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ABSTRACT

In the course of discussions with Steve Holland nearly 10 years ago, I wrote IDL
code to calculate the internal quantum efficiency of our CCD with thin films of indium
tin oxide (ITO) and SiO2 on the back (light entrance side). Unavoidably, there was also
an in-situ doped polysilicon (ISDP) layer 100–200 Å thick between the Si wafer and the
ITO film. The optical properties of the ISDP are similar to those of pure Si, but it is
conductive and hence absorptive. This is important at the blue end of spectrum, where
the absorption length for light in Si is comparable to the ITO thickness. The unique feature
of our analysis was treating the entire substrate as just one more thin film. The difference
between incident intensity and transmitted intensity was understood to be the internal
quantum efficiency, and in fact provided a good description over a central wavelength
range, where the transmitted and reflected intensities were virtually identical.

Maximilian Fabricius made important contributions to the problem, not only rewrit-
ing the code in Java but in generalizing the number of layers possible and treating the
ISDP as just one more layer. But our treatment of absorption was ad hoc at best, and
the small absorption by the ITO was neglected. Our reference books assumed transparent
media, so we explicitly inserted absorption—almost, but not quite right. This note is a dis-
cussion of the theory and coding considerations as necessary steps in updating/rewriting
the code along more rigorous and more useful lines.

1. Introduction

Our previous analysis [1] was based on the multilayer film formalism presented in Pedrotti &
Pedrotti’s Introduction to Optics [2] (hereafter P 2), developed for nonabsorptive materials (real
index of refraction). Simply replacing the indices with complex ones was probably too glib and
in any case was not done consistently. Oblique incidence was not considered, but it is included
here. The “by-hand” inclusion of aborption in silicon amounted to a first-order approximation to
the correct treatment; this made little difference if the complex part of the index of refraction was
small compared with the real part, as is usually true. In addition, the signs are questionable in
Eq. (6) of Ref. 1.

The problem is illustrated in Fig. 1.1. Light is incident on a multilayered antireflective (AR)
coating, which is slightly absorptive, goes through a thin in-situ doped polyslicon (ISDP) layer
which is extremely absorptive at the blue end of the specrum, and. except in the near infrared
(IR), is absorbed in the (depleted) silicon substrate. In the IR light is multiply reflected in the Si
wafer, producing fringing, and is partly transmitted to get lost in the final substrate. Since the e-h
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pairs produced in the ISDP can diffuse into the depleted region, treating only the absorption, as we
continue to do here, underestimates the quantum efficiency (QE) at the blue end of the spectrum.

In the last section, questions about the role of the front surface structure and its substrate in
the far IR are considered with the conclusion that spot-o-matic profile measurements in this region
should have high priority.

This revisit was inspired by the work of Maximilian Fabricius [3], who rewrote the IDL code
used for Ref. 1 in JAVA, made it cleaner and more general, and, of special importance, treated
the ISDP layer between the indium-tin oxide (ITO) and the silicon as a part of the antireflective
(AR) coating. He also calculated the transmission of the AR coating and extended the treatment
to any number of layers. The plan is to improve the IDL code along these lines, incorporating the
formalism of this note.

Of course this is an old subject, and there is nothing in this note which is not in the literature
already. But there are some difficulties with the standard sources: Most optics books do not
consider absorption; after all, one tries to make optical coatings out of transparent materials! But
once it is introduced, there is a confusion of sign conventions which result in different definitions of
the complex index (nc = n+ ik and nc = n− ik). In this writeup we try to follow the treatment by,
by Macleod, in his book Thin-Film Optical Filters [4] (who uses a different sign convention than
P 2) does.

It is also no surprise that there are a variety of engineering-level (and very expensive) programs
Such big guns should eventually be brought in, eventually, for the SNAP CCD’s. But (a) we are
physicists, and want to start with basic premises, and (b) our treatment is already unusual, in that
we treat the silicon substrate itself as one or more “thin films,” since the absorption in silicon is
essentially the internal quantum efficiency (QE) of the device.

Given its purposes as a discussion of the physics and a reference for those interested in the
code, this writeup is intentionally verbose—and for the most part elementary.

