Publications -M-
  • Maass, O. and D. McIntosh. The vapour pressures of the halogen hydrides and of hydrogen sulphide. in Proc. Roy. Soc. Canada. 1914.
  • MacGillavry, D., Deuterium III (in Dutch). Chem. Weekbl., 1935. 32: p. 679-84.
  • Machado, J.R.S., W.B. Streett, and U. Deiters, PVT measurements of hydrogen/methane mixtures at high pressures. J. Chem. Eng. Data, 1988. 33(2): p. 148-52.
  • Mackay, K.M. and M.F.A. Dove, Deuterium and tritium. Compr. Inorg. Chem., 1973. 1: p. 77-116.
  • MacRury, T.B. and J.R. Sams, Hindered rotation of adsorbed diatomic molecules. II. Rotational heat capacities and entropies of hydrogen and deuterium. Mol. Phys., 1970. 19(3): p. 353-69.
  • Mactaggart, J.W. and J.L. Hunt, An analysis of the profile of the pressure-induced pure rotational spectrum of hydrogen gas. Can. J. Phys., 1969. 47: p. 65-70.
  • Magee, J.W., Evaluation of second virial coefficients and isochoric inflection loci from Burnett-isochoric pvt measurements on the hydrogen-methane system. 1983, Ph.D. Dissertation, Rice University, Texas.
  • Magee, J.W., et al., Burnett-isochoric P-V-T measurements of a nominal 20 mol % hydrogen-80 mol % methane mixture at elevated temperatures and pressures. Fluid Phase Equilib., 1985. 22: p. 155-73.
  • Magee, J.W., et al., Burnett-Isochoric p-v-t Measurements of a Normal 20 Mol% Hydrogen-80 Mol% Methane Mixture at Elevated Temperatures. Fluid Phase Equilib., 1985. 22: p. 155-173.
  • Maimoni, A., Liquid-vapor equilibria in the hydrogen-nitrogen and deuterium-nitrogen systems. AIChE J., 1961. 7(3): p. 371-5.
  • Maimoni-Biblarz, A., Vapor-liquid equilibria in the system hydrogen-nitrogen. 1955, Univ. Calif., Berkeley, Ph.D. Dissertation, 125 pp.
  • Makranczy, J., Rusz, L., Balog-Megyery, K., Solubility of Gases in Normal Alcohols, Hung. J. Ind. Chem., 1979, 7: p. 41.
  • Mal'tsev, V.A., et al., Viscosity of H-2-CO2 mixtures at (500, 800, and 1100) K. Journal of Chemical and Engineering Data, 2004. 49(3): p. 684-687.
  • Malashenko, V.I., Y.M. Morozenkov, and V.K. Stankov, Principal thermophysical properties of binary mixtures of hydrogen and oxygen with water vapor. Heat Transfer - Sov. Res., 1973. 5(1): p. 37-45.
  • Malesinska, B., Determination of the second cross virial coefficient from gas-liquid solubility data, Pol. J. Chem., 1980, 54: p. 1527-37.
  • Malhotra, R. and D.F. McMillen, A Mechanistic Numerical Model for Coal Liquefaction Involving Hydrogenolysis of Strong Bonds. Rationalization of Interactive Effects of Solvent Aromaticity and Hydrogen Pressure. Energy & Fuels, 1990. 4: p. 184-193.
  • Mallu, B. V., Viswanath, D. S., Compression factors and second virial coefficients of hydrogen,methane and carbon dioxide mixtures {xCO2 + (1 - x)H2},and {xCO2 + (1 - x)CH4}, J. Chem. Thermodyn., 1990, 22: p. 997-1006.
  • Malone, P.V. and R. Kobayashi, Light gas solubility in phenanthrene: the hydrogen-phenanthrene and methane-phenanthrene systems. Fluid Phase Equilib., 1990. 55(1/2): p. 193-205.
  • Malyshenko, S.P. Equation of state and thermodynamic properties of liquid parahydrogen. in Proc. Symp. Thermophys. Prop. 1970.
  • Malyshenko, S.P., Thermodynamic properties of liquid parahydrogen (in Russian). Teplofiz. Svoistva Veshchestv Nizk. Temp., Mater. Vses. Soveshch., 1972: p. 14-30.
  • Mamonov, Y.V. and S.A. Ulybin, Viscosity of normal hydrogen under rarefaction. Thermophys. Prop. Matter Subst., 1974. 2: p. 65-77.
  • Mamonov, Y.V. and S.A. Ulybin, Heat conductivity of normal hydrogen in the rarefied state. Thermophys. Prop. Matter Subst., 1975. 3: p. 12-28.
  • Mann, J.B. and N.C. Blais, Thermal conductivity of helium and hydrogen at high temperatures. 1959: Los Alamos Sci. Lab., Rep. LA-2316, 39 pp.
  • Mann, D.B., et al., Liquid-solid mixtures of hydrogen near the triple point. Adv. Cryog. Eng., 1966. 11: p. 207-17.
  • Manuccia, T.J. and C.E. Geosling, Deuterium isotope enrichment in methane-hydrogen mixtures subjected to a low-temperature glow discharge. Appl. Phys. Lett., 1977. 31(9): p. 575-7.
  • Manzhelii, V.G., B.G. Udovidchenko, and V.B. Eselson, Possible phase transition in solid parahydrogen. JETP Lett. (Engl. Transl.), 1973. 18(1): p. 16-7.
  • Manzhelii, V.G., et al., Heat capacity of solidified neon, krypton, xenon, ammonia, methane and hydrogen (in Russian). Teplofiz. Svoistva Veshchestv Mater., 1975. 9: p. 47-58.
