
A Linear Delay Algorithm for Building Concept

Lattices

Martin Farach-Colton and Yang Huang ⋆

Department of Computer Science, Rutgers University, Piscataway, NJ 08854,
farach@cs.rutgers.edu yahuang@cs.rutgers.edu

Abstract. Concept lattices (also called Galois lattices) have been ap-
plied in numerous areas, and several algorithms have been proposed to
construct them. Generally, the input for lattice construction algorithms is
a binary matrix with size |G||M | representing binary relation I ⊆ G×M

. In this paper, we consider polynomial delay algorithms for building con-
cept lattices. Although the concept lattice may be of exponential size,
there exist polynomial delay algorithms for building them. The current
best delay-time complexity is O(|G||M |2). In this paper, we introduce
the notion of irregular concepts, the combinatorial structure of which al-
lows us to develop a linear delay lattice construction algorithm, that is,
we give an algorithm with delay time of O(|G||M |). Our algorithm avoids
the union operation for the attribute set and does not require checking if
new concepts are already generated. In addition, we propose a compact
representation for concept lattices and a corresponding construction algo-
rithm. Although we are not guaranteed to achieve optimal compression,
the compact representation can save significant storage space compared
to the full representation normally used for concept lattices.

1 Introduction

Concept lattices have proved useful in many areas, such as knowledge represen-
tation [13], information retrieval [3], web document management [4,8], software
engineering [16] and bioinformatics [6,11]. Of particular importance in these ap-
plications is the structure of the lattice, i.e. the Hasse diagram of the concept
lattices. For example, the immediate predecessors and successors of a concept
are used in browsing web documents [8] or to infer the class hierarchy of a pro-
gram [16]. The edge information of Hasse diagrams can be used to compare two
concept lattices in which gene expression information has been coded [6].

A concept lattice can be briefly defined as follows. Given a binary relation
between an object set and an attribute set, a concept is a pair of object set A

and attribute set B, denoted as (A, B), where A contains all objects sharing
every attribute in B and B contains all attributes shared by every object in A.
A concept lattice is the partially ordered set of all concepts, in which the order

⋆ Yang Huang is currently at NCBI/NLM/NIH, 8600 Rockville Pike, Room 8N811I,
Bethesda, MD 20894. This work was done when he was at Rutgers University.

is defined using subset order on object sets (which is equivalent to containment
order on attribute sets).

In real-world applications, we often find that it is necessary to construct a
concept lattice from large amount of input data. It is known that the number of
concepts in a concept lattice can be exponential in the size of the input binary
matrix. The problem of deciding the number of concepts has been shown to be
#P-complete [19].

Constructing a concept lattice is a type of enumeration problem. Algorithms
for enumeration problems are typically measured both by total time complexity
and delay-time complexity [12]. The running time of algorithms with polynomial
total time is a polynomial in the size of the input and output. Polynomial delay
time means that there is a polynomial in the input size that bounds the time
to the first entity outputted as well as the delay between any two consecutive
output entities. An algorithm with polynomial delay-time complexity has total
polynomial running time, which is the polynomial delay time multiplied by the
output size. Algorithms with polynomial delay time are often preferred because
they allow us to predict the time to get the next entity. They allow the procedure
of entity processing to follow immediately. They also allow to generate a subset
of entities without generating others.

Related work. The problem of generating the set of concepts is closely related
to two other important problems: generating all maximal bipartite cliques in a
given bipartite graph Gb = (V1, V2, E) and generating all frequent closed item-
sets in a transaction database [21]. Note that generating all maximal bipartite
cliques or all frequent closed itemsets is not enough for generating a concept
lattice since a concept lattice requires the partial order among all concepts be
recovered. A maximal bipartite clique corresponds to a concept if we consider Gb

as a representation for the matching relation between two parts of Gb’s vertices.
A frequent closed itemset corresponds to a concept whose object set size is larger
than a certain threshold. Eppstein [7] showed that the number of all maximal
bipartite cliques is O(|V (G)|) in a graph with bounded arboricity and gave a
linear total time algorithm, where V (G) is the vertex set of G. An algorithm for
generating all maximal bipartite cliques in any bipartite graph was designed by
Makino and Uno [14]. It takes O(∆2) polynomial delay, where ∆ is the maxi-
mum degree of Gb. Given |V1| = |G| and |V2| = |M |, then ∆ = max(|G|, |M |).
CLOSET+ [18], CHARM [20] and LCM2 [17] are among state-of-the-art algo-
rithms for generating the set of frequent closed itemsets.

