
Contents

1 Annotations for Productivity and Performance Portability 3
Boyana Norris, Albert Hartono, and William Gropp

1.1 Introduction . 3
1.2 Design and Implementation 5

1.2.1 Annotation System Design 5
1.2.2 Annotation Language Syntax 6
1.2.3 Current Annotation Modules 7
1.2.4 Code Generation Module 8

1.3 Performance Studies . 14
1.3.1 STREAM Benchmark 14
1.3.2 AXPY Operations . 16

1.4 Related Work . 17
1.5 Summary and Future Directions 19

References 21

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 1

Chapter 1

Annotations for Productivity and
Performance Portability

Boyana Norris

Mathematics and Computer Science Division, Argonne National Laboratory,

9700 S. Cass Ave., Argonne, IL 60439, norris@mcs.anl.gov

Albert Hartono

Dept. of Computer Science and Engineering, The Ohio State University,

2015 Neil Avenue, Columbus, OH 43210, hartonoa@cse.ohio-state.edu

William Gropp

Mathematics and Computer Science Division, Argonne National Laboratory,

9700 S. Cass Ave., Argonne, IL 60439, gropp@mcs.anl.gov

1.1 Introduction . 3
1.2 Design and Implementation . 5

1.3 Performance Studies . 14
1.4 Related Work . 17
1.5 Summary and Future Directions . 19

Acknowledgments . 20

1.1 Introduction

In many scientific applications, significant time is spent in tuning codes for a
particular high-performance architecture. Multiple approaches to such tuning
exist, ranging from the relatively nonintrusive (e.g., by using compiler options)
to extensive code modifications that attempt to exploit specific architecture
features. In most cases, the more intrusive code tuning is not easily reversible
and thus can result in inferior performance on a different architecture or, in
the worst case, in wholly nonportable code. Readability is also greatly reduced
in such highly optimized codes, resulting in lowered productivity during code
maintenance.

We introduce an extensible annotation system that aims to improve both
performance and productivity by enabling software developers to insert anno-
tations into their source code that trigger a number of low-level performance
optimizations on a specified code fragment. The annotations are special struc-

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 3

4 Book Title

void axpy_1(int n, double *y,
double a, double *x)

{
/*@ begin Variable (x[],y[]) @*/
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
/*@ end @*/

}

void axpy_1(int n, double *y,
double a, double *x)

{
/*@ begin Variable (x[],y[]) @*/
#pragma disjoint (*x, *y)
if ((((int)(x)|(int)(y)) & 0xF) == 0) {

__alignx(16,x);
__alignx(16,y);
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
} else {

int i;
for (i=0; i < n; i++)

y[i] = y[i] + a * x[i];
}
/*@ end @*/

}

FIGURE 1.1: Memory-related annotation example: annotated code (left)
and resulting generated code with optimized Blue Gene/L pragmas and align-
ment intrinsic calls (right).

tured comments inside the source code and are processed by a precompiler to
produce optimized code in a general-purpose language, such as C, C++, or
Fortran. In order to maximize the performance tuning opportunities, annota-
tions are designed to support both architecture-independent and architecture-
specific code optimizations. Given the annotated code as input, the annota-
tion tool generates many tuned versions of the same operation, using different
optimization parameters. The best-performing version can subsequently be
used in production application runs.

Figure 1.1 shows a simple annotation example for the Blue Gene/L that
targets memory alignment optimizations. Here, the annotations are shown
as C comments starting with /*@. The Variable annotation directive re-
sults in the generation of architecture-specific preprocessor directives, such
as pragmas, and calls to memory alignment intrinsics, including a check for
alignment. Even these simple optimizations can lead to potentially significant
performance improvements, such as gains of up to 60% in memory bandwidth
with annotations (discussed in more detail in Section 1.3).

What makes annotations especially powerful is that they are not limited
to certain operations and can be applied to complex computations involv-
ing many variables. Thus, annotations can be used for arbitrary expres-
sions, exploiting the developer’s understanding of the application to perform
low-level code optimizations. Such optimizations may not be produced by
general-purpose compilers because of the necessarily conservative nature of
program analysis for languages such as Fortran and C/C++. These opti-
mizations include low-level tuning of array operations for deep memory hi-
erarchies, through loop blocking, tiling, and unrolling, as well as composing
linear algebra operations and invoking specialized algorithms for key com-

Annotations for Productivity and Performance Portability 5

putations. More advanced optimizations on other data structures, such as
matrices, would present even greater opportunities for cache optimizations.
Our aim is to use existing tools for performing such code optimization trans-
formations where possible; the examples here merely illustrate the sorts of
transformations that are sometimes necessary for performance and, because
they are both ugly and system specific, are rarely performed in application
codes.

The remainder of this paper is organized as follows. Section 1.2 describes
the annotation language and the design and implementation of the code trans-
formation system. Section 1.3 presents preliminary performance studies on
the Blue Gene/L. Section 1.4 reviews related work. Section 1.5 contains a
summary and a brief outline of future work.