  • Manzhelii, V.G., G.P. Chausov, and A.M. Tolkachev, Density of solidified neon, krypton, xenon, ammonia, methane, hydrogen in equilibrium with their vapor (in Russian). Teplofiz. Svoistva Veshchestv Mater., 1975. 9: p. 28-39.
  • Manzhelii, V.G., G.P. Chausov, and E.I. Voitovich, Thermal expansion of solidified neon, krypton, xenon, ammonia, methane and hydrogen in equilibrium with their vapors (in Russian). Teplofiz. Svoistva Veshchestv Mater., 1975. 9: p. 40-6.
  • Mao, H.K., P.M. Bell, and R.J. Hemley, Ultrahigh pressures: optical observations and Raman measurements of hydrogen and deuterium to 1.47 Mbar. Phys. Rev. Lett., 1985. 55(1): p. 99-102.
  • Marinin, V.C. and V.V. Pashkov, Effect of Ortho-Para Composition on Thermodynamic Properties of Liquid Hydrogen. Sov. J. Low Temp. Phys., 1977. 3(11): p. 670-675.
  • Marinin, G.A., et al., Characteristic properties of low-temperature internal friction in hard hydrogen (in Russian). Fiz. Nizk. Temp., 1985. 11(8): p. 823-30.
  • Markowski, H., The viscosity of oxygen, hydrogen, chemical and atmospheric nitrogen and their variation with temperature (in German). Ann. Phys. (Leipzig), 1904. 14: p. 742-55.
  • Marshak, R.E., P.M. Morse, and H. York, Equation of State of Hydrogen, Helium, and Russel Mixture at High Temperatures and Pressures. Astro Phys. J., 1950. 111: p. 214-220.
  • Martin, M. L., Trengove, R. D., Harris, K. R., Dunlop, P. J., Excess second virial coefficients for some dilute binary gas mixtures, Aust. J. Chem., 31982, 5: p. 1525-9
  • Martin, P.H. and S.H. Walmsley, An effective field treatment of molecular rotation in solid hydrogen. Mol. Phys., 1974. 27(1): p. 49-63.
  • Masi, J. F., Survey of Experimental Determinations of Heat Capacity of Ten Technically Important Gases, Trans. Aime, 1954, 76: p. 1067-74.
  • Maslan, F.D. and T.M. Littman, Compressibility chart for hydrogen and inert gases. Ind. Eng. Chem., 1953. 45(7): p. 1566-8.
  • Maslennikova, V.Y., S.D. Gavrilov, and D.S. Tsiklis, Thermodynamic properties of hydrogen and helium at high pressures (in Russian). Zh. Fiz. Khim., 1975. 49(9): p. 2435-7.
  • Maslennikova, V.Y., et al., The solubility of water in compressed hydrogen. Russ. J. Phys. Chem. (Engl. Transl.), 1976. 50(2): p. 240-3.
  • Mason, D. M., Eakin, B. E., Compressibility factor of fuel gases at 60 F and 1 atm, J. Chem. Eng. Data, 1961. 6: p. 499-504.
  • Mason, E.A. and W.E. Rice, The intermolecular potentials of helium and hydrogen. J. Chem. Phys., 1954. 22(3): p. 522-35.
  • Mason, E.A., M. Islam, and S. Weissman, Thermal diffusion and diffusion in hydrogen-krypton mixtures. Phys. Fluids, 1964. 7(7): p. 1011-22.
  • Mason, E.A., I. Amdur, and I. Oppenheim, Differences in the spherical intermolecular potentials of hydrogen and deuterium. J. Chem. Phys., 1965. 43(12): p. 4458-63.
  • Mason, R.S., et al. Measurement of the diffusion coefficients of hydrogen atoms in gases. in Proc. Symp. Thermophys. Prop. 1982.
  • Mathias, E., Crommelin, C.-A., Onnes,H. K., Proc. K. Ned. Akad. Wet., 1922, 24: p. 1175.
  • Mathias, E., C.A. Crommelin, and H. Kamerlingh Onnes, The rectilinear diameter of hydrogen. Commun. Phys. Lab. Univ. Leiden, 1921(154B): p. 15-27.
  • Mathias, E., C.-A. Crommelin, and H. Kamerlingh Onnes, The rectilinear diameter of hydrogen. Ann. Phys. (Paris), 1922. 17: p. 463-74.
  • Mathias, E., Crommelin, C.-A., Onnes,H. K.,The rectilinear diameter of hydrogen with liquid and vapor densities from - 240 c to -258 c, Proc. K. Ned. Akad. Wet., 1921, 23: p. 1173-84
  • Mathias, E., C.A. Crommelin, and H. Kamerlingh Onnes, The heat of vaporization and the difference m' - m of the specific heats in the saturated state for argon, oxygen, nitrogen and hydrogen (in French). Commun. Phys. Lab. Univ. Leiden, 1923(162A): p. 1-10.
  • Mathias, E., C.A. Crommelin, and H. Kamerlingh Onnes, The Heat of Vaporization and the Difference m'-m of the Specific Heats in the Saturated State for Argon, Oxygen, Nitrogen and Hydrogen. Communs. Phys. Lab. Univ. Leiden, 1923(162): p. 1-10.
  • Mathias, E. and C.A. Crommelin. Report on the work done in the Leiden Cryogenic Laboratory concerning the equation of state or argon, neon and hydrogen between the Third and the Fourth International Congress of Refrigeration. in Proc. Int. Congr. Refrig. 1924.
  • Mathias, E. and C.A. Crommelin. Work Done in the Ledien Cryogenic Lab. Concerning the Equation of State of Argon, Neon and Hydrogen Between the 3rd and 4th Intern. Cong. of Refrigeration. in Proc. 4th Int. Cong. Refrig. 1924.
