centaurus A. This mosaic of Hubble Space Telescope images taken in blue, green, and red light has been processed to present a natural color picture of this cosmic maelstrom. Infrared images from the Hubble have also shown that hidden at the center of this activity are what seem to be disks of matter spiraling into a black hole with a billion times the mass of the Sun! Centaurus A itself is apparently the result of a collision of two galaxies and the left over debris is steadily being consumed by the black hole. Astronomers believe that such black hole central engines generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. But for an active galaxy Centaurus A is close, a mere 10 million light-years away, and is a relatively convenient laboratory for exploring these powerful sources of energy.

Thumbnail image of picture found for this day. APOD: 2000 September 14 - M82 s Middle Mass Black Hole
Explanation: Black holes are probably the most bizarre creatures in the modern astronomical zoo. And after years of pondering black holes as either stellar mass objects seen in binary star systems or enormous supermassive black holes at the centers of galaxies, astronomers now have strong evidence for another exotic species -- middle mass black holes. The leading candidate for the ultradense middle ground is indicated in this false-color detail of a sharp x-ray picture from the space-based Chandra Observatory. A close-up of x-ray sources near the center of starburst galaxy M82, the cropped Chandra image spans about 4,000 light-years. M82 itself is around 11 million light-years distant. The arrowed source has recently been convincingly demonstrated to exhibit x-ray characteristics of an object whose gravitational field holds more than 500 times the mass of the sun within a volume the size of the moon! Astronomers also note that unlike the supermassive variety which are thought to lie at the centers of galaxies, this middle mass black hole is about 600 light-years from the center of M82. Theories for the formation of a middle mass black hole include the collapse of a "hyperstar" formed by the coalescence of many normal stars, or the direct merger of stellar mass black holes.

Thumbnail image of picture found for this day. APOD: 2000 August 18 - X-Rays From Antennae Galaxies
Explanation: A bevy of black holes and neutron stars shine as bright, point-like sources against bubbles of million degree gas in this false-color x-ray image from the orbiting Chandra Observatory. The striking picture shows the central regions of two galaxies, NGC 4038 and NGC 4039, locked in a titanic collision some 60 million light-years distant in the constellation Corvus. In visible light images, long, luminous, tendril-like structures emanating from the wreckage lend the pair their popular moniker, the Antennae Galaxies. Galactic collisions are now thought to be fairly common, but when they happen individual stars rarely collide. Instead gas and dust clouds merge and compress, triggering furious bursts of massive star formation with thousands of resulting supernovae. The exploding stars litter the scene with bubbles of shocked hot gas and collapsed stellar cores. Transfixed by this cosmic accident astronomers watch and are beginning to appreciate the collision-driven evolution of galaxies, not unlike our own.

Thumbnail image of picture found for this day. APOD: 2000 July 6 - A Jet from Galaxy M87
Explanation: What's causing a huge jet to emanate from the center of galaxy M87? Although the unusual jet was first noticed early in the twentieth century, the exact cause is still debated. The above recently released picture taken by the Hubble Space Telescope shows clear details, however. The most popular hypothesis holds that the jet is created by energetic gas swirling around a massive black hole at the galaxy's center. The result is a 5000 light-year long blowtorch where electrons are ejected outward at near light-speed, emitting eerily blue light during a magnetic spiral. M87 is a giant elliptical galaxy residing only 50 million light-years away in the Virgo Cluster of Galaxies. The faint dots of light surrounding M87's center are large ancient globular clusters of stars.

Thumbnail image of picture found for this day. APOD: 2000 June 19 - The Long Jet of Pictor A
Explanation: A jet stretching nearly a million light years has been imaged emanating from galaxy Pictor A. The thin jet of electrons and protons shoots out at nearly light-speed likely from the vicinity of a large black hole at the galaxy center. At the left of the above image in X-rays is the radio galaxy Pictor A, known as a radio galaxy for its strong radio emission. At the far end of the jet on the right a hot spot glows as the intense particle beam bores through a gas cloud in intergalactic space. The jet and hot spot of Pictor A had been seen previously in radio waves, but only recently has the orbiting Chandra X-ray Observatory confirmed its unusual power.

Thumbnail image of picture found for this day. APOD: 2000 June 15 - X-Rays From The Perseus Cluster Core
Explanation: The Perseus Cluster of thousands of galaxies, 320 million light-years distant, is one of the most massive objects in the Universe. At its core lies the giant cannibal galaxy Perseus A (NGC 1275), accreting matter as gas and galaxies fall into it. Representing low, medium, and high energy x-rays as red, green, and blue colours respectively, this Chandra X-ray Observatory image shows remarkable details of x-ray emission from this monster galaxy and surrounding hot (30-70 million degrees C) cluster gas. The bright central source is the supermassive black hole at the core of Perseus A itself. Dark circular voids just above and below the galaxy center, each about half the size of our own Milky Way Galaxy, are believed to be magnetic bubbles of energetic particles blown by the accreting black hole. Settling toward Perseus A, the cluster's x-ray hot gas piles up forming bright regions around the bubble rims. Dramatically, the long greenish wisp just above the galaxy's centre is likely the x-ray shadow produced by a small galaxy falling into the burgeoning Perseus A.

Thumbnail image of picture found for this day. APOD: 2000 June 12 - A Bubbling Galaxy Center
Explanation: What's happening in the center of this galaxy? Close inspection of the center of NGC 4438, as visible in this recently released representative-color image by the Hubble Space Telescope, reveals an unusual bubble of hot gas, colored in red. Astronomers speculate that this strange bubble was created by a massive central black hole that resides there. As gas swirls around the black hole, gravity and friction pull it in and heat it up. Some of the hot gas then falls into the black hole, but not all - some gas gets so hot it shoots out the poles in fast jets. When these jets impact nearby material, they heat it up and cause the detected glow. Galaxy NGC 4438 resides about 50 million light years from Earth, and the pictured central bubble measures about 800 light-years across.

Thumbnail image of picture found for this day. APOD: 2000 June 1 - X-Ray Wind From NGC 3783
Explanation: A black hole is supposed to inexorably attract matter. But the intense radiation generated as material swirls and plunges into its high gravity field also heats up surrounding gas and drives it away. In fact, measurements made using this recent Chandra Observatory X-ray spectrum of active galaxy NGC 3783 reveal a wind of highly ionized atoms blowing away from the galaxy's suspected central black hole at a million miles per hour. Displayed in false color, the bright central spot is the X-ray image of NGC 3783 while the lines radiating away represent an X-ray spectrum of this source produced by Chandra's High Energy Transmission Grating (HETG). An X-ray spectrum is the analog to the rainbow spread of colors in a visible light spectrum. It represents a detailed, spread out image of X-ray colors or energies arising from the source. Ionized atoms of iron, magnesium, oxygen, nitrogen and other elements produce patterns of absorption at known X-ray energies. These patterns have been identified in the spectrum of NGC 3783 at slightly shifted energies and the measured shifts indicate the hot wind's velocity.