2. The boundary condition problem in one film

One need only calculate the reflectivity, absorption, and transmission of one layer. The electric and
magnetic fields at the two surfaces can be related by a 2 × 2 matrix involving only the properties
of the material in that layer. Multiple layers can be handled by sucessive matrix multiplications.

At a dielectric discontinuity with no surface charge E‖ and H‖(= B‖/µ) are continuous, and
since no cases of interest here involve magnetic materials, µ0 = µ0. The fields for a (thin) film are
defined in Fig. 1.2 for the polarization case with E parallel to the surface. The figure is adapted
from P 2’s Fig. 19-1. These boundary conditions are also given by P 2’s Eqs. (19-6)–(19.9).

The index of the film enters in two places:

1. In calculating the transmitted intensity. In a nonabsorptive medium with index of refraction n,
B = (n/c)E. I did not find it obvious that n rather than |nc| appears in the Pointing vector.

2. In the phase shift and absorption of the reflected/refracted light after one “bounce,” e.g. Er1

by the two successive paths shown in Fig. 1.2. The real and imaginary parts of the complex
index of refraction appear in a slightly complicated way.
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Figure 1.1: The problem: Light is incident on a CCD at zenith angle θ0. It is
reflected/transmitted/absorbed through a number of AR coatings (presently two),
a thin layer of ISDP, the silicon wafer, and the front-surface gate structure, finally
exiting into a substrate which at present is considered monolithic.

3. Ratio of E to B

The most direct approach is to start with Maxwell’s equations in the form

∇×E = −∂tB ∇ ·B = 0 (3.1a)
∇×B = σµ0E + εµ0∂tE ∇ ·E = 0 . (3.1b)

There is no charge density, but we allow absorption through conductivity σ. This is a fair de-
scription for indium-tin oxide, but in the case of silicon e-h pair production accounts for most
of the absorption in the wavelength range of interest. It doesn’t really matter much; in the end
only absorption length and the imaginary part of the index (proportional to its reciprocal) are of
importance.

Combining Eqs. 3.1 yields a wave equation whose solution for a plane wave traveling in the +z
direction is

E = E0 e
iω(z/v−t) B = B0 e

iω(z/v−t) (3.2a)
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Figure 1.2: Reflected and transmitted electric field intensities from a film with
index of refraction nc1 and thickness d1, for E parallel to the surface. n0 is required
to be real, but nc1 and ns are in general complex. Adapted from P 2 Eq. 19-1.

or, “equivalently,”
E = E0 e

iω(t−z/v) B = B0 e
iω(t−z/v) . (3.2b)

The innocent-looking sign difference actually causes a lot of trouble, notably the differences between
references in the sign of the imaginary part of the index of refraction.*

As physicists, we are used to separating Schrödinger’s equation in cases where an energy eigen-
function can be found: Ψ(r, t) = ψ(r)f(t), with solution f(t) = exp(−iωt). It is thus more
natural to use the first form, Eq. (3.2a). Engineering books, in particular optics books, tend to use
Eq. (3.2b). At risk of belaboring the point too much, for the moment we write

E = E0 e
±i(ω/v)z∓iωt B = B0 e

±i(ω/v)z∓iωt . (3.3)

For a wave of this form it follows trivially from the two divergence equations that Ez and Bz vanish:
there is no field in the direction of propagation. By direct substitution the remaining (space-space)
curl equations give us

∂yEz − ∂zEy = −∂tBx =⇒ ∓i (ω/v)Ey = ±iωBx (3.4a)
∂zEx − ∂xEz = −∂tBy =⇒ ±i (ω/v)Ex = ±iωBy (3.4b)

∂yBz − ∂zBy = σµ0Ex + εµ0∂tEx =⇒ ∓i (ω/v)By = (σµ0 ∓ iωεµ0)Ex (3.4c)
∂zBx − ∂xBz = σµ0Ey + εµ0∂tEy =⇒ ±i (ω/v)Bx = (σµ0 ∓ iωεµ0)Ey . (3.4d)

from which we find
Ex

By

= v =
∓i (ω/v)

σµ0 ∓ iωεµ0

=
ω/v

εµ0ω ± iσµ0

. (3.5)