  • Mathias, E., C.-A. Crommelin, and H. Kamerlingh Onnes, The straight-line diameter of hydrogen. 1963: Redstone Sci. Inform. Center, Transl. RSIC-19, 4 pp.
  • Matsuishi, K., E. Gregoryanz, H. Mao, and R. Hemley, Equation of state and intermolecular interactions in fluid hydrogen from Brillouin scattering at high pressures and temperatures,  J. Chem. Phys. 118  (2003).
  • Matsumoto, D.K. and C.N. Satterfield, Solubility of hydrogen and carbon monoxide in selected nonaqueous liquids. Ind. Eng. Chem. Process Des. Dev., 1985. 24: p. 1297-300.
  • Matsumoto, M. and K.E. Gubbins, Hydrogen bonding in liquid methanol. J. Chem. Phys., 1990. 93(3): p. 1981-94.
  • Matsuo, T., H. Suga, and S. Seki, A phase transition in the quinol hydrogen cyanide clathrate compound. J. Phys. Soc. Jpn., 1968. 25(2): p. 641.
  • Matthews, M.A., J.B. Rodden, and A. Akgerman, High-temperature diffusion of hydrogen, carbon monoxide, and carbon dioxide in liquid n-heptane, n-dodecane, and n-hexadecane. J. Chem. Eng. Data, 1987. 32(3): p. 319-22.
  • Matveev, V.V., et al., Adiabatic equation of state for hydrogen up to 150 kbar. JETP Lett. (Engl. Transl.), 1984. 39(5): p. 261-5.
  • Matyash, I.V., V.V. Mank, and M.G. Starkov, Dissolubility of hydrogen in liquid nitrogen and of helium in liquid hydrogen (in Ukrainian). Ukr. Fiz. Zh. (Ukr. Ed.), 1966. 11(5): p. 497-501.
  • Mauer, F.A., et al., Polymorphism in hydrogen iodide. J. Chem. Phys., 1965. 42(2): p. 1465-6.
  • Maxwell, G.B. and R.V. Wheeler, The pressures produced on inflammation of mixtures of (a) carbon monoxide and air, and (b) hydrogen and air in a closed spherical vessel. J. Chem. Soc., 1928: p. 15-21.
  • Maxwell, G.B. and R.V. Wheeler, Explosions of mixtures of hydrogen and air: the specific heats of steam at high temperatures. J. Chem. Soc., 1933: p. 882-5.
  • Mazarei, A.B. and O.C. Sandall, Diffusion coefficients for helium, hydrogen, and carbon dioxide in water at 25 degrees C. AIChE J., 1980. 26(1): p. 154-7.
  • McCall, D.M. and H.J. Pain, The thermal conductivity of liquid ortho and para hydrogen. 1953: U.K. At. Energy Res. Establ., Rep. AERE X/PR 2162, 4 pp.
  • McCallum, S.P. and C.M. Focken, Electrical properties of neon, hydrogen, and nitrogen. Philos. Mag., 1925. 49: p. 1309-20.
  • McCarty, R.D., Thermodynamic Properties of Liquid-Vapor Parahydrogen and Liquid-Vapor Oxygen. NBS Report 8883, 1965.
  • McCarty, R.D. and H.M. Roder, Thermodynamic property charts of saturated liquid parahydrogen in British units. 1966: Natl. Bur. Stand., Rep. 9263, 5 pp.
  • McCarty, R.D. and H.M. Roder, Thermodynamic properties of saturated liquid parahydrogen charted for important temperature range. 1967: AEC-NASA Tech. Brief, (67-10346), 2 pp.
  • McCarty, R.D., Computer Programs for Saturation Properties of Hydrogen Supplement to NBS Report 9288. NBS Report 9711, 1968.
  • McCarty, R.D. and L.A. Weber, Thermophysical Properties of Parahydrogen from the Freezing Liquid Line to 5000 R for Pressures to 10,000 Psia. NBS Technical Note 617, 1972.
  • McCarty, R.D., A modified Benedict-Webb-Rubin equation of state for parahydrogen. 1974: Natl. Bur. Stand., Interagency Rep. 74-357, 74 pp.
  • McCarty, R.D., A modified Benedict-Webb-Rubin equation of state for parahydrogen-II. 1975: Natl. Bur. Stand., Interagency Rep. 75-814.
  • McCarty, R.D., Hydrogen technological survey - thermophysical properties. 1975: NASA Spec. Publ., (NASA-SP-3089), 536 pp.
  • McCarty, R.D., J. Hord, and H.M. Roder, Selected properties of hydrogen (engineering design data). 1981: Natl. Bur. Stand., Monogr. 168, 523 pp.
  • McClurg, G.R. and T.W. Adair, III, Thermomagnetic torque in deuterium gas. J. Chem. Phys., 1971. 54(4): p. 1678-82.
  • McConville, G.T., A consistent spherical potential function for para-hydrogen. J. Chem. Phys., 1981. 74(4): p. 2201-5.
  • McConville, G.T. and F. Pavese, Physicochemical problems involved in measuring thermodynamic properties of normal and equilibrium deuterium at the triple point. J. Chem. Thermodyn., 1988. 20(3): p. 337-58.
  • McCourt, F.R. and H. Moraal, Transport and relaxation phenomena in the hydrogen isotopes. Phys. Rev. A, 1972. 5(5): p. 2000-9.
  • McCourt, F.R., et al., Kinetic theory-memory equation approach to nuclear magnetic relaxation in molecular gases. II. Application to hydrogen. Can. J. Phys., 1975. 53(22): p. 2463-9.