Thumbnail image of picture found for this day. APOD: 2000 April 22 - Journey to the Center of the Galaxy
Explanation: In Jules Verne's science fiction classic A Journey to the Center of the Earth, Professor Hardwigg and his fellow explorers encounter many strange and exciting wonders. What wonders lie at the center of our Galaxy? Astronomers now know of some of the bizarre objects which exist there, like vast dust clouds, bright young stars, swirling rings of gas, and even a large black hole. Much of the Galactic Center is shielded from our view in visible light by the intervening dust and gas, but it can be explored using other forms of electromagnetic radiation. This haunting image of the Galactic Center region in infrared light was made in 1996 by a telescope onboard the Midcourse Space Experiment. The center itself appears as a bright spot near the middle of this roughly 1 degree field of view, and the north galactic pole is towards the top. The picture is in false color - starlight appears blue while dust is greenish grey, tending to red in the cooler areas.

Thumbnail image of picture found for this day. APOD: 2000 April 19 - Redshift 5.8: A New Farthest Quasar
Explanation: The distance record for a quasar has been broken yet again. At the present time, no other object in the universe has been found to be more distant than the above speck. The recently discovered quasar has been clocked at redshift 5.82. The exact relation between redshift and distance remains presently unknown, although surely higher redshifts do mean greater distance. The above quasar is likely billions of light-years away and so is seen when the universe was younger than one billion years old, less than a tenth of its present age. Like all quasars, this object is probably a large black hole in the center of a distant galaxy. Don't close the record book yet, though. The redshifts to several other SDSS-discovered quasars are currently being measured, some of which might have redshifts greater than six.

Thumbnail image of picture found for this day. APOD: 2000 April 12 - The Local Bubble and the Galactic Neighborhood
Explanation: What surrounds the Sun in this neck of the Milky Way Galaxy? Our current best guess is depicted in the above map of the surrounding 1500 light years constructed from various observations and deductions. Currently, the Sun is passing through a Local Interstellar Cloud (LIC), shown in violet, which is flowing away from the Scorpius-Centaurus Association of young stars. The LIC resides in a low-density hole in the interstellar medium (ISM) called the Local Bubble, shown in black. Nearby, high-density molecular clouds including the Aquila Rift surround star forming regions, each shown in orange. The Gum Nebula, shown in green, is a region of hot ionized hydrogen gas. Inside the Gum Nebula is the Vela Supernova Remnant, shown in pink, which is expanding to create fragmented shells of material like the LIC. Future observations should help astronomers discern more about the local Galactic Neighborhood and how it might have affected Earth's past climate.

Thumbnail image of picture found for this day. APOD: 2000 February 28 - The Sombrero Galaxy from VLT
Explanation: Why does the Sombrero Galaxy look like a hat? Reasons include the Sombrero's unusually large and extended central bulge of stars, and dark prominent dust lanes that appear in a disk that we see nearly edge-on. Billions of old stars cause the diffuse glow of the extended central bulge. Close inspection of the bulge in the above photograph shows many points of light that are actually globular clusters. M104's spectacular dust rings harbor many younger and brighter stars, and show intricate details astronomers don't yet fully understand. The very center of the Sombrero glows across the electromagnetic spectrum, and is thought to house a large black hole. Fifty million-year-old light from the Sombrero Galaxy can be seen with a small telescope towards the constellation of Virgo.

Thumbnail image of picture found for this day. APOD: 2000 February 15 - M106: A Spiral Galaxy with a Strange Core
Explanation: What's happening at the center of spiral galaxy M106? A swirling disk of stars and gas, M106's appearance is dominated by two bright spiral arms and dark dust lanes near the nucleus. Bright newly formed stars near their outer tips distinguish the spiral arms in the above photograph. The core of M106 glows brightly in radio waves and X-rays where twin jets have been found running the length of the galaxy. An unusual central glow makes M106 one of the closest examples of the Seyfert class of galaxies, where vast amounts of glowing gas are thought to be falling into a central massive black hole. M106, also designated NGC 4258, is a relatively close 25 million light years away, spans 30 thousand light years across, and can be seen with a small telescope towards the constellation of Canes Venatici.

Thumbnail image of picture found for this day. APOD: 2000 January 21 - X For Andromeda
Explanation: A big beautiful spiral galaxy 2 million light-years away, Andromeda (M31) has long been touted as an analog to the Milky Way, a distant mirror of our own galaxy. The popular 1960s British sci-fi series, A For Andromeda, even postulated that it was home to another technological civilization that communicated with us. Using the newly unleashed observing power of the orbiting Chandra X-ray telescope, astronomers have now imaged the center of our near-twin island universe, finding evidence for an object so bizarre it would have impressed many 60s science fiction writers (and readers). Like the Milky Way, Andromeda's galactic center appears to harbor an X-ray source characteristic of a black hole of a million or more solar masses. Seen above, the false-color X-ray picture shows a number of X-ray sources, likely X-ray binary stars, within Andromeda's central region as yellowish dots. The blue source located right at the galaxy's center is coincident with the position of the suspected massive black hole. While the X-rays are produced as material falls into the black hole and heats up, estimates from the X-ray data show Andromeda's central source to be surprisingly cool - only a million degrees or so compared to the tens of millions of degrees indicated for Andromeda's X-ray binaries.

Thumbnail image of picture found for this day. APOD: 2000 January 20 - X-Rays From The Galactic Center
Explanation: Exploring quasars and active galaxies in the distant universe, astronomers have come to believe that most galaxies have massive black holes at their centers. Swirling stars and a strong, variable radio source offer convincing evidence that even our own Milky Way galaxy's center harbors such a bizarre object, a mere 30,000 light-years away. Still, it has long been realized that if a massive black hole lurks there it should produce X-rays - which have not previously been identified. Now, though relatively faint, the missing X-ray source may have been found. Taking advantage of the sensitive Chandra Observatory astronomers have recorded this false-color X-ray image of the Galactic Center. Embedded in a diffuse cloud of X-ray hot gas, the white dot at the center corresponds to an X-ray source at exactly the position of the strong radio source and suspected black hole. Other individual X-ray sources are also present in the picture which spans about 10 light-years at the distance of the galactic center. With radio and X-ray emission generated by infalling material, the Milky Way's central black hole is thought to have a mass of over 2 million suns.

Thumbnail image of picture found for this day. APOD: 2000 January 19 - A Big Black Hole Floats By
Explanation: A black hole glides silently through space. Is there any way to know it's there? Until last week, all objects that might be black holes in our Galaxy were part of binary star systems. There, gas from the companion star was hypothesized to swirl around the black hole, heat up, and emit X-rays before falling in. Last week, however, analysis was released of a mysteriously dark object that floated in front of a distant background star, dramatically increasing this star's light by the lens effect of its gravity, as pictured above. The high mass and low light of this strange lens have astronomers guessing they might just have detected a lone black hole, weighing in at six times the mass of our Sun. The existence of isolated black holes is not in itself surprising, as they should be the end result of the cores of massive stars.

Thumbnail image of picture found for this day. APOD: 2000 January 17 - V4641 Sgr: The Closest Black Hole Candidate
Explanation: An object many astronomers believe is a black hole has been found only 1500 light-years from Earth, making it the closest black hole candidate. Although dramatic explosions emanate from the object, it is far enough away so that we are in no danger. Pictured above, V4641 was imaged just after emitting an outburst in the radio band. Jets, which lasted only minutes, are visible. V4641 is the fourth known microquasar, a miniature version of the massive, matter spewing black holes thought to exist in the centers of galaxies. The explosions are not thought to emanate from within the black hole, a location where neither matter nor information can escape, but from around the black hole, where matter from its companion star may be heating up as it falls in. Astronomers are working to understand why V4641 acts strangely even for a black hole, as the explosions it creates fade within minutes, and appear at different times in different bands of light.