However, though many algorithms are available for generating the set of con-
cepts and some of them are quite fast, few algorithms compute the edge structure
of the lattice. Bordat’s algorithm [2] uses a trie to store and retrieve concepts
with delay-time complexity O(|G||M |2), where G is the input object set and M

is the input attribute set. Without loss of generality, we will assume |G| ≥ |M |.
Depending on the value of ∆, the delay-time complexity of Makino and Uno’s
algorithm [14] may be better than O(|G||M |). However, it can not be bound by
O(|G||M |) in the worst case. The best polynomial delay-time complexity of algo-
rithms for constructing a concept lattice in terms of |G| and |M | is O(|G||M |2).

Godin et al. [10] proposed an incremental algorithm that dynamically updates
the structure of the concept lattice as new rows or columns are added to the
input matrix. The algorithm by Nourine and Raynaud [15] has the best known
total time complexity O(|G||M ||B|), where B is the set of all concepts. But it
is not a polynomial delay algorithm. Recently, Choi [5] proposed an efficient
concept lattice construction algorithm with complexity O(

∑
a∈ext(C) |cnbr(a)|),

where ext(C) is the object set of the concept C and cnbr(a) is a reduced attribute
set of a. However, it seems to us that the condition used in the algorithm, which
is to check if a newly generated pair of object set and attribute set is a con-
cept, is not sufficient. Berry et al. [1] suggested constructing concept lattices
by searching non-dominating maxmods in a co-bipartite graph. The complexity
is O(|G||M |) per concept plus O(|G||M |2) per traversed maximal chain of the
lattice.

Our results. In this paper, we propose a concept lattice construction algorithm
with delay O(|G||M |), which is linear in the size of the input matrix. Though the
total time complexity of our algorithm, O(|G||M ||B|), ties with that of Nourine
and Raynaud, our algorithm is a polynomial delay algorithm, which their algo-
rithm is not. By introducing the set of irregular concepts, we ensure that when
we compute the union of several attribute sets they are disjoint. Our algorithm
also avoids the operation to check if a newly generated pair of object set and
attribute set is a concept or if it is going to be subsumed, as most previous
algorithms do.

The usual way to represent a concept is by a pair of its object set and at-
tribute set, which contain a lot of redundant information. We call this the full
representation. The space required for storing the full representation of all con-
cepts is O(|G||B|). We propose a compact representation for concept lattices,
in which we represent a concept in terms of the set difference between its ob-
ject/attribute set and the one in one of its predecessors. In the optimal case, a
compact representation only requires O(|B|) space for all concepts, which reaches
the lower bound. Given the compact representation of a concept lattice, we can
easily recover the full representation in linear time. We modify our algorithm for
the full representation to construct a compact representation.

From now on, we will refer to concept lattices as lattices from time to time
when the context is clear. The remaining of the paper is organized as follows: We
introduce the basics of lattices in section 2. In section 3 we present some charac-
terization for lattices. We introduce our algorithm for the full representation in
section 4 and the modified version for the compact representation in section 5.
Finally, we conclude in section 6 and discuss some future research direction.

2 Preliminary

In this section we will give a brief overview for lattices. For a complete intro-
duction, please refer to the book [9]. Many of our notations follow the ones used
in the book. Given a context (G, M, I) where G is the object set and M is the

attribute set, a binary matrix R is used to represent the relation I ⊆ G×M , i.e.
Ri,j = 1 if (gi, mj) ∈ I where gi ∈ G and mj ∈ M and Ri,j = 0 otherwise. For
gi ∈ G, we define g′i = {mj |Ri,j = 1}. Furthermore, for an object set A ⊆ G,
we denote A′ = ∩gi∈Ag′i. Dually, we define m′

j = {gi|Ri,j = 1} for mj ∈ M and
B′ = ∩mj∈Bm′

j for B ⊆ M . With the above notation we are ready to define the
concept.

