Advanced Turbine Concept

Physic

Don M. Coates Physics Division Industrial Partnerships 505-667-8946

Contains Proprietary Information

New Turbine Concept Goals

- Simplify design
- Make more compact
- Improve cooling of turbine section
- Improve efficiency
- Configure as either a compact auxiliary power unit (APU) or as thrust engine for aircraft

Proprietary Information Turbine Design Overview

1. Compressor and turbine sections combined into one part

- eliminates classical connecting shaft
- gives more compact design
- potentially reduces manufacturing costs

Proprietary Information Design Overview Continued

2. All input air is passed through hollow turbine-section blades and hollow turbine-nozzle veins

- results in superior cooling of blades
- allows cheaper materials to be used
- preheats air before combustion for partial exhaust gas heat recovery
- should allow engine to operate at higher temps resulting in higher efficiency
- 3. Alternator can be built into the rotor for ultra compactness when in APU configuration

Advanced Turbine Concept

PDO/dmc 3/02 5

Typical Jet Engine Layout

Physics

Composed of three sections: compressor, combustor, and turbine

Proprietary Information Radial/Radial, Single Rotor Turbo Alternator APU

Proprietary Information Radial/Radial, Single Rotor Turbo Alternator APU

Proprietary Information Thrust Engine Configuration

Advanced Turbine Concept

Proprietary Information Status

- Patent portfolio being developed
- First turbine wheel cast in Inconel
- First turbine spool-up imminent in specially designed test rig

- Modeling indicates
 - aerodynamics basically correct
 - stresses well balanced in the design

Physics-

PDO/dmc 3/02 11

First Inconel Rotor

Advanced Turbine Concept

PDO/dmc 3/02 12

Turbine Test Rig

Next Steps

 Using the test rig, explore operational parameter space of the initial engine design

- estimate efficiency, identify design refinements/enhancements
- goal completion date: 7/02
- Analyze the data and recommend path forward
 - run more advanced computer modeling analysis, benchmarked by test rig data
 - incorporate findings into design
 - build running turbine and APU
 - goal completion date: 12/02

Integration: LANL technologies provide a comprehensive package

Physic

- New turbine concept
- Turbine design and development capabilities
 - computer modeling
 - exotic diagnostics used to benchmark computer models
 - actual flow/velocity fields visualized
 - combustion species identified
 - temperatures mapped

Los Alamos

- Advanced turbine systems
 - laser ignition
 - new fuel injection technology
 - vortex combustor

Los Alamos is seeking Partners

Partners are being sought

Los Alamos

- to help in developing our new turbine engine
- to license our new turbine engine and technologies
- Can we help your company solve turbine diagnostics problems?

Physics-

Contact Information

Technical:

Don Coates, Ph.D. Los Alamos National Laboratory Physics Division, MS D434 Industrial Partnership and Intellectual Property Coordinator 505-667-8946 coatesdm@lanl.gov

Program:

Ben Wampler, Ph.D. Los Alamos National Laboratory Energy & Sustainable Systems Program Manager, Energy Science & Technology 505-667-3621 fwampler@lanl.gov