Thumbnail image of picture found for this day. APOD: December 19, 1999 - Accretion Disk Binary System
Explanation: Our Sun is unusual in that it is alone - most stars occur in multiple or binary systems. In a binary system, the higher mass star will evolve faster and will eventually become a compact object - either a white dwarf star, a neutron star, or black hole. When the lower mass star later evolves into an expansion phase, it may be so close to the compact star that its outer atmosphere actually falls onto the compact star. Such is the case diagrammed above. Here gas from a blue giant star is shown being stripped away into an accretion disk around its compact binary companion. Gas in the accretion disk swirls around, heats up, and eventually falls onto the compact star. Extreme conditions frequently occur on the surface of the compact star as gas falls in, many times causing detectable X-rays, gamma-rays, or even cataclysmic novae explosions. Studying the extreme conditions in these systems tells us about the inner properties of ordinary matter around us.

Thumbnail image of picture found for this day. APOD: November 25, 1999 - 3C 295: X-rays From A Giant Galaxy
Explanation: Did this galaxy eat too much? Five billion light-years away, the giant elliptical galaxy 3C295 is a prodigious source of energy at radio wavelengths. Bright knots of X-ray emission are also seen at the center of this false-color Chandra Observatory image of the region. The X-ray and radio emission are believed to be the result of an explosive event triggered when too much material flowed into a supermassive black hole at the heart of the giant galaxy. Additionally, the Chandra picture beautifully reveals an extensive cloud of 50 million degree gas surrounding 3C295. Embedded in the cloud is a cluster of about 100 galaxies, too cool to be seen in the X-ray picture. About two million light-years across, the X-ray hot cloud itself contains enough material to create another 1,000 galaxies or so making the cluster and cloud among the most massive objects in the Universe. However, X-ray data indicate that there is still not enough observed mass to hold the cloud and cluster together gravitationally, suggesting the presence of large amounts of dark matter.

Thumbnail image of picture found for this day. APOD: November 7, 1999 - The Heart Of NGC 4261
Explanation: Who knows what evil lurks in the hearts of galaxies? The Hubble knows. This Hubble Space Telescope picture of the center of the nearby elliptical galaxy NGC 4261 tells one dramatic tale. The gas and dust in this disk are swirling into what is almost certainly a massive black hole. The disk is probably what remains of a smaller galaxy that fell in hundreds of millions of years ago. Collisions like this may be a common way of creating such active galactic nuclei as quasars. Strangely, the center of this fiery whirlpool is offset from the exact center of the galaxy - for a reason that for now remains an astronomical mystery.

Thumbnail image of picture found for this day. APOD: October 28, 1999 - X Ray Jet From Centaurus A
Explanation: Spanning over 25,000 light-years, comparable to the distance from the Sun to the center of our own Milky Way galaxy, a cosmic jet seen in X-rays blasts from the center of Centaurus A. Only 10 million light-years away, Centaurus A is a giant elliptical galaxy - the closest active galaxy to Earth. This composite image illustrates the jumble of gas, dust, and stars visible in an optical picture of Cen A superposed on a new image recorded by the orbiting Chandra X-ray Observatory. The X-ray data is shown in red. Present theories hold that the X-ray bright jet is caused by electrons driven to extremely high energies over enormous distances. The jet's power source is likely to be a black hole with about 10 million times the mass of the Sun coincident with the X-ray bright spot at the galaxy's center. Amazingly, while some material in the vicinity of the black hole falls in, some material is blasted outward in energetic jets. Details of this cosmic power generator can be explored with the Chandra X-ray data.

Thumbnail image of picture found for this day. APOD: October 17, 1999 - Black Holes in Galactic Centers
Explanation: Do all galaxies have black holes at their centers? Although not even a single galaxy has yet been proven to have a central black hole, the list of candidates continues to increase. Results by astronomers using instruments like the Hubble Space Telescope now indicate that most - and possibly even all - large galaxies may harbor one of these dense beasts. In all the galaxies studied, star speeds continue to increase closer the very center. This in itself indicates a center millions of times more massive than our Sun is needed to contain the stars. This mass when combined with the limiting size make the case for the central black holes. Will we ever know for sure?

Thumbnail image of picture found for this day. APOD: October 8, 1999 - NGC 1365: Barred Spiral Galaxy
Explanation: NGC 1365 is a giant barred spiral galaxy about 200,000 light-years in diameter and 60 million light-years distant in the southern constellation Fornax. These three recently released images offer views of this majestic island universe in visible and infrared light. In the middle is an optical ground-based image showing NGC 1365's dramatic spiral arms trailing away from its central galactic bar. Superposed colored rectangles define the corresponding fields of the inset images. At upper left, a Hubble Space Telescope near visible light image shows young blue star clusters and dark dust lanes located near the center of NGC 1365. The bright yellow nucleus likely houses a massive black hole. At lower right, the Hubble infrared view of the galaxy's center also shows young star clusters as bright blue spots but additionally reveals infrared-bright spots corresponding to newborn clusters still hidden from optical view by dust clouds. Astronomers believe the gravity field of NGC 1365's bar plays a crucial role in the galaxy's evolution, funneling gas and dust into the central star-forming maelstrom and ultimately feeding material into its massive black hole.

Thumbnail image of picture found for this day. APOD: August 22, 1999 - The Center of Centaurus A
Explanation: A fantastic jumble of young blue star clusters, gigantic glowing gas clouds, and imposing dark dust lanes surrounds the central region of the active galaxy Centaurus A. This mosaic of Hubble Space Telescope images taken in blue, green, and red light has been processed to present a natural color picture of this cosmic maelstrom. Infrared images from the Hubble have also shown that hidden at the center of this activity are what seem to be disks of matter spiraling into a black hole with a billion times the mass of the Sun! Centaurus A itself is apparently the result of a collision of two galaxies and the left over debris is steadily being consumed by the black hole. Astronomers believe that such black hole "central engines" generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. But for an active galaxy Centaurus A is close, a mere 10 million light-years away, and is a relatively convenient laboratory for exploring these powerful sources of energy.

Thumbnail image of picture found for this day. APOD: August 15, 1999 - M104: The Sombrero Galaxy
Explanation: What's going on in the center of this spiral galaxy? Named the Sombrero Galaxy for its hat-like resemblance, M104 features a prominent dust lane and a bright halo of stars and globular clusters. Something truly energetic is going on in the Sombrero's center, as it not only appears bright in visible light, but glows prodigiously in X-ray light as well. This X-ray emission coupled with unusually high central stellar speeds cause many astronomers to speculate that a black hole lies at the Sombrero's center - a black hole possibly a billion times the mass of our Sun.