1.2 Design and Implementation

In this section, we describe the design and current implementation of our
annotation software system. The annotation language is embeddable in a
general-purpose language, such as C/C++ and Fortran. Our ultimate goal is
to construct an annotation system that is general, flexible, and easily extensi-
ble with new annotation syntax and corresponding code optimizations. In the
following subsections, we describe the overall design of the system, and give
an overview of the annotation language syntax and existing code generation
modules.

1.2.1 Annotation System Design

Performance annotations are expressed through semantic comments, in-
serted into application source code. These annotations allow programmers
to simultaneously describe the computation and specify various performance-
tuning directives. Annotations are treated as regular comments by the com-
piler but are recognized by the annotation system as syntactical structures
that have particular meaning.

Figure 1.2 depicts at a high level the structure and operation of the anno-
tation system. The system first scans the annotated application source code,
subdividing it into annotated code regions. Each region is then passed to
the corresponding code generator for potential optimizations. Finally, target
language code (C, C++, or Fortran) with various applied optimizations is
generated for the annotated regions.

The annotation system consists of one or more code generators, each im-

6 Book Title

Annotation Parser

Annotated
Application

Source Code

Annotated
Code Regions

Module 1

Module 2

Module N

. . .

Annotation-Based
Code Generator

Optimized
Code

FIGURE 1.2: Overview of the annotation system.

plemented as a Python module.1 Modules can be added to the system at
any time without requiring modifications to the existing infrastructure. Each
code generation module can define new syntax or extend the syntax of an
existing annotation definition. Using the information supplied in the anno-
tated region, each module performs a distinct optimization transformation
prior to generating the optimized code. These optimizations can span differ-
ent types of code transformations that are not provided by compilers in some
cases, such as memory alignment, loop optimizations, various architecture-
specific optimizations, high-level algorithmic optimizations, and distributed
data management.

1.2.2 Annotation Language Syntax

Annotations are specified by programmers as comments and do not affect
the correctness of the original program. We specify annotations using styl-
ized C/C++ comments that start with /*@ and end with @*/ (in Fortran,
comments starting with ![-- or c[-- and ending with --] are used). These
markers are called opening and closing annotation delimiters, respectively.
For example, the annotation /*@ end @*/ (or ![-- end --] in Fortran) is
used to indicate the end of an annotated code region.

Table 1.1 shows the simple grammar of the annotation language syntax.
The structure of an annotated code region consists of three main parts: a
leader annotation, an annotation body block, and a trailer annotation. An
annotation body block can either be empty or contain C/C++ source code

1While the current implementation is in Python, we plan to add language-independent

interfaces that would allow new modules to be added in a number of different languages.

Annotations for Productivity and Performance Portability 7

TABLE 1.1: Annotation language grammar excerpt.

annotated-code-region ::= leader-annotation
annotation-body-block
trailer-annotation

leader-annotation ::= /*@ begin module-name
(module-body-block)
@*/

annotation-body-block ::=
| non-annotation-code annotation-body-block
| annotated-code-region annotation-body-block

trailer-annotation ::= /*@ end @*/

1.

2.

3.

4.

5.

6.

7.

8.

9.

void axpy_4(int n, double *y, double a1, double *x1, double a2, double *x2,
double a3, double *x3, double a4, double *x4)

{
/*@ begin Variable (x1[],x2[],x3[],x4[],y[]) @*/
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a1*x1[i] + a2*x2[i] + a3*x3[i] + a4*x4[i];
/*@ end @*/

}

FIGURE 1.3: Example of annotated application source code.

that may include other annotated regions. A leader annotation contains the
name of the code generation module, which is loaded dynamically by the
annotation system to optimize and generate the annotated application code.
A high-level description of the computation and several performance hints
are specified in the module body block inside the leader annotation and are
used as input during the optimization and code generation phases. A trailer
annotation closes an annotated code region, designated by /*@ end @*/ (or
the equivalent Fortran comment).

An example annotated application code can be seen in Fig. 1.3, where
lines 4–8 contain the annotated code region with lines 4 and 8 as the leader
and trailer annotations, respectively, and lines 5–7 as the annotation body
block. The name of the annotation code generation module in this example is
Variable, and the module input is the string ’x1[],x2[],x3[],x4[],y[]’.

1.2.3 Current Annotation Modules

As we discussed in Section 1.2.2, given the module name in the leader an-
notation, the annotation system dynamically loads the corresponding code
generation module and uses it to transform and generate the code in the an-
notation body block. If the pertinent module cannot be found in the modules
directories, an error message is produced, and the annotation system pro-
cess is terminated. The name-based dynamic loading provides flexibility and

8 Book Title

Annotation-Based Code Generation Module

Optimized
Code

Module-Based
Parser

Code
Optimization

Code
Generation

C/C++
Parser

Module
Body Block

Annotation
Body Block

FIGURE 1.4: Structure of a code generation module.

easy extensibility without requiring detailed knowledge or modification of the
existing annotation software.