* In H. J. Lipkin’s Lie Groups for Pedestrians, the statement, “. . . confusion and errors are
avoided by using the same convention throughout a particular calculation” is footnoted with, “Do
not believe this sentence. There are always confusion and errors. You have to live with them.”
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(The ratio Ey/Bx yields no new information.) Then

(ω/v)2 = ω2 (εµ0 ± iσµ0/ω) (3.6a)

v =
1√

εµ0 ± iσµ0/ω
(3.6b)

=
c√

n2 ± iσµ0c2/ω
≡ c

nc

(3.6c)

Ey/Bx = Ey/µ0Hx = c/nc , (3.6d)

where n is the index in a nonconductive (nonabsorptive) medium (σ = 0). The complex index nc

is

nc ≡
√
n2 ± iσµ0c2/ω (3.7a)

≡ n± ik (3.7b)
≈ n± iσµ0c

2/2nω . (3.7c)

The approximate form is valid if k ≡ σµ0c
2/2nω � n. This is true for silicon for λ >∼ 400 nm.

When 1/v is replaced by nc/c = (n± ik)/c in Eq. (3.3) becomes

E = E0 e
∓iω(t−nz/c)−kωz/c B = B0 e

∓iω(t−nz/c)−kωz/c . (3.8)

So both sign options lead to attenuation, as desired (and required). In the following, we arbitrarily
follow Macleod in choosing the bottom sign.

4. Poynting vector

The flow of energy across a unit area is given by

S = E×H (= E×B/µ0) . (4.1)

At this point, we must remember that our complex notation for the field variables means that the
real physical fields were the real (or imaginary) parts. Since S is a nonlinear combination of them,
we must retreat from the complex notation, and use either the real or imaginary parts. Denoting
the real part of S by I, we use an obscure identity* to write

I = 1
2
< (E ∗ ×H) , (4.2)

Remembering that E and H are perpendicular (with scaler complex magnitudes E and H), and
that H = (nc/µ0c)E, the scaler intensity is

I = 1
2
< ((nc/µ0c) EE∗) = 1

2
(n/µ0c)EE∗ . (4.3)

Using E from Eq. (3.8), we find

I = 1
2
(n/µ0c) |E0|2e−2kωz/c . (4.4)

* If F and G both vary as eiωt, then <(F) · <(G) = 1
2
<(F ·G ∗) = 1

2
<(F ∗ ·G), where an overline

means a time average over 1 (or n) cycles [5]. This remarkable result can easily be shown longhand,
for example starting with F = F0 exp (iφ) exp (iωt) and G = G0 exp (iψ) exp (iωt). F0 and G0 are
real vectors or scalers.



6

It is convenient to make the following definitions involving the absorption coefficient:

2kω/c = 2k/λ– = α = 1/` (4.5)

Here λ– = λ/2π is the wavenumber in vacuum, α is the usual (intensity) absorption coefficient, and
` is the (intensity) absorption length.

In the thin-film formalism discussed below, r is the fractional reflected electric field strength and
t the fractional transmitted electric field strength. To convert these to reflection and transmission
coefficients, one must include n, the real part of the index of refraction via Eq. (4.4):

R = |r|2 T = n|t|2 . (4.6)

Since only ratios enter, the common factors 1
2
µ0c cancel.

But there are other worries. The field of the incident radiation, E0, is in a medium with index
n0 which might not be unity. (We find it convenient to change notation to that shown in Fig. 1.2,
where the subscript “0” labels the medium in which the wave is considered incident, and “s” the
“substrate.” There may or may not be additional layers; we are simply interested in the transmitted
intensity entering the substrate.) The incident Pointing vector is thus proportional to n0|E|2. The
factor n0 is also present in the reflected wave, so its relative intensity is still |r|2. But in the case
of the transmitted wave, our factor ns|t|2 should become (ns/n0)|t|2.

Finally, if the light is incident at an angle θ0 and exits at an angle θs, then the perpendicular
area of a cylinder of incident light goes into an area different by cos θ0/ cos θs; the intensity is
changed by this factor. This situation is indicated in Fig. 1.1, where the red bar indicates the beam
width for normal incidence. In summary,

T =
cos θs

cos θ0
ns

n0

|t|2 . (4.7)

5. Including absorption in the reflected and transmitted E fields at a thin film

In the first place, we make the enormous simplification that the incident medium and (usually) the
substrate are nonabsorptive: θ0 is real, and n0 is real.