Thumbnail image of picture found for this day. APOD: June 21, 1999 - The Galactic Center in Infrared
Explanation: The center of our Galaxy is a busy place. In visible light, much of the Galactic Center is obscured by opaque dust. In infrared light, however, dust glows more and obscures less, allowing nearly one million stars to be recorded in the above photograph. The Galactic Center itself appears on the right and is located about 30,000 light years away towards the constellation of Sagittarius. The Galactic Plane of our Milky Way Galaxy, the plane in which the Sun orbits, is identifiable by the dark diagonal dust lane. The absorbing dust grains are created in the atmospheres of cool red-giant stars and grow in molecular clouds. The region directly surrounding the Galactic Center glows brightly in radio and high-energy radiation, and is thought to house a large black hole.

Thumbnail image of picture found for this day. APOD: April 12, 1999 - Nearby Spiral Galaxy NGC 4945
Explanation: For such a close galaxy, NGC 4945 is easy to miss. NGC 4945 is a spiral galaxy in the Centaurus Group of galaxies, located only six times farther away than the prominent Andromeda Galaxy. The thin disk galaxy is oriented nearly edge-on, however, and shrouded in dark dust. Therefore galaxy-gazers searching the southern constellation of Centaurus need a telescope to see it. The above picture was taken with a large telescope testing a new wide-angle, high-resolution CCD camera. Most of the spots scattered about the frame are foreground stars in our own Galaxy, but some spots are globular clusters orbiting the distant galaxy. NGC 4945 is thought to be quite similar to our own Milky Way Galaxy. X-ray observations reveal, however, that NGC 4945 has an unusual, energetic, Seyfert 2 nucleus that might house a large black hole.

Thumbnail image of picture found for this day. APOD: February 16, 1999 - The Large and Small of M87
Explanation: The small core of elliptical galaxy M87 appears to be energizing its whole galactic neighborhood. Recent images from the Very Large Array (VLA) of radio telescopes indicate that huge bubbles of hot gas not only exist but are still being created. These bubbles measure 200,000 light-years across and surround the entire galaxy. The source creating and feeding the bubbles has been traced to jets pointing back to M87's center, where a supermassive black hole is thought to live. The smallest scale on the above radio-map is 0.2 light-years and imaged by many radio telescopes working together (VLBI). The labeled numbers refer to the wavelength of the radio waves observed. The exact composition of these jets is not known, but thought to contain various subatomic particles.

Thumbnail image of picture found for this day. APOD: January 28, 1999 - The Galactic Center A Radio Mystery
Explanation: Tuning in to the center of our Milky Way galaxy, radio astronomers explore a complex, mysterious place. A premier high resolution view, this startlingly beautiful picture covers a 4x4 degree region around the galactic center. It was constructed from 1 meter wavelength radio data obtained by telescopes of the Very Large Array near Socorro, New Mexico, USA. The galactic center itself is at the edge of the extremely bright object labeled Sagittarius (Sgr) A, suspected of harboring a million solar mass black hole. Along the galactic plane which runs diagonally through the image are tortured clouds of gas energized by hot stars and round-shaped supernova remnants (SNRs) - hallmarks of a violent and energetic cosmic environment. But perhaps most intriguing are the arcs, threads, and filaments which abound in the scene. Their uncertain origins challenge present theories of the dynamics of the galactic center.

Thumbnail image of picture found for this day. APOD: December 4, 1998 - Centaurus A: The Galaxy Deep Inside
Explanation: Deep inside Centaurus A, the closest active galaxy to Earth, lies ... another galaxy! Cen A is a giant elliptical galaxy a mere 10 million light-years distant with a central jumble of stars, dust, and gas that probably hides a massive black hole. This composite combines an optical picture of Cen A with dark lines tracing lobes of radio emission and an infrared image from the ISO satellite (in red). The ISO data maps out the dust in what appears to be a barred spiral galaxy about the size of the prominent nearby spiral M33. The discoverers believe that the giant elliptical's gravity helps this barred spiral galaxy maintain its shape. In turn, material funneled along the spiral's bar fuels the central black hole which powers the elliptical's radio lobes. This apparently intimate association between two distinct and dissimilar galaxies suggests a truly cosmic symbiotic relationship.

Thumbnail image of picture found for this day. APOD: November 28, 1998 - A Lonely Neutron Star
Explanation: How massive can a star get without imploding into a black hole? These limits are being tested by the discovery of a lone neutron star in space. Observations by the Hubble Space Telescope have been combined with previous observations by the X-ray ROSAT observatory and ultraviolet EUVE observatory for the isolated star at the location of the arrow. Astronomers are able to directly infer the star's size from measurements of its unblended brightness, temperature, and an upper limit on the distance. Assuming that the object is a neutron star of typical mass, some previous theories of neutron star structure would have predicted an implosion that would have created a black hole. That this neutron star even exists therefore allows a window to the extreme conditions that exist in the interiors of neutron stars.

Thumbnail image of picture found for this day. APOD: July 29, 1998 - The High Energy Heart Of The Milky Way
Explanation: These high resolution false color pictures of the Galactic center region in high energy X-ray and gamma-ray light result from a very long exposure of roughly 3,000 hours performed from 1990 to 1997 by the French SIGMA telescope onboard the Russian GRANAT spacecraft. Each image covers a 14x14 degree field which includes most of the central bulge of our Milky Way Galaxy. The X-ray picture (left) reveals a cluster of sources releasing enormous amounts of energy. They are probably binary star systems where matter accretes onto a collapsed object, either a neutron star or a black hole. But according to recent theories, only those binary systems with black holes can radiate above X-ray energies -- in the gamma-ray regime. In that case, the SIGMA sources also shining in the gamma-ray picture (right) betray the presence of accreting stellar black holes! Surprisingly, no high energy source seems to coincide exactly with the Galactic center itself, located near the brightest source at the bottom of both pictures. This indicates that the large black hole thought to be lurking there is unexpectedly quiet at these energies.

Thumbnail image of picture found for this day. APOD: June 22, 1998 - The Doomed Dust Disk of NGC 7052
Explanation: What created the dust disk in the center of NGC 7052, and what keeps it spinning? Although the disk might appear as a relatively tame "hubcap in space", the unusual center of elliptical galaxy NGC 7052 is probably the remnant of a titanic collision between galaxies. What's more, the disk's spin indicates the tremendous gravity of a massive central black hole. Analysis of this recently released photo by the Hubble Space Telescope indicates that the disk is thousands of light-years across, rotates faster than 100 kilometers per second, at a distance of 150 light-years from the center, and contains more mass than a million Suns. The theorized central black hole is thought to be yet 100 times more massive, and may swallow the entire disk in the next few million years.

Thumbnail image of picture found for this day. APOD: May 22, 1998 - The Center of Centaurus A
Explanation: A fantastic jumble of young blue star clusters, gigantic glowing gas clouds, and imposing dark dust lanes surrounds the central region of the active galaxy Centaurus A. This mosaic of Hubble Space Telescope images taken in blue, green, and red light has been processed to present a natural color picture of this cosmic maelstrom. Infrared images from the Hubble have also shown that hidden at the center of this activity are what seem to be disks of matter spiraling into a black hole with a billion times the mass of the Sun! Centaurus A itself is apparently the result of a collision of two galaxies and the left over debris is steadily being consumed by the black hole. Astronomers believe that such black hole "central engines" generate the radio, X-ray, and gamma-ray energy radiated by Centaurus A and other active galaxies. But for an active galaxy Centaurus A is close, a mere 10 million light-years away, and is a relatively convenient laboratory for exploring these powerful sources of energy.