1.2.4 Code Generation Module

Figure 1.4 portrays the general structure of an annotation-based code gen-
eration module. In order to generate optimized code, each module takes two
kinds of input parameters: the module parameters specified in the module

body block and the code contained in the annotation body block. The mod-
ule body normally includes information that is essential for performing code
optimization and generation, such as multidimensional array variables, loop
structures, and loop unrolling factors. In order to process this information,
new language syntax and a corresponding parser component must be imple-
mented for each code generation module. In addition, the annotation body
code, currently expressed in a language that is a slightly restricted version
of C, must be parsed and provided as input to the transformation module.
New modules that use the same syntax for the code block can simply use
an existing parser. Modules can also introduce new syntax for the annota-
tion body and in that case must provide their own parser. While one could
view the annotation body block as redundant (since the annotated code re-
gion already contains the same or similar statements), the motivation behind
requiring application developers to include the computation itself as part of
the annotation is twofold. First, basing the transformation modules on the
actual application code would require a full-blown compiler infrastructure in
the target language (e.g., C, C++, or Fortran). While open-source research
projects for these languages exist, they do not support arbitrary codes reli-
ably yet; furthermore, they have been ported to only a few architectures and
on supported platforms they require a large number of prerequisite packages
to be available. Requiring this complex compiler infrastructure to avoid the
relatively small manual effort in creating annotations runs counter to our goal

Annotations for Productivity and Performance Portability 9

of making the annotation system portable and easy to install and use. Sec-
ond, requiring in effect a “rewrite” of the code to be optimized encourages
simplification and enables the code optimization effort to start with a cleaner,
rather than an already hand-tuned, version of the code. Furthermore, we are
considering annotations that would allow the computation to be expressed by
using domain-specific high-level languages, thus capturing the semantics with-
out imposing tuning constraints resulting from the use of a general-purpose
language.

We note that annotations can also be nested; that is, an annotation body
block can contain other annotated regions. Hence, the optimization and code
generation are carried out recursively by the annotation tool to handle nested
annotations. Next we describe in more detail the design and implementation
of the currently available code generation modules.

1.2.4.1 Memory Alignment Module

The objective of the memory alignment module is to exploit memory align-
ment optimizations on the Blue Gene/L architecture. The dual floating-point
unit (Double Hummer) of the Blue Gene/L’s PowerPC 440d processor can
be controlled with special instructions for parallel floating-point computa-
tions [19]. Efficient use of the Double Hummer requires 16-byte alignment.

The IBM XL compiler attempts to pair contiguous data values on which it
can operate in parallel. Therefore, performance can be improved by explic-
itly specifying floating-point data objects that reside in contiguous memory
blocks and are correctly aligned. In order to facilitate such parallelization,
the compiler requires additional directives to remove possibilities of aliasing
and to check for data alignment [19].

We illustrate the implementation of this module using the simple example
previously shown in Fig. 1.3. As we can see in the leader annotation segment,
this module is named Variable. The module body contains a list of array
variables. In this example, x1[], x2[], x3[], x4[], and y[] are the array
variables to be aligned.

The resulting optimized version that corresponds to the example given
above can be seen in Fig. 1.5. A #pragma disjoint directive (line 5) is in-
jected into the optimized code to inform the compiler that none of the listed
identifiers share the same storage within the scope of their use. This infor-
mation enables the compiler to avoid the overhead of reloading data values
from memory each time they are referenced, and to operate on values already
resident in registers (this is similar to the role of the restrict C keyword).
Note that this directive demands that the two identifiers be disjoint. If the
identifiers in fact share the same memory address, the computation can be
incorrect.

Furthermore, the Blue Gene/L architecture requires that the addresses of
the two data values, which are loaded in parallel in a single cycle, be aligned
such that the loaded values do not cross a cache-line boundary. If they cross

10 Book Title

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

void axpy_4(int n, double *y, double a1, double *x1, double a2, double *x2,
double a3, double *x3, double a4, double *x4)

{
/*@ begin Variable (x1[],x2[],x3[],x4[],y[]) @*/
#pragma disjoint (*x1, *x2, *x3, *x4, *y)
if ((((int)(x1)|(int)(x2)|(int)(x3)|(int)(x4)|(int)(y)) & 0xF) == 0) {

__alignx(16,x1); __alignx(16,x2); __alignx(16,x3); __alignx(16,x4);
__alignx(16,y);
int i;
for (i=0; i < n; i++)

y[i] = y[i] + a1*x1[i] + a2*x2[i] + a3*x3[i] + a4*x4[i];
} else {

int i;
for (i=0; i < n; i++)

y[i] = y[i] + a1*x1[i] + a2*x2[i] + a3*x3[i] + a4*x4[i];
}
/*@ end @*/

}

FIGURE 1.5: Optimized version of annotated code shown in Fig. 1.3.

TABLE 1.2: New language grammar of memory alignment
module.

align-module-body-block ::= array-variable-list
array-variable-list ::= array-variable

| array-variable , array-variable-list
array-variable ::= array-variable-name dimension-list
dimension-list ::= dimension

| dimension dimension-list
dimension ::= []

| [variable-name]
| [constant]

this boundary, a severe performance penalty is imposed by the alignment trap
generated by the hardware. Thus, testing for data alignment is important. In
the optimized code example, checking for data alignment is executed in line
6. Lines 7–8 contain calls to the alignx intrinsic functions. These function
calls are used to notify the compiler that the arriving data is correctly aligned,
so the compiler can generate more efficient loads and stores.