As a matter of simplicity, Eqs. 3.2, 3.3, and 3.8 described plane waves moving in the +z
direction. If instead the angle of incidence is θ0 and the direction lies in the xy plane, then we can
write

Incident: exp [i{ωt− (n0/λ–) (x sin θ0 + z cos θ0)}] (5.1a)
Transmitted: exp [i{ωt− (nc1/λ–) (x sin θ1 + z cos θ1)}] , (5.1b)

where nc1 = n1 − ik1. At z = 0 the two expressions must agree, yielding the complex version of
Snell’s law,

(n1 − ik1) sin θ1 = n0 sin θ0 (5.2a)

which propagates from one film to another:
(nj − ikj) sin θj = n0 sin θ0 . (5.2b)

Since n0 sin θ0 is real by definition, sin θk and hence θk are complex if kj 6= 0.
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In discussing the phase shift in a film, we will usually need the product ncj cos θj:

(nj − ikj) cos θj =
√(

n2
j − k2

j − n2
0 sin2 θ0

)
− 2injkj

≡ aj − ibj (5.3)

Writing the first three terms under the radical in this way makes it manifest that only the last term
introduces a complex quantity, even though nc1 sin θ1 is real via Eq. 5.2. Equation 5.1b becomes

exp [−biz/λ–] exp [i{ωt− (x/λ–)n0 sin θ0 − aiz/λ–}] , (5.4)

so that we have a damped wave, as expected and required.

5.1. Phase shift

The reflected wavefront Er1 is the superposition of an infinite number of refracted/reflected/refracted
waves. The first such ray is delayed by a phase proportional to the path length in the film, 2d/ cos θ1,
but as can be seen from Fig. 1.2 the directly reflected wave is delayed as well (greater distance to
the wavefront). Using Snell’s Law and a clever geometrical argument,* P 2 shows that the optical
path length difference is

∆1 = 2d1n1 cos θ1 . (5.5)

Using half this length, the phase lag in one traversal of the film is

δ1 = (d1/λ–)n1 cos θ1 . (5.6)

Thus in the absence of absorption

Ei2 = Et1e
−iδ1

Ei1 = Er2e
−iδ1 . (5.7)

(P 2’s Eqs. 19-15 and 19-16).

In our earlier treatment, absorption was added in a way that seemed obvious: an additional
factor exp(−d1/(2`1 cos θ1)) = exp(−(k1d1/λ–)/ cos θ1)) is contributed by each transit:

Ei2 = Et1e
−(k1/λ–1)d1/ cos θ1−i(n1/λ–1)d1 cos θ1

≡ Et1e
−iδc1 ,

Ei1 = Er2e
−δc1 (5.8)

where

δc1 = δ1 −
id1

2`1 cos θ1

=
d1

λ–

(
n1 cos θ1 −

i k1

cos θ1

)
, (5.9)

and λ = 2πλ– is the wavelength of the light in vacuum. In this argument θ1 was assumed to be a
real angle.

This form for the phase shift was physically reasonable and at the end gave a reasonable de-
scription of our AR coatings. However, it has a number of problems: cos θ1 appears in a disturbingly

* Variants of the argument can be found in virtually any optics book, e.g. Refs. 4, 6, and 7.
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asymmetric way in the real and imaginary parts. In the case of normal incidence, nc1 = n−ik—even
though P 2’s sign conventions led to nc1 = n+ ik. It was not noticed that a real θ1 was inconsistent
with any reasonable generalization of Snell’s law.