Definition 2.1. The concept is a pair (A, B) where A ⊆ G, B ⊆ M , A = B′

and B = A′. A is called extent and B is called intent of the concept.

For a concept C = (A, B), we denote A as ext(C) and B as int(C). We call
a set A closed if A = A′′. The extent and intent of a concept are closed sets.
It can be seen that a closed object set A or a closed attribute set B uniquely
determines a concept (A, A′) or (B′, B).

A partial order � is defined on B, the set of all concepts:

Definition 2.2. If ext(C) ⊆ ext(D) (int(D) ⊆ int(C)), then C � D. C is called
successor of D and D is called predecessor of C.

Please note that definition of predecessors and successors in a concept lattice
may be somewhat counter-intuitive. However, this way successors will be placed
in a lower lever, below its predecessors, in the diagram representing a concept
lattice. The diagram will be shown next. According to the definition, a concept
is a predecessor and a successor of itself. In particular, if C is a successor of D
other than D itself and ∀E such that C � E � D implies E = C or E = D, then
C is an immediate successor of D and D is an immediate predecessor of C.

Definition 2.3. The partially ordered set L(G, M, I) = 〈B,�〉 is called concept
lattice or Galois lattice.

The diagram representing a partially ordered set is called Hasse diagram,
where a vertex represents a concept, and two concepts are connected by an edge
if one concept is an immediate successor of the other. We show a lattice example
in the Figure 1.

Later we will need the definition of the infimum.

Definition 2.4. The infimum of a subset S of a partially ordered set (P,�),
denoted as ∧S, is an element l of P such that

1. ∀x ∈ S, l � x, and
2. for any p ∈ P such that ∀x ∈ S, p � x, it holds that p � l.

3 Some Characterization of Lattices

In this section, we will present some characterization of lattices, which will help
us design the lattice construction algorithm. Due to the limit of space, all the
proof is omitted.

We need the following known result:

1 2 3 4

a × ×
b × × ×
c × ×
d × ×

(abc,1) (bd,24)

(ac,13)

(abcd, ø)

(ø, 1234)

(b,124)

(b)(a)

Fig. 1. (a) A binary matrix representing I , where the entry corresponding to gi and
mj is x iff (gi, mj) ∈ I . G = {a, b, c, d} and M = {1, 2, 3, 4}. (b) The Hasse diagram of
the lattice constructed from (G, M, I). The lattice is represented in full representation.

Proposition 3.1. [9] For a concept C ∈ B in the lattice L, C and all of its
successors forms a concept lattice, denoted by LC .

In the following, we will first define regular and irregular concepts. Then we
will present a lemma on the concept C and its irregular successors.

Suppose D is a concept in the lattice LC , and denote the set of its immediate
predecessors that are successors of C by IP C

D
. In addition, suppose IP C

D
= {Di|i ∈

[1..n]}, we denote the set
⋃n

i=1 int(Di), the union of the intent of concepts in
IP C

D
, by int(IP C

D
).

Definition 3.1. If int(D) = int(IP C
D

), D is called regular concept of C. If
int(D) ⊃ int(IP C

D
), D is called irregular concept of C.

Note that an irregular concept D of C is not necessarily meet-irreducible in
LC , where D is meet-irreducible if D = ∧{E ,F} ⇒ D = E or D = F , because D
can have more than one immediate predecessor in LC .

Any immediate successor of C is an irregular concept of C. We denote the
set of all C’s irregular concepts by IRC. The following proposition will help us
identify immediate successors of C from IRC.

Proposition 3.2. Given Ci ∈ IRC, it is an immediate successor of C if and
only if there is no Cj ∈ IRC , j 6= i such that Ci � Cj.

The following lemma shows one of important properties of IRC :

Lemma 3.1. Suppose IRC = {Ci|i ∈ T }, where T is an index set. Given Ci ∈
IRC, let Vi = int(IP C

Ci
) and let Bi = int(Ci) \ Vi. If i, j ∈ T and i 6= j, then

Bi ∩ Bj = ∅, and
⋃

i∈T Bi =
⋃

g∈ext(C) g′ \ int(C).