Thumbnail image of picture found for this day. APOD: February 23, 1998 - M104: The Sombrero Galaxy
Explanation: What's going on in the center of this spiral galaxy? Named the Sombrero Galaxy for its hat-like resemblance, M104 features a prominent dust lane and a bright halo of stars and globular clusters. Something truly energetic is going on in the Sombrero's center, as it not only appears bright in visible light, but glows prodigiously in X-ray light as well. This X-ray emission coupled with unusually high central stellar speeds cause many astronomers to speculate that a black hole lies at the Sombrero's center - a black hole possibly a billion times the mass of our Sun.

Thumbnail image of picture found for this day. APOD: January 17, 1998 - At The Core Of M15
Explanation: Densely packed stars in the core of the globular cluster M15 are shown in this Hubble Space Telescope (HST) image. The star colors roughly indicate their temperatures - hot stars appear blue, cooler stars look reddish-orange. The region visible here is only about 1.6 light-years across, compared to the 4.3 light-year distance to our own Sun's nearest neighbor. Imagine the night sky viewed from a planet orbiting a star near this cluster's center! M15 has long been recognized as one of the densest clusters of stars in our galaxy outside of the galactic center itself. Even the unprecedented resolving power of the HST cameras could not separate the individual stars in its innermost regions. However, this HST image reveals that the density of stars continues to rise toward the cluster's core, suggesting that a sudden, runaway collapse due to the gravitational attraction of many closely packed stars or a single central massive object, perhaps a black hole, could account for the core's extreme density.

Thumbnail image of picture found for this day. APOD: December 6, 1997 - A Quasar Portrait Gallery
Explanation: QUASARs (QUASi-stellAR objects) lie near the edge of the observable Universe. Discovered in 1963, astronomers were astounded that such objects could be visible across billions of light-years, as this implies they must emit prodigious amounts of energy. Where does the energy come from? Many believe the quasar's central engine is a giant black hole fueled by tremendous amounts of infalling gas, dust, and stars. This gallery of quasar portraits from the Hubble Space Telescope offers a look at their local neighborhoods: the quasars themselves appear as the bright star-like objects with diffraction spikes. The images in the center and right hand columns reveal quasars associated with disrupted colliding and merging galaxies which should provide plenty of debris to feed a hungry black hole.

Thumbnail image of picture found for this day. APOD: December 2, 1997 - Micro-Quasar GRS1915 Puffs
Explanation: On the far side of our Galaxy, gas clouds explode away from a small black hole. This might seem peculiar, as black holes are supposed to attract matter. But material falling toward a black hole collides and heats up, creating an environment similar to a quasar that is far from stable. In the above time-lapse sequence, micro-quasar GRS1915 expels bubbles of hot gas in spectacular jets. These computer enhanced radio images show one plasma bubble coming almost directly toward us at 90 percent the speed of light, and another moving away. Each of the four frames marks the passage of one day. Originally detected on October 29th, these bubbles have now faded from view.

Thumbnail image of picture found for this day. APOD: November 24, 1997 - Jet Near Light Speed
Explanation: Einstein's Special Theory of Relativity says that nothing can travel faster than the speed of light. Jets of protons and electrons that shoot away from objects such as quasars and black holes appear to travel at speeds approaching this maximum speed, though. Such jets carry tremendous energy and can ram straight through interstellar material. In the above frame from a computer simulation, a jet traveling only 98 percent of light speed rams and mixes with interstellar material. Even higher energy jets might well explain the structure seen around Cygnus A.

Thumbnail image of picture found for this day. APOD: November 7, 1997 - Evidence for Frame Dragging Black Holes
Explanation: Gravity can do more than floor you. According to recent measurements of a star system thought to contain a black hole, it can spin you too. This effect, called frame-dragging, is most prominent near massive, fast spinning objects. Now, a team led by W. Cui (MIT) has used the orbiting Rossi X-ray Timing Explorer to search for it near a system thought to contain a black hole. Cui's team claim that matter in this system gets caught up and spun around the black hole at just the rate expected from frame-dragging. Such discoveries help scientists better understand gravity itself.

Thumbnail image of picture found for this day. APOD: October 19, 1997 - The Heart Of NGC 4261
Explanation: What evil lurks in the hearts of galaxies? This Hubble Space Telescope picture of the center of the nearby elliptical galaxy NGC 4261 tells one dramatic tale. The gas and dust in this disk are swirling into what is almost certainly a massive black hole. The disk is probably what remains of a smaller galaxy that fell in hundreds of millions of years ago. Collisions like this may be a common way of creating such active galactic nuclei as quasars. Strangely, the center of this fiery whirlpool is offset from the exact center of the galaxy - for a reason that for now remains an astronomical mystery.

Thumbnail image of picture found for this day. APOD: September 26, 1997 - A Lonely Neutron Star
Explanation: How massive can a star get without imploding into a black hole? These limits are being tested by the discovery of a lone neutron star in space. Observations by the Hubble Space Telescope released Wednesday, have been combined with previous observations by the X-ray ROSAT observatory and ultraviolet EUVE observatory for the isolated star at the location of the arrow. Astronomers are able to directly infer the star's size from measurements of its unblended brightness, temperature, and an upper limit on the distance. Assuming that the object is a neutron star of typical mass, some previous theories of neutron star structure would have predicted an implosion that would have created a black hole. That this neutron star even exists therefore allows a window to the extreme conditions that exist in the interiors of neutron stars.

Thumbnail image of picture found for this day. APOD: September 12, 1997 - The Center of NGC 6251 is Glowing
Explanation: Something is lighting up the center of galaxy NGC 6251. Leading speculation holds that it is a large black hole not shrouded by gas and dust typically found near the center of a galaxy. Observations taken with the Hubble Space Telescope and released earlier this week indicate a new perspective on the strange beasts that rule the centers of galaxies: a bright central object that is illuminating a surrounding material disk, shown in blue. The lack of reflection from the upper part of the disk indicates that this disk is warped in shape. Although not visible in the above composite image, a huge plasma jet streams out from the central object, perpendicular to the warped disk.

Thumbnail image of picture found for this day. APOD: June 17, 1997 - Arp 220: Spirals in Collision
Explanation: Arp 220 is the brightest object in the local universe. But why does it shine so brightly? Arp 220 was cataloged as a peculiar galaxy in the 1960s. In the late 1980s, it was discovered to be an ultraluminous infrared galaxy and headed a list compiled from observations with the now-defunct IRAS satellite. New observations with the Hubble Space Telescope are quite revealing. Photos by NICMOS in the infrared taken in April and released just last week now better resolve the two colliding spiral galaxies at the center of Arp 220. A result of this spiral collision are fantastic knots of new star formation visible as the bright spots on the above photograph. Below the "half-moon" shaped knot on the right is a massive disk of dust possibly hiding a dying spiral's central black hole. The bright knot to the left is the center of the other broken spiral galaxy. The galaxy cores are about 1200 light years apart and are orbiting each other.

