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Abstract

Initial Demonstration with Simulation Data and Animation
Results from tokamak experiments such as PPPL's NSTX indicate that 3-D Edge Geometry

significant anomolous power absorption can occur in the edge of the
fusion plasma. Understanding of this phenomenon is a critical issue

for analysis of RF heating scenarios on the ITER fusion experiment. . o g‘;;:?;in
Two probable edge absorption candidates, rf sheath losses and S|mpI|f|ed 3D Ioop—coupler geometry 00D antenna
parametric decay instability, are both inherently non-linear, and likely oT idal Surf P

to depend significantly on non-axisymmetric geometric detail in the Oorolaa urtace

vicinity of the antenna structures. Analysis of these phenomenon is ocoup|er boX

beyond the capabilities of existing axisymmetric fregeuncy-domain

linear-solvers used for analysis of heating and current drive in core *Loop

fusion plasma, and so we are augmentmenting our analysis capability el imiter on box

with the time-domain 3-D general-geometry electromagnetic and A

particle-in-cell simulation framework, Vorpal[1l]. This framework is a e Two more limiters Antenna Loop

modern object-oriented software package, which has demonstrated
fast scalable operation on clusters of over 1000 cpu's, a necessity for

this type of calculation. We have successfully introduced into this 0.2t Radiation Pattern-
framework an implicit plasma solver[2], in order to accurately treat - (from behind) ]
electromagnetic plasma wave characteristics in the wide range of 0.1

plasma conditions occuring from edge plasma to core plasma, Loop : “
Including situations where the plasma frequency is not resolvable at 0.0 ¢ q“

the rf time-scales of interest, and including sharp plasma resonances eShorted on bottom \'\ﬂ

and cutoff behaviors common in the rf regime. We present ° i ' —0E

benchmarking of this new plasma solver for 1-D, 2-D, and 3-D Open circuit on top _ _ E ’

scenarios. We also discuss implementation plans for non-linear e Current runs across open circuit Wavefronts oot

sheath boundary models, non-linear edge-plasma conditions leading I ... ;
to parametric decay, and also tracking of high-energy particles in Radiation Pattern -0.2-0.1 00 01 G2

core-heating scenarios, where issues of finite-banana-width effects
and superadiabaticity remain outside the scope of the existing

frequency-domain solvers.
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