  • McGee, H.A., Jr., Chemical reactivity of hydrogen, nitrogen, and oxygen atoms at temperatures below 100 degrees K. 1966: NASA Contr. Rep., (NASA-CR-78022), 109 pp.
  • McGee, H.A., Jr., Chemical reactivity of hydrogen, nitrogen and oxygen atoms at temperatures below 100 degrees K. 1969: NASA Contr. Rep., (NASA-CR-100909), 23 pp.
  • McKellar, A.R.W. and H.L. Welsh, Spectra of H(2)-Ne and D(2)-Ne van der Waals complexes in the collision-induced fundamental bands of hydrogen and deuterium. Can. J. Phys., 1972. 50(13): p. 1458-64.
  • McKinley, C., J. Brewer, and E.S.J. Wang, Solid-vapor equilibria of the oxygen-hydrogen system. Adv. Cryog. Eng., 1962. 7: p. 114-24.
  • McLaughlin, C.W., An investigation of the performance of various mixtures of hydrogen and methane. 1966, Air Force Inst. Technol., Wright-Patterson Air Force Base, Ohio, M.S. Thesis, 87 pp.
  • McLennan, J.C. and J.H. McLeod, On the Raman effect with liquid hydrogen. Trans. R. Soc. Can., Sect. 3, 1929. 23: p. 19-20.
  • McLennan, J.C. and J.H. McLeod, The Raman effect with liquid oxygen, nitrogen, and hydrogen. Nature (London), 1929. 123: p. 160.
  • McNabney, R., W. Moulton, and W.L. Beuschlein, The dielectric constants of air and hydrogen at high pressures. Phys. Rev., 1935. 47: p. 695-8.
  • McNutt, J.D., S.C. Sharma, and R.D. Brisbon, Positron annihilation in gaseous hydrogen and hydrogen-neon mixtures. I. Low-energy positrons. Phys. Rev. A, 1979. 20(1): p. 347-56.
  • McNutt, J.D., et al., Positron annihilation in gaseous hydrogen and hydrogen-neon mixtures. II. Positronium. Phys. Rev. A, 1979. 20(1): p. 357-63.
  • McPherson, W.B. and C.E. Cataldo, Recent experience in high pressure gaseous hydrogen equipment operated at room temperature. 1968: ASM Mater. Eng. Congr., Paper, 11 pp.
  • Meckstroth, W.K. and D. White, Vapor pressures of liquid ortho-para solutions of deuterium; excess thermodynamic functions and intermolecular force constants. J. Chem. Phys., 1971. 54(9): p. 3723-9.
  • Medvedev, V.A., Y.A. Dedikov, and D.N. Astrov, Specific heat c(p) of hydrogen at low temperatures and high pressures (in Russian). Zh. Fiz. Khim., 1967. 41(6): p. 1480-3.
  • Medvedev, V.A., Y.A. Dedikov, and M.P. Orlova, Isobaric heat capacity of para-hydrogen at 20 to 31 kgf cm(-2) and 20-50 degrees K. Russ. J. Phys. Chem. (Engl. Transl.), 1971. 45(3): p. 297-9.
  • Medvedev, V.A., Y.A. Dedikov, and M.P. Orlova, Isobaric specific heat of para-hydrogen at pressures from 2 to 31 kg/cm(2) in the temperature range of 20-50 degrees K (in Russian). Zh. Fiz. Khim., 1971. 45(3): p. 536-40.
  • Medvedev, V.A. and V.K. Yaruntsev, Isobaric specific heat of helium-4 in the region of "hydrogen" temperatures (in Russian). Teplofiz. Svoistva Veshchestv Mater., 1973. 7: p. 17-20.
  • Megaw, H.D. and F. Simon, Density and compressibility of solid hydrogen and deuterium at 4.2 degrees K. Nature (London), 1936. 138: p. 244.
  • Megaw, H.D., The density and compressibility of solid hydrogen and deuterium at 4.2 degrees K. Philos. Mag., 1939. 28(187): p. 129-47.
  • Meissner, W., On the refractive power of liquid hydrogen with a short description of the liquefaction apparatus used (in German). Verh. Dtsch. Phys. Ges., 1913. 15(13): p. 540-54.
  • Meissner, W., The influence of initial pressure and precooling temperature on the liquefaction of hydrogen (in German). Z. Phys., 1923. 18: p. 12-25.
  • Mekishev, G.A., Metallic hydrogen (in Bulgarian). Fiz.-Mat. Spis., 1974. 17(1): p. 29-34.
  • Menabde, N.E., Viscosity coefficient of hydrogen (H(2), D(2)), neon (Ne(20), Ne(22)) and helium (He(3)) isotopes in the temperature range -195 to +25 degrees C. Sov. At. Energy (Engl. Transl.), 1965. 19(5): p. 1421-2.
  • Mendelssohn, K., M. Ruhemann, and F. Simon, The specific heat of solid hydrogen at helium temperatures (in German). Z. Phys. Chem., 1931. 15B: p. 121-6.
  • Menn, K. and W. Biem, Influence of isolated para molecules in solid ortho-hydrogen on the orientational order. Z. Phys. B, 1977. 27(1): p. 1-5.
  • Mercer, H.N. On the ratio of the specific heats of air, hydrogen, carbon dioxide and nitrous oxide. in Proc. Phys. Soc. (London). 1914.
  • Mertens, F.-G., Spin waves in solid hydrogen (in German). 1968: Kernforschungsanlage Juelich, Rep. Juel-564-FN, 136 pp.