Thumbnail image of picture found for this day. APOD: June 13, 1997 - Streaming From A Black Hole
Explanation: Glowing gas clouds are streaming from the core of galaxy NGC4151 at hundreds of thousands of miles per hour. A powerful tool, the Hubble Space Telescope's new STIS instrument, makes it possible to map out the cloud velocities - producing this false color "velocity map" for the central regions of NGC4151. The horizontal line is light from the intensely bright region near the galaxy nucleus. Emission at two wavelengths characteristic of Oxygen atoms in the gas clouds is visible along this line. Below the line the emission is displaced to the left, indicating motion toward us (blue shift); above the displacement is to the right indicating a receding motion (red shift). Where do the clouds come from? As evidence mounts, the widely accepted explanation for energetic nuclear activity in galaxies is based on material spiraling into a central black hole with over a million times the mass of our sun. The rotating disk of interstellar debris which develops is thought to blast out high velocity jets along the axis of the disk. Do all galaxies contain supermassive black holes?

Thumbnail image of picture found for this day. APOD: May 16, 1997 - Signed, "A Black Hole"
Explanation: This artistic image is actually the signature of a supermassive black hole in the center of distant galaxy M84 - based on data recently recorded by Hubble's new Space Telescope Imaging Spectrograph (STIS). Very near black holes the force of gravity is so strong that even light can not escape ... but the presence of a black hole can also be revealed by watching matter fall into it. In fact, material spiraling into a black hole would find its speed increasing at a drastic rate. These extreme velocity increases provide a "signature" of the black hole's presence. STIS relies on the Doppler effect to measure gas velocity rapidly increasing to nearly 240 miles per second within 26 light years of the center of M84, a galaxy in the Virgo Cluster about 50 million light years away. The STIS data show that radiation from approaching gas, shifted to blue wavelengths left of the centerline, is suddenly redshifted to the right of center indicating a rapidly rotating disk of material near the galactic nucleus. The resulting sharp S-shape is effectively the signature of a black hole estimated to contain at least 300 million solar masses. Do all galaxies have central black holes?

Thumbnail image of picture found for this day. APOD: April 13, 1997 - Jets from SS433
Explanation: SS433 is one of the most exotic star systems known. Its unremarkable name stems from its inclusion in a catalog of stars which emit radiation characteristic of atomic hydrogen. Its very remarkable behavior stems from a compact object, a black hole or neutron star, which has produced an accretion disk with jets. As illustrated in this artist's vision of the SS433 system based on observational data, a massive, hot star (left) is locked in a mutual orbit with a compact object. Material transfers from the massive star into an accretion disk surrounding the compact object blasting out two jets of ionized gas in opposite directions - at about 1/4 the speed of light! Radiation from the jet tilted toward the observer is blueshifted, while radiation from the jet tilted away is redshifted. The binary system itself completes an orbit in about 13 days while the jets precess (wobble like a top) with a period of about 164 days. Are the jets from SS433 related to those from black holes at the centers of galaxies?

Thumbnail image of picture found for this day. APOD: April 5, 1997 - A Black Hole in M87?
Explanation: The center of nearby giant galaxy M87 is a dense and violent place. In this 1994 photograph by the Hubble Space Telescope, a disk of hot gas was found to be orbiting at the center of this massive elliptical galaxy. The disk is evident at the lower left of the picture. The rotation speed of gas in this disk indicates the mass of the object the gas is orbiting, while the size of the disk indicates an approximate volume of the central object. These observations yield a central density so high that the only hypothesized object that could live there is a black hole. The picture also shows a highly energetic jet emanating from the central object like a cosmic blowtorch. The jet is composed of fast moving charged particles and has broken into knots as small as 10 light years across.

Thumbnail image of picture found for this day. APOD: February 8, 1997 - M104: The Sombrero Galaxy
Explanation: The famous Sombrero galaxy (M104) is a bright nearby spiral galaxy. The prominent dust lane and halo of stars and globular clusters give this galaxy its name. Something very energetic is going on in the Sombrero's center, as much X-ray light has been detected from it. This X-ray emission coupled with unusually high central stellar velocities cause many astronomers to speculate that a black hole lies at the Sombrero's center - a black hole a billion times the mass of our Sun.

Thumbnail image of picture found for this day. APOD: January 21, 1997 - Journey to the Center of the Galaxy
Explanation: In Jules Verne's science fiction classic A Journey to the Center of the Earth, Professor Hardwigg and his fellow explorers encounter many strange and exciting wonders. What wonders lie at the center of our Galaxy? Astronomers now know of some of the bizarre objects which exist there, like vast dust clouds, bright young stars, swirling rings of gas, and possibly even a large black hole. Much of the Galactic center region is shielded from our view in visible light by the intervening dust and gas. But it can be explored using other forms of electromagnetic radiation, like radio, infrared, X-rays, and gamma rays. This beautiful high resolution image of the Galactic center region in infrared light was made by the SPIRIT III telescope onboard the Midcourse Space Experiment. The center itself appears as a bright spot near the middle of the roughly 1x3 degree field of view, the plane of the Galaxy is vertical, and the north galactic pole is towards the right. The picture is in false color - starlight appears blue while dust is greenish grey, tending to red in the cooler areas.

Thumbnail image of picture found for this day. APOD: January 15, 1997 - Black Hole Signature From Advective Disks
Explanation: What does a black hole look like? If alone, a black hole would indeed appear quite black, but many black hole candidates are part of binary star systems. So how does a black hole binary system look different from a neutron star binary system? The above drawings indicate it is difficult to tell! Recent theoretical work, however, has provided a new way to tell them apart: advective accretion flows (ADAFs). A black hole system so equipped would appear much darker than a similar neutron star system. The difference is caused by the hot gas from the ADAF disk falling through the event horizon of the black hole and disappearing - gas that would have emitted much light were the central object only a neutron star. Recent observations of the soft X-ray transient V404 Cyg has yielded a spectrum much like an ADAF onto a black hole - and perhaps brighter than allowable from an ADAF onto a neutron star.

Thumbnail image of picture found for this day. APOD: January 14, 1997 - Black Holes and Galactic Centers
Explanation: Do all galaxies have black holes at their centers? Although not even a single galaxy has yet been proven to have a central black hole, the list of candidates has increased yet again. Recent results by astronomers using the Hubble Space Telescope now indicate that most - and possibly even all - large galaxies may harbor one of these dense beasts. In all the galaxies studied, star speeds continue to increase closer the very center. This in itself indicates a center millions of times more massive than our Sun is needed to contain the stars. This mass when combined with the limiting size make the case for the central black holes. Will we ever know for sure?

Thumbnail image of picture found for this day. APOD: January 5, 1997 - Too Close to a Black Hole
Explanation: What would you see if you went right up to a black hole? Above are two computer generated pictures highlighting how strange things would look. On the left is a normal star field containing the constellation Orion. Notice the three stars of nearly equal brightness that make up Orion's Belt. On the right is the same star field but this time with a black hole superposed in the center of the frame. The black hole has such strong gravity that light is noticeably bent towards it - causing some very unusual visual distortion. In the distorted frame, every star in the normal frame has at least two bright images - one on each side of the black hole. In fact, near the black hole, you can see the whole sky - light from every direction is bent around and comes back to you. Black holes are thought to be the densest state of matter, and there is indirect evidence for their presence in stellar binary systems and the centers of globular clusters, galaxies, and quasars.