The complete grammar for the new language syntax of the memory align-
ment module is shown in Table 1.2. In addition to one-dimensional arrays,
multidimensional arrays can be specified in the module body block. One
example is a[i][], which refers to the location of the ith row of the two-
dimensional array a. The empty bracket is basically used to refer to the start-
ing address, where a sequence of adjacent data to be computed is stored in
the memory. Another valid example is b[i][j][]. However, the c[][i][j]

specification is invalid in C/C++ codes because the use of row-major array
storage would result in noncontiguous memory starting at that address. On
the other hand, the c[][i][j] array variable specification is valid when used

Annotations for Productivity and Performance Portability 11

TABLE 1.3: Overview of the language structure of the loop
optimization module.

loop-opt-module-body-block ::= statement-list
statement-list ::= statement

| statement statement-list
statement ::= labeled-statement

| expression-statement
| compound-statement
| selection-statement
| iteration-statement
| jump-statement
| transformation-statement

transformation-statement ::= transform submodule-name
(keyword-argument-list) statement

keyword-argument-list ::= keyword-argument
| keyword-argument ,

keyword-argument-list
keyword-argument ::= keyword-name = expression

to annotate Fortran source because Fortran employs column-major array al-
location. Such data arrangement rules can be enforced easily by this module
using simple semantic analysis.

We note that the statements in the annotation body block (lines 5–7 in
Fig. 1.3) are simply reproduced by this module without any transformation
and thus require no parsing. A complete C/C++ parser component is there-
fore not needed, simplifying the implementation of this module.

1.2.4.2 Loop Optimization Module

The primary goal of the loop optimization module is to provide extensible
high-level abstractions for expressing generic loop structures in conjunction
with a variety of potential low-level optimization techniques, such as loop
unrolling, skewing, and blocking for cache, and including some architecture-
specific optimizations. Two optimization strategies that have been constructed
and integrated into the annotation system are loop unrolling and automated

simdization.

An overview of the new language syntax introduced by the loop optimiza-
tion module is given in Table 1.3. Essentially, a subset of C statements and
a newly defined transformation statement constitute the language grammar
of this module. For compactness, further details on each of the C state-
ment clauses are not given in this grammar. Many C language features, such
as declarations, variable pointers, switch statements, enumeration constants,
and cast expressions, are excluded from the language grammar selection in
order to reduce the implementation complexity of this module. Some of these

12 Book Title

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

void ten_reciprocal_roots(double* x,
double* f)

{
int i;
/*@ begin LoopOpt(

transform Loop(unroll=4,
index=i, lower_bound=0,
upper_bound=10, step=1)

f[i] = 1.0 / sqrt(x[i]);
) @*/
for (i = 0; i < 10; i++)

f[i] = 1.0 / sqrt(x[i]);
/*@ end @*/

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

void ten_reciprocal_roots(double* x,
double* f)

{
int i;
/*@ begin LoopOpt(

transform Loop(unroll=4,
index=i, lower_bound=0,
upper_bound=10, step=1)

f[i] = 1.0 / sqrt(x[i]);
) @*/
#if ORIGLOOP

for (i = 0; i < 10; i++)
f[i] = 1.0 / sqrt(x[i]);

#else
for (i = 0; i <= 10 - 3; i += 4)
{

f[i] = 1.0 / sqrt(x[i]);
f[i + 1] = 1.0 / sqrt(x[i + 1]);
f[i + 2] = 1.0 / sqrt(x[i + 2]);
f[i + 3] = 1.0 / sqrt(x[i + 3]);

}
for (; i <= 10; i += 1)

f[i] = 1.0 / sqrt(x[i]);
#endif
/*@ end @*/

}

FIGURE 1.6: Cache optimizations annotation example: annotated code
(left) and resulting generated code with unrolled loop body (right).

will be added as the module evolves, increasing the variety of codes that can
be annotated easily.

A new transformation statement clause is added into the grammar to achieve
the flexibility of extending the loop optimization module with new transforma-

tion submodules. Using the provided submodule name, the loop optimization
module dynamically searches for the corresponding submodule and then uses
it to transform the transformation statement body. Additional data specified
in the keyword argument list serve as input to the transformation submodule.

The example in Fig. 1.6 demonstrates how to annotate an application code
with a simple portable loop unrolling optimization that aims to increase cache
hit rate and to reduce branching instructions by combining instructions that
are executed in multiple loop iterations into a single iteration. The keyword
used to identify the loop optimization module is LoopOpt. The Loop name
denotes the transformation submodule, whose basic function is to represent
general loop structures. Four fundamental parameters are used to create a
loop structure: the index variable name (index), the index’s lower bound
value (lower bound), the index’s upper bound value (upper bound), and the
iteration step size (step). For instance, the simple loop structure

for (i = 0; i <= n-1; i++)

x[i] = x[i] + 1;

can be represented by using the following transformation statement.

transform Loop(index=i, lower_bound=0, upper_bound=n-1, step=1)

Annotations for Productivity and Performance Portability 13

x[i] = x[i] + 1;

Annotating a loop structure for loop unrolling optimizations is straightfor-
ward: we add another keyword argument of the form “unroll = n”, where
n signifies how many times the loop body will be unrolled/replicated in the
generated code. In the example in Fig. 1.6, the loop body is unrolled four
times, resulting in the unrolled loop structure (lines 15–21). The final loop
(lines 22–23) is generated for any remaining iterations that are not executed
in the unrolled loop. Additionally, the generated code includes the original
loop (lines 12–13) that can be executed through setting the ORIGLOOP (line
11) preprocessor variable accordingly.