  • Mertens, F.G., W. Biem, and H. Hahn, Angular momentum waves in solid ortho-hydrogen. Low Temp. Phys., 1969. 11: p. 627-30.
  • Mertens, F.G., Ground state calculations for solid hydrogen and deuterium. Z. Phys., 1972. 250(1): p. 1-13.
    Messerly, G.H., The triple point pressure of hydrogen. J. Am. Chem. Soc., 1941. 63: p. 1486-7.
  • Metz, W.D., Metallic hydrogen: simulating Jupiter in the laboratory. Science, 1973. 180(4084): p. 398-9.
  • Mezei, M. and D.L. Beveridge, Theoretical studies of hydrogen bonding in liquid water and dilute aqueous solutions. J. Chem. Phys., 1981. 74(1): p. 622-32.
  • Michels, A., G.P. Nijhoff, and A.J.J. Gerver, Isotherm measurements of hydrogen between 0 degrees and 100 degrees C up to 1000 atmospheres (in German). Ann. Phys. (Leipzig), 1932. 12: p. 562-8.
  • Michels, A., P. Sanders, and A. Schipper, The dielectric constant of hydrogen at pressures up to 1425 atm., and at temperatures of 25 degrees C and 100 degrees C. Physica (Amsterdam), 1935. 2: p. 753-6.
  • Michels, A. and M. Goudeket, thermodynamic properties of hydrogen and deuterium up to 700 Amagat between 0 degrees C and 150 degrees C. Physica (Amsterdam), 1941. 8(4): p. 387-97.
  • Michels, A. and M. Goudeket, Compressibilities of Hydrogen between 0øC and 150øC up to 3000 Atmospheres. Physica A, 1941. 8: p. 347-352.
    Michels, A. and M. Goudeket, Compressibilities of deuterium between 0 degrees C and 150 degrees C, up to 3000 atmospheres. Physica (Amsterdam), 1941. 8(3): p. 353-60.
  • Michels, A. and T. Wassenaar, Isotherms of a Nitrogen-Hydrogen Mixture between 0øC and 150øC up to 340 Atmospheres. Appl. Sci. Res., 1948. 1A: p. 258-262.
  • Michels, A., S.R. de Groot, and R.J. Lunbeck, Thermodynamical functions of a nitrogen-hydrogen mixture between 0 degrees C and 300 degrees C up to 1000 atmospheres. Appl. Sci. Res., Sect. A, 1949. 1: p. 378-86.
  • Michels, A. and T. Wassenaar, Isotherms of a nitrogen-hydrogen mixture between 0 degrees C and 150 degrees C up to 340 atmospheres. Appl. Sci. Res., Sect. A, 1949. 1: p. 258-62.
  • Michels, A., G.F. Skelton, and E. Dumoulin, Gas-liquid phase equilibrium in the system ammonia-hydrogen-nitrogen. Physica, 1950. 16(11/12): p. 831-8.
  • Michels, A., A.C.J. Schipper, and W.H. Rintoul, The viscosity of hydrogen and deuterium at pressures up to 2000 atmospheres. Physica (Amsterdam), 1953. 19: p. 1011-28.
  • Michels, A., et al., Compressibility isotherms of hydrogen and deuterium at temperatures between -175 degrees C and +150 degrees C (at densities up to 960 Amagat). Physica (Amsterdam), 1959. 25: p. 25-42.
  • Michels, A., W. De Graaff, and G.J. Wolkers, Thermodynamic properties of hydrogen and deuterium at temperatures between -175 degrees C and 150 degrees C and at densities up to 840 Amagat. Physica (Amsterdam), 1959. 25: p. 1097-124.
  • Michels, A., et al., Compressibility Isotherms of Hydrogen and Deuterium at Temperatures between -175øC and +150øC (at Densities up to 960 Amagat). Physica, 1959. 25: p. 25-42.
  • Michels, A., W. de Graaff, and C.A. ten Seldam, Virial coefficients of hydrogen and deuterium at temperatures between -175 degrees C and +150 degrees C. Conclusions from the second virial coefficient with regards to the intermolecular potential. Physica (Amsterdam), 1960. 26(6): p. 393-408.
  • Michels, A., W. de Graaff, and G.J. Wolkers, Thermodynamic properties of hydrogen and deuterium at temperatures between -175 degrees C and 150 degrees C and at pressures up to 2500 atmospheres. Appl. Sci. Res., Sect. A, 1963. 12(1): p. 9-32.
  • Mihara, S. and H. Sagara, The Compressibility Factors of Hydrogen-Methane, Hydrogen-Ethane and Hydrogen-Propane Gaseous Mixtures. J. Chem. Eng. Japan, 1977. 10(5): p. 395-399.
  • Mikhailova, S.A., I.P. Sidorov, and D.B. Kazarnovskaya, Determination of the compressibility of mixtures of carbon monoxide-hydrogen-methanol (in Russian). Khim. Promst., 1965(7): p. 506-8.
  • Miki, Y., The thermodynamic properties of C9H18 naphthalenes. 1. The detertmination of the equilibrium constants for the hydrogenation of propyl- and isopropylbenzene and ethyltoluenes, Bull. Chem. Soc. Jpn., 1975, 48: p. 201-208.
  • Milenko, Y.Y. and R.M. Sibileva, Dependence of dielectric constant of liquid hydrogen on ortho-para composition (in Russian). Ukr. Fiz. Zh., 1975. 20(11): p. 1805-13.
  • Milenko, Y.Y. and R.M. Sibileva, Polarization and molar volumes of ortho- and para-deuterium solutions (in Russian). Ukr. Fiz. Zh., 1976. 21(5): p. 810-2.