The above lemma indicates that {Bi|i ∈ T } constitutes a partition of⋃
g∈ext(C) g′ \ int(C), which is the set of attributes belonged to some g ∈ ext(C)

but not appearing in int(C). Since Bi ∩ Bj = ∅, Bi 6= ∅, Bj 6= ∅ and
Bi ⊆ M, Bj ⊆ M , we have a direct corollary from the lemma:

(c,3)

(ac,3)

(b,4)

(ad,12) (b,4)

(abcd,)

(b,4)

(d,1) (b,4)

(b,4)

(b)(a)

Fig. 2. (a) Irregular concepts regarding (abcd, ∅), (bd, 3) and (abc, 1). The concepts
pointed by an arrow and connected to (abcd, ∅) ((bd, 3)/(abc, 1)) by dashed lines are
its irregular concepts. Note that the lattice is in the full representation. (b) The same
lattice in a compact representation computed by our algorithm. For each concept, a
directed edge points to its base.

Corollary 3.1. For any concept C, |IRC| ≤ |M |.

Since Bi is still “partial” compared to int(Ci), let us introduce the set
{(ext(Ci), Bi)|Ci ∈ IRC} as PIRC , where Bi is defined as in Lemma 3.1.
Please note that the only difference between PIRC and IRC is that the at-
tribute set in PIRC is not complete yet. To see some examples of PIR,
let C = (abcd, ∅), C1 = (bd, 3) and C2 = (abc, 1) in Figure 2 (a).
Then PIRC = {(bd, 3), (abc, 1), (acd, 4), (bc, 2)}. PIRC1 = {(b, 1), (d, 4)}. And
PIRC2 = {(b, 3), (bc, 2), (ac, 4)}.

For a concept in LC , the following corollary makes it easy to identify its
predecessors in PIRC .

Corollary 3.2. Given C, ∀(Ai, Bi) ∈ PIRC, ∀D � C, if int(D) ∩ Bi 6= ∅, then
D � E, where E = (Ai, A

′

i).

Since IRC contains all C’s immediate successors, we will be able to generate
the sublattice LC if we can generate IRC . Actually we can obtain IRC by aug-
menting the attribute set Bi in PIRC in a certain way. The theorem that will
be shown next provides the basis for the processing.

Given Cj ∈ IRC = {Ci|i ∈ T }, where T is an index set, we define an
equivalence relation ∼j on the set T \ {j}. i ∼j k if ext(Ci) ∩ ext(Cj) =
ext(Ck) ∩ ext(Cj) 6= ∅ for i, k ∈ T \ {j}. Let the resulting equivalence classes
on T be [j1], [j2], . . . , [jr]. For each equivalence class [jh], h ∈ [1..r], let us denote
Ajh

= ext(Ci) ∩ ext(Cj), i ∈ [jh] and Bjh
=

⋃
i∈[jh] Bi.

When we proceed to our main theorem in this section, the following propo-
sition will become useful:

Proposition 3.3. {Bjh
|h ∈ [1..r]} constitutes a partition of

⋃
g∈ext(Cj)

g′ \

(int(C) ∪ Bj), where [j1], [j2], . . . , [jr] are equivalent classes defined above.

Theorem 3.1. If Cj ∈ IRC is an immediate successor of C, then PIRCj =
{(Ajh

, Bjh
)|h ∈ [1..r]}.

It is easy to extend the theorem to the case that Cj ∈ IRC is not an immediate
successor of C.

Corollary 3.3. If Cj ∈ IRC is not an immediate successor of C, then PIRCj ∪
{(ext(Cj), int(Cj) \ (int(C) ∪ Bj))} = {(Ajh

, Bjh
)|h ∈ [1..r]}.

4 Algorithm for the Full Representation

We will present a lattice construction algorithm which generates a lattice in the
full representation. The input for the algorithm is a binary matrix R with |G|
rows and |M | columns representing the relation I between the object set G and
the attribute set M , where Ri,j = 1 if and only if (gi, mj) ∈ I.