As mentioned in Section 1.2.4.1, on Blue Gene/L, the IBM’s XL C/C++
and XL Fortran compilers enable us to speed computations by exploiting the
PowerPC 440d’s Double Hummer dual floating-point unit (FPU) to execute
two floating-point operations in parallel. Furthermore, there are quad-word
load/store instructions (lfpd, stfpd) that can double the bandwidth between
L1 and registers. The XL compilers support a set of highly optimized built-in

functions (Oedipus instructions) [19] that have an almost one-to-one corre-
spondence with the Double Hummer instruction set. These functions are
designed to efficiently manipulate complex-type variables and include func-
tions that convert noncomplex data to complex types. Hence, programmers
can manually parallelize their code by using these built-in functions.

We have observed that the XL compilers automatically generate Double
Hummer instructions for relatively simple expressions involving complex or
double numbers. In many cases, however, the compiler-generated code utilizes
only a single FPU, such as for the assignment statement below.

z[0] = a[0] + b[0] + 8.5 * c[0];

z[1] = a[1] + b[1] + 8.5 * c[1];

One approach to parallelizing the expression on the right-hand side of these
assignments is first to divide the complex expression into a sequence of sim-
ple arithmetic expressions and then to translate each simple operation to
its corresponding intrinsic functions. We refer to this process as automated
simdization. We can transform the expression example using an intermediate
temporary variable t to perform the following two-step computation:

t[0] = b[0] + 8.5 * c[0];

t[1] = b[1] + 8.5 * c[1];

z[0] = a[0] + t[0];

z[1] = a[1] + t[1];

which can be automatically converted into the following parallel code frag-
ment.

double _Complex t, _t_1, _t_2, _t_3, _t_4;

_t_1 = __lfpd(&b[0]);

_t_2 = __lfpd(&c[0]);

t = __fxcpmadd(_t_1, _t_2, 8.5);

14 Book Title

_t_3 = __lfpd(&a[0]);

_t_4 = __fpadd(t, _t_3);

__stfpd(&z[0], _t_4);

We have developed a simdization transformation module named BGLSimd as
an extension of the loop optimization module. A complete example of the use
of the BGLSimd annotation is shown in Fig. 1.7. This annotated code example
shows the case when the statement to be simdized occurs inside the body of
loop that will be unrolled. Therefore, the simdization and unrolling transfor-
mations are applied simultaneously. In this coupled transformation process,
each simdized statement must be associated to a particular unrolled loop. To
create this association, a keyword argument that has loop id keyword identi-
fier (lines 6 and 8) must be included. Loop identification is especially necessary
when the statement to be simdized occurs in multiple nested unrolled loops.

We note that automated simdization requires that the associated loop has
unit stride access (i.e. step = 1). Another important semantic constraint in
this case is that, given the fact that the number of parallel floating-point units
of Blue Gene/L is two, the associated loop unrolling factor must be divisible
by two.

1.3 Performance Studies

In this section we present performance results for annotation-based opti-
mization of some operations for which tuned library implementations do not
exist or perform inadequately.

1.3.1 STREAM Benchmark

Preliminary results from employing simple annotations for uniprocessor op-
timizations are given in Table 1.4. These data describe the performance of
an example array operation from the STREAM benchmark [11], also shown
in Fig. 1.1. This computation is similar to some computational kernels in
accelerator modeling codes, such as VORPAL’s particle push methods [12].
The achieved memory bandwidth of the compiler-optimized version is signif-
icantly lower than that of the annotated version. The latter includes annota-
tions specifying that the array variables are disjoint and should be aligned in
memory, if possible, and that the loop should be unrolled. The same compiler
options were used for both the original and the annotated versions. Even
these simple optimizations can lead to potentially significant performance im-
provements. Table 1.4 shows gains of up to 60% in memory bandwidth with
annotations.

