

High-throughput Approach for Polymer Thin Film Modulus Measurement

Christopher M. Stafford, Christopher Harrison[†] Eric J. Amis Alamgir Karim

Polymers Division, NIST, Gaithersburg, MD

[†]Current Address: Sensor Physics Group, Schlumberger-Doll Research, Ridgefield, CT

National Institute of Standards and Technology Technology Administration, U.S. Department of Commerce

Surface Buckling – Recent Studies

Bowden, Brittain, Evans, Hutchinson, & Whitesides. *Nature* 393 (1998), 146.

Surface Buckling - History

Euler : buckling of a beam or strut

Five different modes of failure of a composite sandwich panel :

- 1. Yielding or fracture
- 2. Buckling or wrinkling
- 3. Core failure
- 4. Delamination
- 5. Indentation

H.G.Allen, Analysis and Design of Structural Sandwich Panels, Pergamon Press, 1969.

Buckling of a Structural Sandwich

Let's start with a beam bending equation:

$$E_p b h^3 \frac{\partial^4 w}{\partial x^4} + P \frac{\partial^2 w}{\partial x^2} \approx \sigma_z(x) b$$

w(x) – local displacement in the z-axis P – compressive load/force b – width of a section h – thickness of the rigid plate $\sigma_z(x)$ – shear stress

Now, let's assume the sandwich buckles sinusoidally:

$$w = w_m \sin \frac{2\pi}{d} x$$

d = wavelength of instability

$$W_m$$
 = amplitude of instability

And, the necessary stress required is:

$$\sigma_z \approx -\frac{E_m w_m}{d} \sin \frac{2\pi}{d} x$$

Buckling of a Structural Sandwich

Then, let's make all the necessary substitutions:

$$P \approx E_p \left(\frac{d}{h}\right)^{-2} + E_m \left(\frac{d}{h}\right)^1$$

What value of *d/h* will lead to a minimization of the lateral stress?

$$rac{\partial P}{\partial (d/h)} = 0$$

The answer is:

$$d \sim h \left(\frac{E_p}{E_m}\right)^{1/3}$$

$$E_{p} = 12 \cdot E_{m} \cdot [(3 - \upsilon)(1 + \upsilon)]^{-1} (qh)^{-3}$$

H.G.Allen, Analysis and Design of Structural Sandwich Panels, Pergamon Press, 1969.

Strain Induced Elastomer Buckling Instability Measurement Method (SIEBIMM)

 Can be used to directly measure the Young's modulus WITHOUT modeling the material being investigated.

NIST • Multiple gradient samples can be simultaneously measured

Bilayer Sample Preparation

Make surface of silicon oxide hydrophilic

Prepare thin film by variety of techniques

Cast PDMS sheet on top of substrate/film

Release laminate by immersing in water

Thin Film Fabrication Techniques Spin Coating Flo

Flow Coating

Lift-Off onto PDMS

Gradient High-Throughput Approach

Gradient Specimen: Gradually varies a property along one direction e.g. Composition, thickness, temperature

Crossed-Gradient Combinatorial Library:

- Two orthogonal gradients
- Each point gives a different combination of (e.g) Temperature and Composition
- Every combination in range is covered
- Library can often "report" results by simple visual inspection

CC.

Films and Coatings

Gradient strain stage

SIEBIMM – Optical Microscopy (Method 2)

OM of Gradient-Thickness-PS Film / PDMS

140 nm

280 nm

a		
Ŷ_Ŷ		
		d
50 μm d=7 μm	d=10 μm	d=14 μm

National Institute of Standards and Technology

14

SALS on Gradient-Thickness-PS Film / PDMS

Rapidly map film modulus at different film thickness along gradient !

Gradient-Thickness-PS Film / PDMS

- **PS film with a thickness gradient.**
- Buckling wavelength *d* increases linearly with thickness.
- SIEBIMM modulus: 3.17 GPa ±0.11 GPa
- Flexural modulus: 3.22 GPa ± 0.05 GPa (Donald Hunston, NIST)

Film Aging Effect by SIEBIMM

Approach: Study time dependence of modulus measurement w/ SIEBIMM

Nanoporous Films

- Nanoporous (low-k) films are a critical technology for sub-100 nm semiconductor applications.
- The mechanical properties (modulus, hardness, etc) are integral to the resilience of these films to CMP/planarization

*Samples supplied by Dr. Kim, IBM Almade IIa et al., Mat. Rusis 60.000 pm roc. 716 B12.13

Nanoporous Films

Collaboration w/ IBM Alamden
Launched collaboration w/ J. Watkins (UMass Amherst)

Mass Fraction of Porogen (%)

Nanoporous Films

Liu et al., Appl. Phys. Lett. 81 4180 (2002).

- Modulus decreases monotonically with increasing porosity.
- No abrupt transitions observed (percolation point).
- Highest loading leads to < 1 GPa modulus.

*Samples supplied by Dr. Kim, IBM Almaden

Tunable Block Copolymer Blends (Soft Systems)

 Modulus of the film is tuned by ratio of two P(S-I-S) triblock copolymers:

Vector 4215 (30% PS, more rubbery) Vector 4411 (44% PS, more glassy)

Optically clear, miscible system

Morphological transitions observed by SAXS

• We can span the range of polymeric E: $GPa \rightarrow MPa$

Plasticized Polymer Films

Modulus measurement of plasticized polystyrene (dioctyl phthalate blend).
SIEBIMM successfully follows decrease in modulus with plasticizer.
Nanoindentation (red) agrees well with SIEBIMM. (Mark VanLandingham, NIST)

age

1**d**

Effects of Strain

- Even for glassy/brittle polystyrene, modulus measurement relatively insensitive to strain (for strain < 5%)
- $\bullet \epsilon_{\rm c}$ needed to induce buckling
- Measurements typically made at lowest strain that triggers instability

Sinusoidal Phase Gratings

A=3 nm

Stafford, Harrison

B

Mechanical Properties of Nanoscale Thin Films by LS

Issue: conversion from strain to amplitude in SIEBIMM **Approach:** high-resolution light scattering as a function of strain

Analytical Predictions

Experimental Results

Could yield insight into the residual stress in nanoporous films

Exploring Strain Gradients with SIEBIMM

Issue: Can we make controlled topography? strain gradient = amplitude gradient (roughness) Approach: Gradient mechanical strain stage

Exploring Strain Gradients with SIEBIMM

Issue: Can we make controlled topography? Gradient thickness = wavelength gradient $\nabla \lambda$

National Institute of Standards and Technology

27

Finite Element Analysis of Gradient Strain Stage

Yields direct relationship between angle and area of uniformity. Defines window of opportunity for strain gradient.

Acknowledgements

Team SIEBIMM:

- Eric J. Amis
 Don Hunston
 Sheng Lin-Gibson
- Mark VanLandingham
- National Research Council
- Craig Hawker