4.1 Overview

The algorithm builds the lattice while traversing it in depth first search (DFS).
Each node will represent a concept. Suppose the node C, is already visited. And
suppose PIRC is already generated, each element of which is put in a child node
of C. These child nodes are sorted in the ascending order by the size of the
object set in each child node. Though the intent of those concepts represented
by the child nodes is not complete yet, we will still represent the nodes by Cj .
Note that the following conditions are met: Each shadow child node, which will
be introduced below, of C contains (Aj , sj) where sj = |Bj |, (Aj , Bj) ∈ PIRC ;
All unvisited child nodes are of form (Aj , Bj) ∈ PIRC . When the algorithm
visits a child node Cj = (Aj , Bj) for the first time, it begins to traverse the
sublattice LCj . It will first generate PIRCj as Cj’s child nodes, which contains
all immediate successors of Cj . To do so, the algorithm uses GeneratePIR(Cj,
C) and SearchEquiClass(Cj, C) to generate PIRCj as Theorem 3.1 indicates. In
GeneratePIR, we generate two kinds of child nodes using intersection on extents.
One is marked as unvisited and the other is marked as shadow. There is no need
to call GeneratePIR for a shadow node since its corresponding concept, say F ,
and all F ’s successors have already been generated at that time because of DFS
traversal. As we will see, a shadow node will never enter the stack. The shadow
nodes are used to prevent generating a concept more than once without losing
track of its immediate successors. Each shadow node has a pointer pointing to
the corresponding concept in the lattice.

After the child nodes of Cj are generated, the algorithm uses SearchEquiClass
to find equivalence classes [jr] , where each class corresponds to Cj or a member
in IRCj . If a class contains a shadow node, it means that the concept corre-
sponding to the class is already visited. If not, it means that the corresponding
concept is unvisited yet. In both cases, we remove the child nodes under Cj for
memory reuse. By Proposition 3.2, we check if there exists an equivalence class
with |Ajh

| = |Aj | to determine if Cj is an immediate successor of C or not. By

Proposition 3.3, when we generate Bjh
and (Aj)

′

no actual union operation is
required since Bis are disjoint. After constructing LCj by repeatedly calling Gen-
eratePIR and SearchEquiClass, the algorithm will then visit C’s next unvisited
child node which is right after Cj in the child node list of C.

4.2 Implementation

The pseudo-code of GeneratePIR(Cj, C) and SearchEquiClass(Cj, C) is shown
by Algorithm 1 and 2, respectively.

Algorithm 1 GeneratePIR(Cj, C)

for each child node Ci 6= Cj of C do

if Ci = (Ai, Bi) is unvisited then

put an unvisited node (Aj ∩ Ai, Bi) under Cj ;
put a shadow node (Aj ∩ Ai, |Bj |) under Ci; {This is a shadow node for (Aj ∩
Ai, (Aj ∩ Ai)

′).}
else if Ci = (Ai, si) is a shadow node and Ai has not intersected with Aj then

put a shadow node (Aj ∩ Ai, si) under Cj ;
end if

end for

mark Cj as visited;

In GeneratePIR, we generate a shadow node (Aj ∩ Ai, si) under Cj when Ci

is a shadow node. To obtain a pointer to the concept for (Aj ∩ Ai, si), we can
either build a trie or a hash table for the object sets of concepts generated so far
to facilitate the search. Note that if we are only going to generate all concepts,
we do not need pointers in shadow nodes or a trie or a hash table for the object
sets. To find the equivalence classes in SearchEquiClass yet, for Cj, we build a
trie for object sets of its child nodes and put node ids in the leaves of the trie.
Then we are able to find the equivalence classes of child nodes by just checking
leaves of the trie.

With GeneratePIR and SearchEquiClass ready, we present our lattice con-
struction algorithm in Algorithm 3, where the supremum of the lattice is U .

At the beginning of Algorithm 3, we scan the input matrix once to ob-
tain U = (G, G′) and (Aj , mj) for each j ∈ [1..|M |], where mj is the at-
tribute shared by each member of the object set Aj . For the object sets
Aj ⊂ G, j ∈ [1..|M |], we build a trie for them and find equivalence classes
just as we did in SearchEquiClass. This way we obtain PIRU as the child nodes
of U . Then we construct the remaining of the lattice by processing each node
once with GeneratePIR and SearchEquiClass, when we traverse the lattice in
DFS with the stack S. In DFS, only unvisited nodes will be pushed into S.