Annotations for Productivity and Performance Portability 15

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

void vector_op(double* x, double* a, double *b, double* d,
double c1, double c2, int n)

{
int i;
/*@ begin LoopOpt(

transform Loop(loop_id=lp1, unroll=4, index=i,
lower_bound=0, upper_bound=n-1, step=1)

transform BGLSimd(loop_id=lp1)
x[i] = a[i] - c1 * b[i] + c2 * d[i];

) @*/
for (i = 0; i < n; i++)

x[i] = a[i] - c1 * b[i] + c2 * d[i];
/*@ end @*/

}

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

void vector_op(double* x, double* a, double *b, double* d,
double c1, double c2, int n)

{
int i;
/*@ begin LoopOpt(

transform Loop(loop_id=lp1, unroll=4, index=i,
lower_bound=0, upper_bound=n-1, step=1)

transform BGLSimd(loop_id=lp1)
x[i] = a[i] - c1 * b[i] + c2 * d[i];

) @*/
#if ORIGLOOP

for (i = 0; i < n; i++)
x[i] = a[i] - c1 * b[i] + c2 * d[i];

#else
for (i = 0; i <= n - 1 - 3; i += 4)
{

{
double _Complex _t_11, _t_12, _t_13, _t_14, _t_15;
_t_11 = __lfpd(&a[i]);
_t_12 = __lfpd(&d[i]);
_t_13 = __fxcpmadd(_t_11, _t_12, c2);
_t_14 = __lfpd(&b[i]);
_t_15 = __fxcpnmsub(_t_13, _t_14, c1);
__stfpd(&x[i], _t_15);

}
{

double _Complex _t_11, _t_12, _t_13, _t_14, _t_15;
_t_11 = __lfpd(&a[(i + 2)]);
_t_12 = __lfpd(&d[(i + 2)]);
_t_13 = __fxcpmadd(_t_11, _t_12, c2);
_t_14 = __lfpd(&b[(i + 2)]);
_t_15 = __fxcpnmsub(_t_13, _t_14, c1);
__stfpd(&x[(i + 2)], _t_15);

}
}
for (; i <= n - 1; i += 1)

x[i] = a[i] - c1 * b[i] + c2 * d[i];
#endif
/*@ end @*/

}

FIGURE 1.7: Example of automatic simdization for the Blue Gene/L:
annotated code (top) and resulting generated code with simdized and unrolled
loop body (bottom).

16 Book Title

TABLE 1.4: Memory bandwidth of a = b + ss ∗ c

on the Blue Gene/L, where a, b, and c are arrays of
size m, and ss is a scalar.

Array Size m No Annotations Annotations
(MB/s) (MB/s)

10 1920.00 2424.24
100 3037.97 6299.21

1000 3341.22 8275.86
10000 1290.81 3717.88
50000 1291.52 3725.48

100000 1291.77 3727.21
500000 1291.81 1830.89

1000000 1282.12 1442.17
2000000 1282.92 1415.52
5000000 1290.81 1446.48

1.3.2 AXPY Operations

We consider generalized AXPY operations of the form y = y +a1x1 + · · ·+
anxn, where a1, . . . , an are scalars and y, x1, . . . , xn are one-dimensional ar-
rays. These operations are more general forms of the triad operation discussed
in the previous section. Figure 1.8 shows the performance of this computation
for various array sizes when n = 4 on the Blue Gene/L at Argonne National
Laboratory. Included are timing and memory bandwidth results for five ver-
sions of the code: a simple loop implementation without any library calls
(labeled “Original”), two BLAS-based implementations that use the Goto
BLAS library [5, 6] and the ESSL [3], respectively, and two annotated ver-
sions. The first annotated version contains only variable alignment and loop
unrolling annotations, while the second additionally contains a BGLSimd an-
notation similar to the one illustrated in Fig. 1.7. For our earliest experiments,
the ESSL was the only BLAS library available; Goto BLAS was added more
recently. All versions were compiled with the same aggressive compiler op-
timization options. The performance improvement of the annotated version
over the simple loop (original) version is between 78% and 488% (peaking for
array size 100). SIMD operations were significantly effective only for certain
array sizes, resulting in a factor of 6 improvement over the simple loop ver-
sion. ESSL exhibited very poor performance compared to Goto BLAS. Both
annotated versions outperformed the Goto BLAS version by 33% to 317%
depending on the array sizes. Improvement over BLAS can be typically ex-
pected in most cases where several consecutive interdependent calls to BLAS
subroutines are made. The AXPY and similar computations dominate certain
types of codes, such as some automatically generated Jacobian computations,
but tuned library implementations do not support such operations directly;

Annotations for Productivity and Performance Portability 17

0 1 2 3 4 5

x 10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Array Size

T
im

e
(s

)

CPU Time: AXPY−4

Original
Goto BLAS
ESSL
Annotations
Annotations (SIMD)

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
2

10
3

10
4

10
5

Array Size

B
an

dw
id

th
 (

M
B

/s
)

Memory Bandwidth (MB/s): AXPY−4

Original
Goto BLAS
ESSL
Annotations
Annotations (SIMD)

FIGURE 1.8: Performance on the Blue Gene/L for AXPY-4 operations:
wall-clock time (left) and memory bandwidth (right).

hence, annotation-driven optimization can have significant positive impact on
performance. Implementations that rely on calls to multiple tuned library
subroutines suffer from loss of both spatial and temporal locality, resulting in
inferior memory performance.

1.4 Related Work

In this section we present a brief overview of other approaches to perfor-
mance optimization that are based on some higher-level semantic information
(either user-defined or derived via compiler analysis).