Sense can be made of this if we expand Eq. 5.3 for the case n1 � k1, making use of Eq. 5.2
along the way:

(n1 − ik1) cos θ1 = a1 − ib1 =
√
n2

1 − k2
1 − n2

0 sin2 θ0

√
1− 2in1k1

n2
1 − k2

1 − n2
0 sin2 θ0

(5.10a)

≈
√
n2

1 − n2
0 sin2 θ0

(
1− in1k1

n2
1 − n2

0 sin2 θ0

)
(5.10b)

But in this limit the normal Snell’s law is almost true: n1 sin θ1 ≈ n0 sin θ0, so n2
1 − n2

0 sin2 θ0 ≈
n2

1 cos2 θ1, and

(n1 − ik1) cos θ1 ≈ n1 cos θ1 −
ik1

cos θ1
. (5.11)

As a sanity check, consider the case n0 = 1, θ1 = 30◦. With n1 = 1.6, k1 = 0.1n1,

Left side of Eq. 5.11: nc = 1.52077− i 0.168336
Right side of Eq. 5.11: nc = 1.51987− i 0.168436 , (5.12)

Similarly, cos θ1 as calculated from Eq. 5.10 is (0.930653 − i 0.198275), while in the absence of
absorption, cos θ1 = 0.949918− i 0.00000.

Even in the extreme case n1 = 1.6, k1 = n1,

Left side of Eq. 5.11: nc = 1.56143− i 1.63953
Right side of Eq. 5.11: nc = 1.51987− i 1.68436 . (5.13)

Although there is no present reason to use the old form given by Eq. 5.9, we see that the
approximation wasn’t all that bad.

6. Case with E parallel to the surface

The variables in this section are defined in Fig. 1.2, which in turn is basically P 2 Fig. 19-1. E‖ and
H‖ = (n/µ0c) B‖ cos θ are continuous, so for this case

Ea = E0 + Er1 = Et1 + Ei1

Ba = γ0 (E0 − Er1) = γ1 (Et1 − Ei1)
Eb = Er2 + Et1 = Et2

Bb = γ1 (Ei2 − Er2) = γsEt2 , (6.1)

where we use P 2’s definitions*

γ0 = (n0/c) cos θ0
γ1 = (nc1/c) cos θ1
γs = (ncs/c) cos θs . (6.2)

* An inspection of the final expressions for r (Eq . 6.6)and t (Eq. 6.7) below, together with the
form of the transfer matrix (Eq. 6.3 below) shows that the factor of c cancels. We can thus use
γj = nj cos θj (or nj/ cos θj if B is parallel to the surface; see below).
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As can be verified from Fig. 1.2, the right set of equalities in Eq. 6.1 refer only to

The (real) angle of incidence is θ0 and the (possibly complex) refracted angles in the film and
in the substrate are θ1 and θs. As mentioned above, the incident medium has real index n0. The
other indices can be complex.

That said, we can follow P 2 exactly: δ1 is given by Eq. 5.6, except that n1 cos θ1 is now the
complex form given by Eq. 5.3. We can then use Eq. 5.8 (or, now equivalently, Eq. 5.7) to eliminate
Ei2 and Er2 in the left set of equalities in Eqs. (6.1), to findEa

Ba

 =

 cos δ1
i sin δ1
γ1

i γ1 sin δ1 cos δ1

Eb

Bb



≡M1

(
Eb

Bb

)
. (6.3)

Magically, M1 refers only to the parameters of film 1: It is a transfer matrix relating the fields at
the incident surface to the fields at the rear surface. It is thus possible to describe the fields of an
N -layer configuration by simply multiplying them together:(

Ea

Ba

)
= M1M2 . . .MN

(
EN

BN

)
(6.4a)

= M
(
EN

BN

)
. (6.4b)

We can now use the rightmost equalities in Eqs. (6.1) to find

1 + r = m11t+m12γst

γ0 (1− r) = m21t+m22γst , (6.5)

where the matrix elements are the components of M. The reflected E field relative to the incident
field is the reflection coefficient r = Er1/E0, and t = Et2/E0 is the relative transmission coefficient.
It is easy to solve for r and t:

r =
(γ0m11 + γ0γsm12)− (m21 + γsm22)
(γ0m11 + γ0γsm12) + (m21 + γsm22)

(6.6)

t =
2γ0

(γ0m11 + γ0γsm12) + (m21 + γsm22)
(6.7)

The reflected intensity fraction R is just |r|2. As per Eq. 4.7, the fractional transmitted intensity
T is |t|2(ns cos θs)/(n0 cos θ0), where ns is the real part of the index of the substrate (which might
be air). (These are the same as P 2 Eqs. 19-36 and 19-35.)