  • Milenko, Y.Y. and R.M. Sibileva, The dependence of conversion rate in liquid hydrogen on ortho-para composition (in Russian). Fiz. Nizk. Temp., 1984. 10(12): p. 1292-3.
  • Milenko, Yu.Ya , R.M. Sibileva, and M.A. Strzhemechny, Natural Ortho-Para Conversion Rate in Liquid and Gaseous Hydrogen, J. Low Temp. Phys. 107:77 (1997).
  • Miller, L. and P.C. Carman, Self-diffusion in mixtures. Part 6. - self-diffusion of hydrogen in certain gaseous mixtures. Trans. Faraday Soc., 1964. 60(1): p. 33-7.
  • Miller, C.E. and M. Lipsicas, Nuclear spin-lattice relaxation in very dilute solutions of orthohydrogen in parahydrogen. Phys. Rev., 1968. 176(1): p. 273-9.
  • Miller, D.J. and R.C. Millikan, Vibrational relaxation of carbon monoxide by hydrogen and helium down to 100 degrees K. J. Chem. Phys., 1970. 53(8): p. 3384-5.
  • Miller, S.A., A. Ekstrom, and N.R. Foster, Solubility and mass-transfer coefficients for hydrogen and carbon monoxide in n-octacosane. J. Chem. Eng. Data, 1990. 35(2): p. 125-7.
  • Miller, S. A., Ekstrom, A., Foster, N. R., Solubility and mass-transfer coefficients for hydrogen and carbon monoxide in n-octacosane, J. Chem. Eng. Data, 1990, 35: p. 125.
  • Millero, F.J., R. Dexter, and E. Hoff, Density and viscosity of deuterium oxide solutions from 5-70 degrees C. J. Chem. Eng. Data, 1971. 16(1): p. 85-7.
  • Mills, R.L. and A.F. Schuch, Crystal structure of normal hydrogen at low temperatures. Phys. Rev. Lett., 1965. 15(18): p. 722-4.
  • Mills, R.L., A.F. Schuch, and D.A. Depatie, Hexagonal-to-cubic transition in hydrogen. Phys. Rev. Lett., 1966. 17(22): p. 1131-3.
  • Min, B.I., H.J.F. Jansen, and A.J. Freeman, Structural properties, superconductivity, and magnetism of metallic hydrogen. Phys. Rev. B, 1984. 30(9): p. 5076-83.
  • Minchina, I.Y., et al., A Study of quantum diffusion in hydrogen using calorimetric methods (in Russian). Fiz. Nizk. Temp., 1984. 10(10): p. 1051-65.
  • Minchina, I.Y., et al., Quantum diffusion in solid hydrogen-deuterium solutions (in Russian). Fiz. Nizk. Temp., 1985. 11(6): p. 665-8.
  • Minter, C.C., Thermal conductivity of binary mixtures of gases. I. Hydrogen-helium mixtures. J. Phys. Chem., 1968. 72(6): p. 1924-6.
  • Misra, S.C., Theory of specific heat of liquid hydrogen. Indian J. Phys., 1956. 30: p. 626-7.
  • Mitchell, D.N. and D.J. LeRoy, An experimental test of the orbiting resonance theory of hydrogen atom recombination at room temperature. J. Chem. Phys., 1977. 67(3): p. 1042-50.
  • Mitchell, D.N. and D.J. Leroy, Theoretical and Experimental Behavior of a Thermal-Conductivity Detector for Determination of Ortho-Hydrogen Para-Hydrogen Composition of Gas-Mixtures in Temperature-Jump Region. Canadian Journal of Chemistry-Revue Canadienne De Chimie, 1978. 56(13): p. 1817-1826.
  • Mitin, M.B., Experimental investigation of translational dispersion of sound in hydrogen up to 4 x 10(4) mHz/atm (in Russian). Akust. Zh., 1971. 17(3): p. 482-4.
  • Mitin, M.B., Experimental investigation of the translational dispersion of sound in hydrogen up to 4 x 10(4) MHz/atm. Sov. Phys. - Acoust. (Engl. Transl.), 1972. 17(3): p. 412-3.
  • Mittelhauser, H.M. and G. Thodos, vapour pressure relationships up to the critical point of hydrogen, deuterium, and tritium, and their diatomic combinations. Cryogenics, 1964. 4: p. 368-73.
  • Miyagi, H. and T. Nakamura, Ground state energy difference of hcp and fcc ortho-hydrogens. Prog. Theor. Phys., 1967. 37(4): p. 641-60.
  • Miyagi, H., T. Nakamura, and H. Nagara, Stable phase of metallic hydrogens at high pressures. Phys. Lett. A, 1977. 62(3): p. 171-2.
  • Miyako, R. Viscosity and second virial coefficients of gaseous hydrogen at low temperature. in Proc. Phys.-Math. Soc. Jpn. 1942.
  • Miyako, R. Viscosity and Second Virial Coefficients of Gaseous Hydrogen at Low Temperatures. in Proc. Phys. Math. Soc. Japan. 1942.
  • Miyazaki, T., Selective hydrogen atom abstraction by D atom in radiolysis of C(10)D(22)-C(10)H(22) mixtures at 77 K. Radiat. Phys. Chem., 1977. 10(3): p. 219-20.
  • Miyazaki, T., K. Kinugawa, and J. Kasugai, Selective formation of solute radical by hydrogen atom in radiolysis and photolysis of alkane mixtures at 77 K. Radiat. Phys. Chem., 1977. 10(3): p. 155-62.
  • Mizushima, M., K. Ohno, and A. Ohno, Theory of intermolecular potential and second virial coefficient of hydrogen at low temperature. J. Chem. Phys., 1953. 21(12): p. 2107-14.