Active libraries. Active libraries [15, 2] such as ATLAS [18], unlike tra-
ditional libraries, are geared to the generation and optimization of executable
code. Some active libraries, such as the Blitz++ library [14], rely on spe-
cific language features and exploit the compiler to generate optimized code
from high-level abstractions. The Broadway [10] compiler can be viewed as a
specific instance of a system for supporting active libraries. Broadway gives
domain-specific compiler optimizations based on user-specified annotation files
expressing domain expertise.

Metaprogramming techniques. Expression templates furnish a C++
metaprogramming technique for passing expressions as function arguments [13].
The Blitz++ library [14] employs expression templates to generate customized
evaluation code for array expressions. This approach remedies performance
problems due to the noncomposability of operations when using traditional
libraries such as the BLAS or language features such as operator overloading.

Programmable syntax macros [17] deliver a portable mechanism for extend-

18 Book Title

ing a general-purpose compiler; they enable the person writing the macro to
act as a compiler writer. The macro language is C, extended with abstract syn-
tax tree (AST) types and operations on ASTs. While programmable syntax
macros are general and powerful, the software developer must have significant
compiler writing expertise in order to implement desired language extensions.

A metaobject protocol (MOP) [9, 1] is an object-oriented interface for pro-
grammers enabling them to customize the behavior and implementation of
programming languages. MOPs enable control over the compilation of pro-
grams. For example, a MOP for C++ can provide control over class definition,
member access, virtual function invocation, and object creation.

Our annotations approach differs from these metaprogramming techniques
in that it is meant to be easily extensible without requiring a developer to
have compiler expertise. Because of its generality and extensibility, it is not
specific to a particular library, domain, or programming language.

Domain-specific languages and compilers. Domain-specific languages
(DSLs) provide specialized syntax that raises the level of abstraction for a
particular problem domain. Examples of DSLs include YACC for parsing and
compilers, GraphViz for defining directed graphs, and Mathematica for nu-
merical and symbolic computation. DSLs can be stand-alone and used with
an interpreter or compiler, or they can be embedded in a general-purpose lan-
guage (e.g., as macros) and preprocessed into the general-purpose language
prior to compilation. At a higher level of abstraction, the Telescoping Lan-
guages project [4, 8, 7] defines a strategy for generating high-performance
compilers for scientific domain languages. To date, these efforts have focused
on extensions to Matlab as defined by domain-specific toolboxes. Our anno-
tations approach includes the use of an embedded language, but it is a more
general, extensible language, not a domain-specific one.

Unlike compiler approaches, we do not implement a full-blown compiler or
compiler generator; rather, we define a precompiler that parses the language-
independent annotations and includes code generation for multiple general-
purpose languages, such as C and Fortran.

User annotations are used for other performance-related purposes not di-
rectly related to code optimization. One example is performance assertions [16],
which are user annotations for explicitly declaring performance expectations
in application source code. A runtime system gathers performance data based
on the user’s assertion and verifies this expectation at runtime. Unlike our
annotations system, this approach does not guide or perform any code modi-
fications; rather, it automates the testing of performance properties of specific
portions of complex software systems. The Broadway [10] compiler mentioned
earlier also employs annotations to guide the generation of library calls. Thus,
annotation files are associated with a particular library, and each library spec-
ifies its own analysis problems and code transformations. Significant compiler
expertise is needed in order to create an annotation file for a given library. By
contrast, the performance annotations we describe in this chapter are more
general, with a simpler syntax, and are meant to be associated with partic-

Annotations for Productivity and Performance Portability 19

ular, usually small, code fragments within arbitrary applications. Little or
no compiler expertise is required of the program developer in order to use
performance annotations to specify code optimization hints.

1.5 Summary and Future Directions

We have described the initial implementation of an annotation-based per-
formance tuning system that is aimed at improving both performance and
productivity in scientific software development. The annotations language is
extensible and embeddable in general-purpose languages. We have demon-
strated performance improvements in several computational kernels. We are
working with a few application developers to apply annotation-based tuning
to their applications and plan to release the annotations tool for general use
in the very near future.

The annotation work described in this chapter is at an early stage, and
our design and implementation are evolving in several directions. We are
currently incorporating support for automated generation and execution of
multiple tuned versions of code (e.g., for different loop unrolling factors),
which requires interaction with multiple job schedulers. We are working on
full support for Fortran code generation and are considering new architecture-
specific optimizations for platforms other than the Blue Gene/L. We also
plan to expand and improve existing code generation modules; for example,
we can further speed the Blue Gene/L simdized code by exploiting common

subexpression elimination (CSE), a typical compiler optimization approach
used to reduce the number of operations, where intermediates are identified
that can be computed once and stored for use multiple times later. We have
already developed an exhaustive CSE algorithm that is guaranteed to find
optimal solutions. However, the exponential growth of its search time makes
an exhaustive search approach prohibitively expensive for solving complex
arithmetic equations. Therefore, one of our objectives is to develop one or
more heuristic CSE algorithms that are able to find a near-optimal solution
in polynomial time. Longer-term, our research objectives include the addition
of new types of annotations that enable high-level specification and tuning of
tensor operations and other domain-specific computations.