However, this time there is a problem: If we are calculating the fraction transmitted to the
silicon substrate in order to obtain the absorption in the AR coating, then cos θ1 is complex, and
there is no clear way to deal with it in Eq. 4.7. We return to this problem in Sec. 7.
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6.1. Absorption in the AR coating and in the CCD

In the nonabsorptive case, R+ T = 1. Using the notation from Fig. 1.1,

AAR = 1− (R+ TAR) (6.8a)
Atotal = ASi +AAR = 1− (R+ Ttotal) , (6.8b)

where AAR and ASi are the intensity fractions absorbed in the AR coating and in the silicon,
respectively. ASi is to be identified with the QE at wavelengths were the internal QE of the silicon
is 100%. To calculate these absorption fractions, it is convenient to write(

Ea

Ba

)
= MAR

(
EaSi

BaSi

)
(6.9a)

= MARMSi

(
EbSi

BbSi

)
. (6.9b)

In this somewhat confusing notation, MAR represents the transfer matrix of the AR coating alone.
EaSi and BaSi are the fields at the entry surface of the Si substrate. Thus R and TAR can be found,
and Eq. 6.8a then yields AAR. Similarly, Eq. 6.9b, where EbSi and BbSi are the fields at the exit of
the Si (surface of the substrate), can then be used to find ASi.

These equations are written somewhat more elegantly in Macleod [4] (his Eqs. 2.106, 2.108,
and 2.109), but Eqs. 6.8 seem sufficient.

6.2. Case with B parallel to the surface

In this case, it is the component of E parallel to the surface which is continuous. This slightly
changed situation is shown in Fig. 6.1. Eqs. (6.1) become

Ea = (E0 + Er1) cos θ0 = (Et1 + Ei1) cos θ1
Ba = (n0/c) (E0 − Er1) = (nc1/c) (Et1 − Ei1)
Eb = (Er2 + Et1) cos θ1 = Et2 cos θs

Bb = (nc1/c) (Ei2 − Er2) = (ns/c)Et2 , (6.10)

The phase shift δc depends on optical and geometrical path lengths, and so is the same as for
the other polarization. Proceeding to find Ea and Ba as functions of Eb and Bb, we find that M1

has become

M1 (B parallel) =

 cos δc1

i cos θ1 sin δc1

nc1/c
i(nc1/c) sin δc1

cos θ1
cos δc1

 . (6.11)

This is exactly the same as Eq. (6.3) except that cos θ has been replaced by 1/ cos θ (but not
in δ1). The solution of the rightmost versions of Eqs. (6.10) using the new M1 proceeds as before,
except that all occurences of γ = (n/c) cos θ are replaced by γ = (n/c)/ cos θ.
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Figure 6.1: Reflected and transmitted electric field intensities from a film with
index of refraction. nc1 and thickness d, for B parallel to the surface.

7. Remaining problems

7.1. Oblique incidence

Macleod [4] introduces the tangential components of E and H, so that Eqs. 6.1 and 6.10 take
on a much simpler form. He then obtains somewhat different looking solutions for r and t. The
expression for r then reduces to Eq. 6.6. One motivation is to maintain the R + T = 1 rule in the
case of oblique incidence.* However, t is different that that obtained from Eq. 6.7. He merely says
“. . . the reflection coefficients in Eq. . . . and Eq. . . . are identical, and since much more use is made
of reflection coeficients confusion is rare.”

But transmission is the object of the present calculation. It would be simple enough to use
Eq. 4.7 if the two cos θ terms were real. However, part of the present problem is to calculate AAR,
and in this case the “substrate” is the silicon itself, which is absorptive.

The problem appears to be profound [8]. In the absorptive material, the wavefront is normal
to the refracted direction, while the intensity falls exponentially with distance from the surface.
This makes calculation of AAR problematical in the oblique incidence case. There is no problem
with transmission through the whole assembly, so calculation of AAR +AT has no formal obstacles.

