

**Tech-X Corporation** 

# Initial 3D Electromagnetic RF Gun Simulations with VORPAL

#### D. A. Dimitrov

#### D. Kayran,<sup>2</sup> D.L. Bruhwiler,<sup>1</sup> D. Smithe,<sup>1</sup> J.R. Cary,<sup>1,2</sup> C. Nieter<sup>1</sup>

<sup>1</sup>Tech-X Corporation, <sup>2</sup>Brookhaven National Lab, <sup>3</sup>University of Colorado

## **Motivation**

- Generation of high order modes in an SRF electron gun with high average and peak current is a serious concern.
- Only a fully electromagnetic code can study this problem.
- The 3D massively parallel particle-in-cell (PIC) code VORPAL is uniquely suited for this application.
- We present initial simulations and preliminary benchmarking results with PARMELA.

### VORPAL Geometry Representation Capability

VORPAL software is able to do curved surfaces modeling.



- Improves accuracy of wakefield and HOM coupling and propagation through apertures.
- Cavity focusing and defocusing effects during acceleration-deceleration passes.

# VORPAL Provides Second Order Accuracy for 3-D Accelerating Cavities

- Even the Mafia code uses stair-step (first order accurate) boundaries.
- Finite element codes cannot propagate intense beams



### Simulation parameters are for the 1.5 Cell RF Gun Developed in BNL - (1)

- 20

- 15

- 10

- 5

- 3D geometry of the gun in VORPAL:
- Based on a SUPERFISH axial symmetry description:

20 -

15 -

18

5 -



#### Simulation parameters used for the 1.5 Cell RF Gun Developed in BNL - (2)

- RF field frequency: 703.75 MHz
- RF field at cathode surface at t = 0: -8.28 MV/m
- RF phase: 40 degrees
- RF field amplitude: 30 MV/m
- Beer can beam shape with approximately 5.3 nC total charge
- Beam radius: 4 mm
- Beam length: 80 ps



# VorpalView\* allows beam visualization in complex cavity geometry



\*VorpalView has been developed by David Smithe, Seth Veitzer, Peter Stoltz, Peter Messmer, and the VORPAL team.

# VORPAL Average Kinetic Energy Agrees Well with PARMELA

 Provides confirmation that accelerating RF fields are correct.



## **Comparison of RMS Bunch Length**

 VORPAL simulation show shorter bunch length

- The behavior is qualitatively similar.



# VORPAL Shows Qualitatively Similar Transverse RMS Size Behavior

- The observed transverse rms size was smaller in VORPAL (the beam was emitted with no thermal velocities).
- It is of interest to estimate the effect of the wake fields (considered in VORPAL) on this RMS size.





## Summary and Future Work

- 3D parallel PIC simulations with VORPAL demonstrated that the code is uniquely suited for SRF electron gun studies.
  - Initial simulations and preliminary benchmarking of VORPAL results show reasonable agreement with PARMELA
- Future studies will focus on using higher accuracy algorithms, PML boundary conditions, multiple bunches, secondary electron emission from diamond amplifiers, and photocathode physics.

# Acknowledgments

- We have benefited from valuable discussions with Ilan Ben-Zvi
- This work was supported by the DOE office of Nuclear Physics under an SBIR grant and Tech-X Corp.