Algorithm 2 SearchEquiClass(Cj, C)

group Cj = (Aj , Bj)’s child nodes according to their object set to find equivalence
classes [jh], h ∈ [1..r];
if |Ajh

| == |Aj | for the largest |Ajh
| then

A
′

j = Bjh
∪ (int(C) ∪ Bj);

else

A
′

j = int(C) ∪ Bj ;
mark Cj as an immediate successor of C;

end if

for each equivalence class [jh] where |Ajh
| 6= |Aj | do

if all child nodes (Ajh
, Bi) of Cj are unvisited then

remove all (Ajh
, Bi) from Cj ’s child node list;

put an unvisited node (Ajh
, Bjh

) under Cj ; {This node represents a new con-
cept.}

else

remove all (Ajh
, si) and (Ajh

, Bi) from Cj ’s child node list;
s =

P

(Ajh
,si)

si +
P

(Ajh
,Bi)

|Bi|;

put a shadow node (Ajh
, s) under Cj ; {Suppose the node is the shadow of

E = (Ajh
, (Ajh

)′).}

if s + |A
′

j | = |(Ajh
)′| then

mark E as an immediate successor of Cj ;
end if

end if

end for

sort Cj ’s child nodes by their object set size in the ascending order;

Algorithm 3 Construct a lattice in the full representation

generate PIRU as U ’s child nodes;
sort U ’s child nodes by their object set size in the ascending order;
initialize an empty stack S;
push((E , U), S) where E is the first node in U ’s sorted child node list;
while S is not empty do

(Cj , C) = pop(S);
GeneratePIR(Cj , C);
SearchEquiClass(Cj , C);
if there is an unvisited node Ck after Cj among C’s child nodes then

push((Ck, C), S);
end if

push((E , Cj), S) where E is the first unvisited node among Cj ’s child nodes;
end while

4.3 Algorithm analysis

We will show that our algorithm correctly constructs the lattice and the delay-
time complexity is O(|G||M |).

Lemma 4.1. After the completion of the algorithm, For each concept, its extent
and intent are correctly computed and its immediate successors are correctly
marked in its child nodes.

The lemma can be proved by applying Theorem 3.1 and Corollary 3.3 in
GeneratePIR and SearchEquiClass to check the correctness of ext(Cj), int(Cj),
and PIRCj .

The complexity analysis of the algorithm is shown by the following result:

Theorem 4.1. The algorithm correctly builds the lattice with O(|G||M |) delay
time.

The sketch of the proof can be outlined as follows: The initialization, one
run of GeneratePIR and one run of SearchEquiClass all take time O(|G||M |).
At the beginning of each iteration of while loop, a new concept is obtained by
popping it from the stack. During each iteration of while loop, GeneratePIR and
SearchEquiClass are executed once. So it takes O(|G||M |) time to complete one
iteration.

As for the space required to store shadow nodes, we can analyze it as follows:
Each shadow node needs space O(|G|). The size of the maximal chain in the
lattice is at most |G|. At each level of the chain, the algorithm will incur at
most O(|M |2) shadow nodes. When the algorithm reaches the bottom of the
chain, the size of space is maximized, which is O(|G|2|M |2). Other previously
used shadow nodes are already recycled in SearchEquiClass. So we only need
O(|G|2|M |2) space for storing shadow nodes.

5 Algorithm for the Compact Representation

We will define the compact representation for lattices and modify the above
algorithm to construct the lattice in a compact representation.

5.1 Compact Representation

Usually a lattice is represented in the full representation as in Figure 2 (a). It is
easy to see there is much redundant information in this representation. Suppose
(A1, B1) is a successor of (A2, B2) and A1 ⊂ A2. Given (A2, B2), we can represent
the concept (A1, B1) as (A2 \ A1, B1 \ B2). Following this idea, we define the
compact representation of the lattice L as follows:

Definition 5.1. For each concept C = (A1, B1) in L, the compact representa-
tion of C regarding D = (A2, B2) is (A2 \A1, B1 \B2), where C � D. D is called
C’s base.

We denote such a compact representation of C as
(CRD(ext(C)), CRD(int(C))). In Figure 2 (b), we show a concept lattice
in a compact representation.

Note that the compact representation is not unique and depends on how we
choose the base for each concept. As long as we keep the identity of the base for
each concept, we are able to recover the full representation from the compact
one, in which we only need to perform two set operations for each concept in a
top-down manner.