The AR coating absorption is at most a few percent, and its angular variation is of secondary
importance. We plan to proceed with the coding using normal incidence, and analyze this problem
numerically if it becomes relevant. Thus Eqns. 5.3, 5.6, and 6.2 become

nj − ikj = aj − ibj (7.1a)
δj = djnj/λ– (7.1b)
γj = nj/c (7.1c)

* The cosine factors in Eq. 4.7 probably take care of this if they are real.
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7.2. What if there is too much absorption?

If the index is complex, δ = δR + iδI = ncd/λ– = d(n− ik)/λ–. Then
cos δ = cos δR cos iδI − sin δR sin iδI

= cos δR cosh δI − i sin δR sinh δI (7.2)
sin δ = sin δR cos iδI + cos δR sin iδI

= sin δR cosh δI + i cos δR sinh δI . (7.3)
(Note that δI is always negative.) For −δI > 88 (single precision) or −δI > 710. (double precision),
IDL yields “Infinity” for cosh δI or sinh δI . For a 250 µm silicon substrate, 2πkd/λ = 29.6, 229, 1520,
and 21792 for λ = 600, 500, 400, and 300 nm, respectively. Clearly, special care must be taken for
large (negative) δI . A useful (arbitrary) threshold might be at δI = −10, where cosh δI ≈ − sinh δI =
11013.2: If δI < −10., then δI = −10.

It is convenient to factor out the exp (−δI) part of cos δ and sin δ. Rewriting Eq. (7.2),
cos δ = 1

2

[
cos δR

(
eδI + e−δI

)
− i sin δR

(
eδI − e−δI

)]
= e−δI 1

2

[
cos δR

(
1 + e2δI

)
+ i sin δR

(
1− e2δI

)]
≡ e−δI Fcos (δR, δI) (7.4)

Similarly,
sin δ = e−δI 1

2

[
sin δR

(
1 + e2δI

)
− i cos δR

(
1− e2δI

)]
≡ e−δI Fsin (δR, δI) (7.5)

With these definitions, M as defined in Eq. (6.3) becomes

Mj = e−δIj

 Fcos (δRj, δIj)
iFsin(δRj, δIj)

γj

i γjFsin (δRj, δIj) Fcos (δRj, δIj)


Mj ≡ e−δIjMF

j (7.6)
Eq. (6.4) then becomes(

Ea

Ba

)
= e−δI1MF

1 e−δI2MF
2 . . . e−δINMF

N

(
EN

BN

)
(7.7)

= exp (−
∑
δIj) MF

(
EN

BN

)
. (7.8)

Following the discussion of Sec. 6, Eqs. 6.6 and 6.7 become

r =
(γ0m

F
11 + γ0γsm

F
12)− (mF

21 + γsm
F
22)

(γ0mF
11 + γ0γsmF

12) + (mF
21 + γsmF

22)
(7.9)

t =
2γ0 exp (

∑
δIj)

(γ0mF
11 + γ0γsmF

12) + (mF
21 + γsmF

22)
(7.10)

Thus the reflected amplitude r is calculable for any amount of absorption, since the exponen-
tial factors cancel, while the transmitted amplitude t is (essentially) zero for high absorption, as
expected. We can calculate the reflectivity from thick absorptive layers without numerical analysis
problems.

How shall we treat M in thin-film cases? It really doesn’t matter if the positive exponential
part is factored out or not. It is easiest to always use Eq. (7.6), i.e., use the same IDL procedure
for all cases.
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8. Reflections on the front surface and substrate

In previous calculations, it was assumed that the index of the material after the Si, ns, is just 1.00—
air. In reality there is no sharp boundary; it is all of the irregular ISDP and oxide layers making
up the gate structure, the thicker passivation layer, epoxy, and the AlN substrate. It is not clear
how to represent this material, although it makes a difference only in the near IR, where light is
actually penetrating the Si active region. Not only is the amplitude of the fringes affected, but
light probably scatters irregularly from this surface, producing halation.

If the AlN were like “dark glass” rather than amorphous and diffusive, it would not matter if
it were white or black—only its interface with the the epoxy is operative, since all the light would
be absorbed in the AlN anyway. But it is diffusive, and the gate structures are irregular optically.

Only studies of the beam spot profile in the near IR will shed light on this problem.
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