Thumbnail image of picture found for this day. APOD: January 4, 1997 - A Star Where Photons Orbit
Explanation: The above computer animated picture depicts how a very compact star would look to a nearby observer. The star pictured is actually more compact that any known except a black hole, so it is only hypothetical. The observer is situated at the photon sphere, where photons can orbit in a circle. To help the viewer better visualize the great distortions created by gravity, a map of the Earth was projected onto the star, and a map of the familiar night sky was projected above. From here one can either look down and see several duplicate images of the entire surface of the star, look up and see several duplicate images of the entire night sky, or look along the photon sphere and see the back of one's own head.

Thumbnail image of picture found for this day. APOD: November 25, 1996 - A Quasar Portrait Gallery
Explanation: QUASARs (QUASi-stellAR objects) lie near the edge of the observable Universe. Discovered in 1963, astronomers were astounded - to be visible at such extreme distances of billions of light-years they must emit prodigious amounts of energy. Where does the energy come from? Many believe the quasar's central engine is a giant black hole fueled by tremendous amounts of infalling gas, dust, and stars. This recently released gallery of quasar portraits from the Hubble Space Telescope offers a look at their local neighborhoods: the quasars themselves appear as the bright star-like objects with diffraction spikes. The images in the center and right hand columns reveal quasars associated with disrupted colliding and merging galaxies which should provide plenty of debris to feed a hungry black hole. Yet, in the left hand column a quasar is seen at the center of an otherwise normal looking spiral (above) and elliptical galaxy. Whatever the secret of the quasar's energy, all these sites must provide fuel for its central engine.

Thumbnail image of picture found for this day. APOD: November 1, 1996 - Spiral Galaxy NGC 3628 Edge On
Explanation: This is what a spiral galaxy looks like sideways. This view of NGC 3628 nearly resembles our own Milky Way Galaxy, which is also known to be a spiral. The dark band across the center is absorbed starlight caused by the galaxy's own interstellar dust. NGC 3628 is the faintest member of the Leo Triplet, a group of galaxies dominated by M65 and M66. The Leo Triplet lies about 35 million light years distant. The center of NGC 3628 emits variable X-ray radiation perhaps indicating the presence of a massive black hole.

Thumbnail image of picture found for this day. APOD: September 11, 1996 - In the Center of Spiral M77
Explanation: What is happening in the center of nearby spiral galaxy M77? To find out, astronomers used the Hubble Space Telescope to peer deep into the dusty chaos of this active galactic nucleus in 1994. They found a network of filamentary gas and opaque dust that provides only clues as to what central monster had left this mess. Due to the presence of hot ionized gas clouds near the core, changes in brightness that can take less than a week, and the ultraviolet halo surrounding the whole galaxy, the leading hypothesis is that a supermassive black hole lies at the center of this Seyfert Type 2 galaxy. Also known as NGC 1068, this galaxy lies only about 50 million light years distant and is visible with only a small telescope.

Thumbnail image of picture found for this day. APOD: September 10, 1996 - M77: Spiral with a Strange Glow
Explanation: Why is M77 surrounded by an ultraviolet glow? M77, also called NGC 1068, appears at first sight to be a relatively normal barred spiral galaxy. But when photographed in the ultraviolet (UV), as shown above in false color, the galaxy sports an ultraviolet halo - shown as violet in the photograph. The blue spiral structure closer to the picture's center indicates normal ultraviolet emission from bright young stars that have recently formed there. Astronomers now hypothesize that the outer glow arises from UV light emitted from the galaxy's active center and reflected to us from clouds of gas and dust. These same gas and dust clouds obscure the active center of this Seyfert galaxy - where an ultramassive black hole is thought to live.

Thumbnail image of picture found for this day. APOD: August 24, 1996 - Why is QSO 1229+204 so Bright?
Explanation: What causes the center of this barred spiral galaxy to light up brighter than almost anything in the universe? The quasar there is a good fraction of the way across our observable universe but appears so bright that astronomers had to use the high resolving power of the Hubble Space Telescope (HST) just to see the host galaxy. HST then resolved something very interesting. Not only was QSO 1229+204 at the core of an unusual barred spiral galaxy, but this galaxy was in the process of colliding with a dwarf galaxy. Gas from this collision quite possibly fuels a supermassive black hole causing QSO 1229+204 to shine so brightly.

Thumbnail image of picture found for this day. APOD: May 29, 1996 - The COMPTEL Gamma-Ray Sky
Explanation: This premier gamma-ray view of the sky was produced by the COMPTEL instrument onboard NASA's orbiting Compton Gamma Ray Observatory. The entire sky is seen projected on a coordinate system centered on our Milky Way Galaxy with the plane of the Galaxy running across the middle of the picture. Gamma-ray intensity is represented by a false color map - low (blue) to high (white). COMPTEL's sensitivity to gamma-rays which have over 1 million times the energy of visible light photons reveals the locations of some of the Galaxy's most exotic objects. The brightest source, the Crab pulsar, is located near the plane of the Galaxy on the far right. Moving along the plane from the Crab, more than halfway toward the galactic center, another bright gamma-ray source, the Vela pulsar, appears. The galactic center itself, along with the famous black hole candidate Cygnus X-1 (near the plane, halfway from the center to the left edge) are also seen as bright sources. Both above and below the plane, spots of gamma-ray emission due to distant active galaxies are also visible.

Thumbnail image of picture found for this day. APOD: May 15, 1996 - The Milky Way Near the Northern Cross
Explanation: This beautiful image of the sky near the bright star Deneb (just above center) reveals the stars, nebulae, and dark clouds along the plane of our Milky Way Galaxy as seen from the northern hemisphere (near Columbia Missouri, USA). Just below Deneb lies the suggestively shaped North America emission nebula. Deneb is the brightest star in the constellation Cygnus, located in the tail of this celestial swan. Cygnus contains the asterism known as the Northern Cross and marks one side of the "Great Rift" in the Milky Way, a series of dark obscuring dust clouds which stretches on through the constellation Sagittarius. Deneb defines the top of the Northern Cross while the body of the cross extends past the upper right corner of the picture. Cygnus also harbors the most famous candidate for a black hole in our galaxy, Cygnus X-1.

Thumbnail image of picture found for this day. APOD: May 5, 1996 - Planet Near a Galaxy Core
Explanation: What would the night sky look like if you lived on a planet near the center of a galaxy? Now imagine that this galaxy houses a black hole billions of times more massive than a star. From this spectacular vantage point, the sky might look like the above illustration. This drawing is based on recent observations of the center of NGC 4261, made by the Hubble Space Telescope. Results indicate that a disk of dust 800-light years wide surrounds the black hole. The hypothetical planet depicted above lies within this disk. The black hole itself heats gas to white-hot temperatures, generating light that is reddened when reflected off the dust. Jets shoot off from the poles of the black hole, perpendicular to the disk. However, friction with the dust and gas would cause planets near the black hole to spiral in and disappear forever. NASA has recently announced a new initiative to search for Earth-like planets in our Galaxy.