5.2 Implementation

First, let us consider the compact representation for extents. In [22] a technique
using set difference, called diffset, was applied to speed up computation of closed
itemsets. The diffset can be used to compute the compact presentation for extents
as well.

Suppose nodes Ci and Cj are two successors of C. We restate an observation
by Zaki et al. as follows:

Proposition 5.1. [22] Suppose F = ∧{Ci, Cj}. For Ci and Cj, if neither of
them is an immediate successor of the other, then

CRCj
(ext(F)) = CRC(ext(Ci)) \ CRC(ext(Cj)).

If Ci is an immediate successor of Cj, i. e. F = Ci, then
CRCj

(ext(F)) = CRC(ext(Cj)) \ CRC(ext(Ci)).

To generate a compact representation, we will modify the algorithms for the
full representation. In the beginning of Algorithm 3, we will represent the con-
cepts in IRU in a compact representation with their base to be U . Note that
there is no base for U . In GeneratePIR(Cj, C), suppose Cj = (CRC(ext(Cj)), Bj)
and Ci = (CRC(ext(Ci)), Bi) and they are two child nodes under C. More-
over, suppose F = ∧{Ci, Cj}. We only need to do the following: We will put
CRCj

(ext(F)) into the node under Cj , and put CRCi
(ext(F)) into the node under

Ci. The computation of CRCj
(ext(F)) and CRCi

(ext(F)) will use CRC(ext(Cj))
and CRC(ext(Ci)). Details about the computation will be provided later. In
SearchEquiClass(Cj, C), at the beginning we compute int(Cj) and thus gener-
ate the concept Cj. To compute Cj’s compact representation, C is set as its
base. CRC(ext(Cj)) is already obtained in previous run of GeneratePIR. And
CRC(int(Cj)) = Bj . In addition, the operation related to the size of object sets
needs to be modified. For example, child nodes should be sorted in descending
order by the size of the compact representation of their extents.

Actually, the diffset technique can be improved to make it more efficient
to compute extents in a compact representation with the help of shadow
nodes. Suppose there are 3 child nodes Ci, i ∈ [1..3] under a node. |ext(C3)|
is the smallest among the three extents. Furthermore, suppose D = ∧{C1, C3},
D∗ = ∧{C2, C3} and E = ∧{C1, C2}. When we visit the node C3, we will
put a shadow node corresponding D containing CRC1

(ext(D)) under C1 and a
shadow node corresponding D∗ containing CRC2

(ext(D∗)) under C2. We may

continue to apply Proposition 5.1 to compute CRCj
(ext(E)) (j is 1 or 2)

by using CRC(ext(C1)) and CRC(ext(C2)). However, since |CRC1
(ext(D))| ≤

|CRC(ext(C1))| and |CRC1
(ext(D∗))| ≤ |CRC(ext(C2))|, we are interested in

how to compute CRCj
(ext(E)) (j is 1 or 2) more efficiently with the help of

two shadow nodes. As the following lemma shows, when D = D∗, which often
occurs during lattice construction, we can completely avoid using CRC(ext(C1))
and CRC(ext(C2)).

Lemma 5.1. Suppose D = ∧{C1, C3} = ∧{C2, C3}, where Ci, i ∈ [1..3] are con-
cepts, |ext(C3)| ≤ |ext(C1)| and |ext(C3)| ≤ |ext(C2)|. If E = ∧{C1, C2}, then

CRC1
(ext(E)) = CRC1

(ext(D)) \ CRC2
(ext(D)),

CRC2
(ext(E)) = CRC2

(ext(D)) \ CRC1
(ext(D)).

Clearly, the complexity for constructing the compact representation for a
lattice is the same as the one for constructing the full representation.

6 Conclusion and future direction

Because of many applications of lattices in various areas, it has become an im-
portant question to construct lattices efficiently. Previously, the best delay-time
complexity is O(|G||M |2) for lattice construction algorithms. In this paper, we
propose a linear delay algorithm for constructing a lattice with the input matrix
of size |G||M |. Other advantages of the algorithm include that it does not need
the union operation for computing intents of concepts. And it does not check
against all generated concepts to see if a new pair of object set and attribute
set is a new concept or will be subsumed. In addition, we propose to represent
concept lattices in a compact representation, which eliminates redundant infor-
mation in the full representation. The algorithm for the full representation is
modified with improved diffset technique to build a compact representation for
lattices.