  • Moerkerken, H.C.A.H., Measurements on the orientation dependent cross section of hydrogen. 1974, Kath. Univ. Nijmegen, Netherlands, Ph.D. Dissertation, 109 pp.
  • Moessen, G.W., J.G. Aston, and R.G. Ascah, Thermodynamic temperature scale below 90 degrees K, the normal boiling point of normal hydrogen. J. Chem. Phys., 1954. 22: p. 2096-7.
  • Moessen, G.W., The thermodynamic temperature scale below 90 degrees K. The normal boiling point of oxygen on the thermodynamic scale. The normal boiling point of normal hydrogen on the thermodynamic scale. 1955, Pa. State Univ., University Park, Ph.D. Dissertation, 90 pp.
  • Moessen, G.W., J.G. Aston, and R.G. Ascah, The Pennsylvania State University thermodynamic temperature scale below 90 degrees K and the normal boiling points of oxygen and normal hydrogen on the thermodynamic scale. Temp., Its Meas. Control Sci. Ind., 1962. 3: p. 91-102.
  • Moise, A. and H.O. Pritchard, Theory of vibrational relaxation in mixtures of ortho- and para-hydrogen. Can. J. Chem., 1981. 59(8): p. 1277-83.
  • Moles, E., T. Toral, and A. Escribano, Limiting densities and molecular weights of oxygen; carbon dioxide, sulphur dioxide and hydrogen sulphide. - Atomic weights for carbon and sulphur. Trans. Faraday Soc., 1939. 35: p. 1439-52.
  • Moles, E., T. Toral, and A. Excribano, Limiting Densities and Molecular Weights of Oxygen, Carbon Dioxide, Sulphur Dioxide and Hydrogen Sulphide.-Atomic Weights for Carbon and Sulphur. Trans. Faraday Soc., 1939. 55: p. 1439-1452.
  • Mon, K.K., G.V. Chester, and N.W. Ashcroft, Simulation studies of a model of high-density metallic hydrogen. Phys. Rev. B, 1980. 21(6): p. 2641-6.
  • Monchick, L., Rotational transitions and thermal diffusion in ortho and para hydrogen. Chem. Phys. Lett., 1972. 17(2): p. 241-4.
  • Monchick, L., N.J. Brown, and R.J. Munn, Viscosity of ortho and para hydrogen mixtures. Mol. Phys., 1973. 25(2): p. 249-63.
  • Monchick, L., Multipole interactions and macroscopic differences in ortho and para hydrogen. Chem. Phys. Lett., 1974. 24(1): p. 91-5.
  • Monger, J.M., H. Sello, and D.C. Lehwalder, Explosion limits of liquid systems containing hydrogen peroxide, water, and oxygenated organic compounds. J. Chem. Eng. Data, 1961. 6(1): p. 23-7.
  • Monger, J.M., et al., Detonations in hydrogen peroxide vapor. J. Chem. Eng. Data, 1964. 9(1): p. 124-7.
  • Monger, J.M., et al., Explosive limits of hydrogen peroxide vapor. J. Chem. Eng. Data, 1964. 9(1): p. 119-24.
  • Monkhorst, H.J. and J. Oddershede, Random-phase-approximation correlation energy in metallic hydrogen using Hartree-Fock Bloch functions. Phys. Rev. Lett., 1973. 30(17): p. 797-800.
  • Monkhorst, H.J., J.D. Pack, and D.L. Freeman, On the x-ray scattering factors of metallic and molecular hydrogen crystals. Solid State Commun., 1979. 29(10): p. 735-7.
  • Monson, P.R., Jr., H.-L. Chen, and G.E. Ewing, Vibrational solvent shifts in the induced spectra of hydrogen. J. Mol. Spectrosc., 1968. 25(4): p. 501-12.
  • Montgomery, R.L., F.D. Rossini, and M. Mansson, Enthalpies of combustion, vaporization, and formation of phenylbenzene, cyclohexylbenzene, and cyclohexylcyclohexane; enthalpy of hydrogenation of certain aromatic systems. J. Chem. Eng. Data, 1978. 23(2): p. 125-9.
  • Moore, J. C., Battino, R., Rettich, T. R., Handa,Y. P., Wilhelm, E., Partial molar volumes of "gases" at infinite dilution in water at 298.15 k., J. Chem. Eng. Data, 1982, 27: p. 22-4.
  • Moore, R.G. and F.D. Otto, The solubility of hydrogen in aliphatic amines. Can. J. Chem. Eng., 1972. 50(3): p. 355-60.
  • Moorthy, P.N. and K.N. Rao, Hydrogen peroxide yield in gamma-irradiated air-saturated ice at 77 degrees K. Radiat. Eff., 1972. 14(1/2): p. 113-7.
  • Moraal, H., The phase transition in solid orthohydrogen. Phys. Status Solidi B, 1972. 50(1): p. 327-34.
  • Morgan, C.G., W.D. Powell, and W.T. Williams, Primary ionization coefficient of deuterium. Br. J. Appl. Phys., 1967. 18: p. 939-43.
  • Morozov, V.S., et al., Solubility of solid carbon dioxide in nitrogen and hydrogen (in Russian). Gazov. Promst., 1967. 12(7): p. 43-5.
  • Morris, J.C., R.P. Rudis, and J.M. Yos, Measurements of electrical and thermal conductivity of hydrogen, nitrogen, and argon at high temperatures. Phys. Fluids, 1970. 13(3): p. 608-17.
  • Motard, R.L. and E.I. Organick, Thermodynamic behavior of hydrogen-hydrocarbon mixtures. AIChE J., 1960. 6(1): p. 39-43.