Thumbnail image of picture found for this day. APOD: March 6, 1996 - Jets From SS433
Explanation: SS433 is one of the most exotic star systems known to astronomers. Its unremarkable name stems from its inclusion in a catalog of stars which emit radiation characteristic of atomic hydrogen. Its very remarkable behavior stems from a compact object, a black hole or neutron star, which has produced an accretion disk with jets. As illustrated in this artist's vision of the SS433 system based on observational data, a massive, hot star (left) is locked in a mutual orbit with a compact object. Material transfers from the massive star into an accretion disk surrounding the compact object blasting out two jets of ionized gas in opposite directions - at about 1/4 the speed of light! Radiation from the jet tilted toward the observer is blueshifted, while radiation from the jet tilted away is redshifted. The binary system itself completes an orbit in about 13 days while the jets precess (wobble like a top) with a period of about 164 days. Are the jets from SS433 related to those from black holes at the centers of galaxies?

Thumbnail image of picture found for this day. APOD: March 5, 1996 - A Black Hole in M87's Center?
Explanation: The center of nearby giant galaxy M87 is a dense and violent place. In this 1994 photograph by the Hubble Space Telescope, a disk of hot gas was found to be orbiting at the center of this massive elliptical galaxy. The disk is evident on the lower left of the above photograph. The rotation speed of gas in this disk indicates the mass of the object the gas is orbiting, while the size of the disk indicates an approximate volume of the central object. These observations yield a central density so high that the only hypothesized object that could live there is a black hole. The picture also shows a highly energetic jet emanating from the central object. The jet is composed of fast moving charged particles and has broken into knots as small as 10 light years across.

Thumbnail image of picture found for this day. APOD: December 30, 1995 - LMC X-1: A Black Hole Candidate
Explanation: The strongest source of X-rays in the Large Magellanic Cloud originates from an unusually energetic binary star system. This strong source, dubbed LMC X-1, is thought to be a normal and compact star orbiting each other. Gas stripped of the normal star falls onto the compact star, heats up, and emits X-rays. The X-rays shining from the system knock electrons off atoms for light years around, causing some atoms to glow noticeably in X-rays when the electrons re-combine. Motion in the binary system indicates the compact star is probably a black hole, since its high mass - roughly five times that of our Sun - should be enough to cause even a neutron star to implode.

Thumbnail image of picture found for this day. APOD: December 26, 1995 - Accretion Disk Binary System
Explanation: Our Sun is unusual in that it is alone - most stars occur in multiple or binary systems. In a binary system, the higher mass star will evolve faster and will eventually become a compact object - either a white dwarf star, a neutron star, or black hole. When the lower mass star later evolves into an expansion phase, it may be so close to the compact star that its outer atmosphere actually falls onto the compact star. Such is the case diagrammed above. Here gas from a blue giant star is shown being stripped away into an accretion disk around its compact binary companion. Gas in the accretion disk swirls around, heats up, and eventually falls onto the compact star. Extreme conditions frequently occur on the surface of the compact star as gas falls in, many times causing detectable X-rays, gamma-rays, or even cataclysmic novae explosions. Studying the extreme conditions in these systems tells us about the inner properties of ordinary matter around us.

Thumbnail image of picture found for this day. APOD: December 5, 1995 - The Swirling Center of NGC 4261
Explanation: What evil lurks in the hearts of galaxies? The above picture by the Hubble Space Telescope of the center of the nearby galaxy NGC 4261 tells us one dramatic tale. Here gas and dust are seen swirling near this elliptical galaxy's center into what is almost certainly a massive black hole. The disk is probably what remains of a smaller galaxy that fell in hundreds of millions of years ago. Collisions like this may be a common way of creating such active galactic nuclei as quasars. Strangely, the center of this fiery whirlpool is offset from the exact center of the galaxy - for a reason that for now remains an astronomical mystery.

Thumbnail image of picture found for this day. APOD: November 27, 1995 - Too Close to a Black Hole
Explanation: What would you see if you went right up to a black hole? Above are two computer generated pictures highlighting how strange things would look. On the left is a normal star field containing the constellation Orion. Notice the three stars of nearly equal brightness that make up Orion's Belt. On the right is the same star field but this time with a black hole superposed in the center of the frame. The black hole has such strong gravity that light is noticeably bent towards it - causing some very unusual visual distortion. In the distorted frame, every star in the normal frame has at least two bright images - one on each side of the black hole. In fact, near the black hole, you can see the whole sky - light from every direction is bent around and comes back to you. Black holes are thought to be the densest state of matter, and there is indirect evidence for their presence in stellar binary systems and the centers of globular clusters, galaxies, and quasars.

Thumbnail image of picture found for this day. APOD: November 26, 1995 - A Star Where Photons Orbit
Explanation: The above computer animated picture depicts how a very compact star would look to a nearby observer. The star pictured is actually more compact that any known except a black hole, so it is only hypothetical. The observer is situated at the photon sphere, where photons can orbit in a circle. To help the viewer better visualize the great distortions created by gravity, a map of the Earth was projected onto the star, and a map of the familiar night sky was projected above. From here one can either look down and see several duplicate images of the entire surface of the star, look up and see several duplicate images of the entire night sky, or look along the photon sphere and see the back of one's own head.

Thumbnail image of picture found for this day. APOD: November 20, 1995 - At the Core of M15
Explanation: Densely packed stars in the core of the globular cluster M15 are shown in this Hubble Space Telescope (HST) image taken in April of 1994. The stars revealed are contained in an area 1.6 light years across and their colors roughly indicate their temperatures - hot stars appear blue, cooler stars look reddish-orange. M15 has long been recognized as one of the densest cluster of stars in our galaxy outside of the galactic center itself. Even the unprecedented resolving power of the HST cameras could not separate the individual stars in its innermost regions. However, this HST image reveals that the density of stars continues to rise toward the cluster's core, suggesting that a sudden, runaway collapse due to the gravitational attraction of many closely packed stars or a single central massive object, perhaps a black hole, could account for the core's extreme density.

Thumbnail image of picture found for this day. APOD: November 9, 1995 - M104: The Sombrero Galaxy
Explanation: The famous Sombrero galaxy (M104) is a bright nearby spiral galaxy. The prominent dust lane and halo of stars and globular clusters give this galaxy its name. Something very energetic is going on in the Sombrero's center, as much X-ray light has been detected from it. This X-ray emission coupled with unusually high central stellar velocities cause many astronomers to speculate that a black hole lies at the Sombrero's center - a black hole a billion times the mass of our Sun. This image was taken in blue light by the 0.9 meter telescope at Kitt Peak National Observatory.

Thumbnail image of picture found for this day. APOD: October 22, 1995 - A Quasar-Galaxy Collision?
Explanation: In 1963 astronomers were astounded to discover that certain faint, star-like objects have very large redshifts. The large redshifts imply that these objects, now known as quasars (QUASi-stellAR objects), lie near the edge of the observable Universe. To be visible at such extreme distances of billions of light years, they must emit tremendous amounts of energy. Where does the energy come from? In the most widely accepted model, a quasar is the bright nucleus of an active galaxy powered by a central, supermassive black hole. This Hubble Space Telescope image shows a quasar known as PKS 2349 (the star-like object near the center) and a galaxy (surrounding fuzzy patch), but the quasar is not at the galaxy's center! In fact, the galaxy and quasar seem to be colliding or merging. This and other recent HST observations suggest that astronomers' standard ideas about quasars may be wrong.


Return to Search Page
Today's Astronomy Picture of the Day