The lower bound of delay-time complexity for lattice construction algorithms
is still unknown. Our future work will focus on finding this lower bound and
designing new algorithms to match the bound. With the efficient lattice con-
struction algorithm we also like to apply lattices in more areas.

References

1. Anne Berry, Jean-Paul Bordat, and Alain Aigayret. Concepts can’t afford to
stammer. In INRIA Proceedings of the International Conference, Journées de
l’Informatique Messine (JIM’03), 2003.

2. J.-P. Bordat. Calcul pratique du treillis de galois dune correspondance. Mathma-
tique, Informatique et Sciences Humaines, 24:31–47, 1986.

3. Claudio Carpineto and Giovanni Romano. A lattice conceptual clustering system
and its application to browsing retrieval. Machine Learning, 24:95–122, 1996.

4. Claudio Carpineto and Giovanni Romano. Concept Data Analysis: Theory and
Applications. Wiley, 2004.

5. Vicky Choi. Faster algorithms for constructing a concept (galois) lattice. http:

//arxiv.org/pdf/cs.DM/0602069, 2006.
6. Vicky Choi, Yang Huang, Vy Lam, Dustin Potter, Reinhard Laubenbacher, and

Karen Duca. Using formal concept analysis for microarray data comparison. In
Proceedings of the 5th Asia Pacific Bioinformatics Conference, pages 57–66, 2006.

7. David Eppstein. Arboricity and bipartite subgraph listing algorithm. Information
Processing Letters, 54:207–211, 1994.

8. Timothy J. Everts, Sung Sik Park, and Byeong Ho Kang. Using formal concept
analysis with an incremental knowledge acquisition system for web document man-
agement. In Proceedings of the 29th Australasian Computer Science Conference,
pages 247–256, 2006.

9. B. Ganter and R. Wille. Formal concept analysis: Mathematical Foundations.
Springer, Heidelberg, 1999.

10. Robert Godin, Rokia Missaoui, and Hassan Alaoui. Incremental concept formation
algorithms based on galois (concept) lattices. Computational Intelligence, 11:246–
267, 1995.

11. Yang Huang and Martin Farach-Colton. Lattice based clustering of temporal gene-
expression matrices. In Proceedings of the 7th SIAM International Conference on
Data Mining, 2007.

12. David S. Johnson, Mihalis Yannakakis, and Christos H. Papadimitriou. On gen-
erating all maximal independent sets. Information Processing Letters, 27:119–123,
1988.

13. Y. Kalfoglou, S. Dasmahapatra, and Y. Chen-Burger. Fca in knowledge technolo-
gies: Experiences and opportunities. In Proceedings of 2nd International Confer-
ence on Formal Concept Analysis, pages 252–260. Springer, 2004.

14. K. Makino and T. Uno. New algorithms for enumerating all maximal cliques. In
Proceedings of 9th Scand. Workshop on Algorithm Theory, pages 260–272, 2004.

15. L. Nourine and O. Raynaud. A fast algorithm for building lattices. Information
Processing Letters, 71:199–204, 1999.

16. Gregor Snelting and Frank Tip. Reengineering class hierarchies using concept
analysis. In Proceedings of the 6th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, pages 99–110, 1998.

17. Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. Lcm ver. 2: Ef-
ficient mining algorithms for frequent/closed/maximal itemsets. In IEEE ICDM
Workshop on Frequent Itemset Mining Implementation, 2004.

18. J. Wang, J. Han, and J. Pei. Searching for the best strategies for mining frequent
closed itemsets. In Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 344–353, 2004.

19. Guizhen Yang. The complexity of mining maximal frequent itemsets and max-
imal frequent patterns. In Proceedings of the 10th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 344–353, 2004.

20. M. J. Zaki and C.-J. Hsiao. Efficient algorithms for mining closed itemsets and
their lattice structure. IEEE Transaction on Knowledge and Data Engineering,
17:462–478, 2005.

21. M. J. Zaki and M. Ogihara. Theoretical foundations of association rules. In
Proceedings of 3rd ACM SIGMOD Workshop on Research Issues in Data Mining
and Knowledge Discovery, pages 1–7, 1998.

22. Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diffsets. In
Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 326–335, 2003.