In addition to code optimizations targeting single-processor performance,
we plan to expand our annotation language with syntax for distributed op-
erations and data structures commonly used in scientific computing, such as
parallel grid updates for problems discretized on a regular grid. In that case,
the user annotation will describe the grid at a very high level, using global
dimensions and the type and width of the stencil used. Then, we will de-
fine high-level annotations for initialization and point update using global

20 Book Title

grid coordinates (i.e., using basically sequential code). The job of the anno-
tation processor would be to take the annotated source code and generate
efficient parallel implementation of the distributed operations expressed in
the annotations and global-coordinate code. An advantage of annotations
over other language-based approaches is that the data structure support can
be customized to the application. For example, support for staggered grids or
C-grids (semi-regular grids with special properties, particularly at the bound-
aries) can be added quickly with an annotations-based approach.

Acknowledgments

This material is based on work supported by the U.S. Defense Advanced Re-
search Projects Agency and by the U.S. Department of Energy under Contract
DE-AC02-06CH11357. We thank Dinesh Kaushik of Argonne National Lab-
oratory for performing some of the early performance studies of annotation-
based performance optimization. We also thank Gail Pieper of Argonne Na-
tional Laboratory for her comments and corrections.

References

[1] S. Chiba. A metaobject protocol for C++. In ACM SIGPLAN Confer-

ence on Object-Oriented Programming Systems, Languages and Appli-

cations, pages 285–299, Oct. 1995.

[2] Krzysztof Czarnecki, Ulrich Eisenecker, Robert Glück, David Vandevo-
orde, and Todd Veldhuizen. Generative programming and active libraries
(extended abstract). In M. Jazayeri, D. Musser, and R. Loos, editors,
Proceedings of the International Seminar on Generic Programming, vol-
ume 1766 of Lecture Notes in Computer Science, pages 25–39, Berlin,
2000. Springer-Verlag.

[3] Engineering scientific subroutine library (ESSL) and parallel ESSL.
http://www-03.ibm.com/systems/p/software/essl.html, 2006.

[4] Ken Kennedy et al. Telescoping Languages Project description. http:

//telescoping.rice.edu, 2006.

[5] Kazushige Goto. High-performance BLAS by Kazushige Goto, 2007.
http://www.tacc.utexas.edu/∼kgoto/.

[6] Kazushige Goto and Robert van de Geijn. High-performance imple-
mentation of the Level-3 BLAS. Technical Report TR-2006-23, The
University of Texas at Austin, Department of Computer Sciences, 2006.

[7] Ken Kennedy. Telescoping languages: A compiler strategy for imple-
mentation of high-level domain-specific programming systems. In Pro-

ceedings of IPDPS 2000, May 2000. CD-ROM Proceedings.

[8] Ken Kennedy, Bradley Broom, Arun Chauhan, Rob Fowler, John
Garvin, Charles Koelbel, Cheryl McCosh, and John Mellor-Crummey.
Telescoping languages: A system for automatic generation of domain
languages. Proceedings of the IEEE, 93(3):387–408, 2005.

[9] G. Kiczales, J. des Rivieres, and D. G. Bobrow. The Art of the Meta-

Object Protocol. MIT Press, Cambridge (MA), 1991.

[10] Calvin Lin and Samuel Z. Guyer. Broadway: A compiler for exploiting
the domain-specific semantics of software libraries. Proceedings of the

IEEE, 93(2):342–357, July 2005.

[11] John McCalpin. STREAM: Sustainable memory bandwidth in high per-
formance computers. http://www.cs.virginia.edu/stream/, 2006.

0-8493-0052-5/00/$0.00+$.50
c© 2001 by CRC Press LLC 21

22 References

[12] Peter Messmer and David L. Bruhwiler. A parallel electrostatic solver
for the VORPAL code. Comp. Phys. Comm., 164:118, 2004.

[13] T. Veldhuizen. Expression templates. C++ Report, 7(5):26–31, June
1995.

[14] Todd L. Veldhuizen. Blitz++: The library that thinks it is a compiler. In
Erlend Arge, Are Magnus Bruaset, and Hans Petter Langtangen, editors,
Modern Software Tools for Scientific Computing. Birkhauser (Springer-
Verlag), Boston, 1997.

[15] Todd L. Veldhuizen. Active Libraries and Universal Languages. PhD
thesis, Indiana University, Computer Science Department, May 2004.

[16] J. Vetter and P. Worley. Asserting performance expectations. In Pro-

ceedings of the SC2002, 2002.

[17] Daniel Weise and Roger Crew. Programmable syntax macros. In Pro-

ceedings of the SIGPLAN Conference on Programming Language Design

and Implementation, pages 156–165, 1993.

[18] R. Clint Whaley and Jack Dongarra. Automatically Tuned Lin-
ear Algebra Software. http://www.supercomp.org/sc98/TechPapers/
sc98 FullAbstracts/Whaley814/INDEX.HTM, 1998.

[19] Using the XL compilers for Blue Gene. http://www-1.ibm.com/

support/docview.wss?uid=pub1sc10431000, 2006.