  • Motz, H. and F. Patat, On the ortho- and para-states of hydrogen of mass 2. The temperature dependence of the heat of rotation of H(2)(2) (in German). Sitzungsber. Akad. Wiss. Wien, Math.-Naturwiss. Kl., Abt. 2B, 1933. 142(10): p. 671-4.
  • Moyle, M.P., R.B. Morrison, and S.W. Churchill, Detonation characteristics of hydrogen-oxygen mixtures. AIChE J., 1960. 6(1): p. 92-6.
  • Moynihan, C.T., et al., Enthalpies of fusion, freezing points, heat capacities, densities, and shear viscosities of hydrogenated dimers of norbornadiene and cyclopentadiene. J. Chem. Eng. Data, 1978. 23(2): p. 107-11.
  • Moysan, J.M., et al., Prediction of the sollubility of hydrogen in hydrocarbon solvents through cubic equations of state. Chem. Eng. Sci., 1983. 38(7): p. 1085-92.
  • Muccitelli, J. and W.-Y. Wen, Solubilities of hydrogen and deuterium gases in water and their isotope fractionation factor. J. Solution Chem., 1978. 7(4): p. 257-67.
  • Mucker, K.F., et al., Crystal structure of solid deuterium from neutron-diffraction studies. Phys. Rev. Lett., 1965. 15(14): p. 586-8.
  • Mucker, K.F., et al., Crystal structure of para-enriched solid deuterium below the lambda transition. Phys. Rev. Lett., 1966. 16(18): p. 799-801.
  • Mucker, K.F., et al., Structures of solid deuterium above and below the lambda transition as determined by neutron diffraction. J. Chem. Phys., 1968. 49(4): p. 1922-32.
  • Mueller, W.H., T.W. Leland, Jr., and R. Kobayashi, Volumetric properties of gas mixtures at low temperatures and high pressures by the Burnett method: the hydrogen-methane system. AIChE J., 1961. 7(2): p. 267-72.
  • Mueller, K.H., et al., The thermal conductivities of pure para and pure ortho hydrogen gas and their mixtures at 21 degrees K (in German). Z. Naturforsch., 1970. 25A(2): p. 247-51.
  • Mueller, H., Model calculations on a metallic modification of hydrogen (in German). Theor. Chim. Acta, 1974. 32(4): p. 331-9.
  • Muetterties, E.L., Physical properties of hydrogen, deuterium, and tritium. Transition Met. Hydrides, 1971. 1971: p. 1-9.
  • Mukhopadhyay, P. and A.K. Barua, Thermal conductivity of hydrogen-helium gas mixtures. Br. J. Appl. Phys., 1967. 18: p. 635-40.
  • Mukhopadhyay, P., A. Das Gupta, and A.K. Barua, Thermal conductivity of hydrogen-nitrogen and hydrogen-carbon-dioxide gas mixtures. Br. J. Appl. Phys., 1967. 18: p. 1301-6.
  • Mullins, J.C., W.T. Ziegler, and B.S. Kirk, The thermodynamic properties of parahydrogen from 1 degree to 22 degrees K. 1961: Ga. Inst. Technol., Eng. Exp. Stn., Tech. Rep. 1 (Project A-593), 4 pp.
  • Mullins, J.C., W.T. Ziegler, and B.S. Kirk, The thermodynamic properties of parahydrogen from 1 degree to 22 degrees K. Adv. Cryog. Eng., 1962. 8: p. 116-25.
  • Mullins, J.C., Phase equilibria in the argon-helium and argon-hydrogen systems. 1965, Georgia Inst. Tech., Atlanta, Ph.D. Thesis.
  • Mullins, J.C. and W.T. Ziegler, Phase equilibria in the argon-helium and argon-hydrogen systems from 68 degrees to 108 degrees K and pressures to 120 atmospheres. Adv. Cryog. Eng., Sect. M-U, 1965. 10: p. 171-81.
  • Mulser, P. and S. Witkowski, Numerical calculations of the dynamics of a laser irradiated solid hydrogen foil. Phys. Lett. A, 1969. 28(10): p. 703-4.
  • Munn, R.J. and L. Monchick, Ortho-para hydrogen scattering cross sections. Mol. Phys., 1969. 16(1): p. 25-36.
  • Murphey, B.F., The temperature variation of the thermal diffusion factors for binary mixtures of hydrogen, deuterium, and helium. Phys. Rev., 1947. 72(9): p. 834-7.
  • Murphy, A.B., Transport coefficients of hydrogen and argon-hydrogen plasmas. Plasma Chemistry and Plasma Processing, 2000. 20(3): p. 279-297.
  • Murray, J.R. and A. Javan, Effects of collisions on Raman line profiles of hydrogen and deuterium gas. J. Mol. Spectrosc., 1972. 42(1): p. 1-26.
  • Mustafa, M., et al., Absolute Measurement of the Thermal-Conductivity of Helium and Hydrogen. Physica A, 1987. 141(1): p. 233-248.
  • Myall, J., Determination of bulk modulus and sonic velocity in superheated liquid hydrogen and superheated liquid deuterium. 1961: Univ. Calif., Radiat. Lab., Eng. Note 4312-03 M22A, 14 pp.
  • Myshkis, D.A., A.M. Ratner, and I.Y. Fugol, Possibility of forming a metastable crystal from hydrogen and an inert gas. Sov. J. Low Temp. Phys. (Engl. Transl.), 1976. 2(1): p. 39-40.

A - B - C - D - E - F - G - H - I - J - K - L - M - N - O - P - R - S - T - U - V - W - Y - Z

return to top

HOME