Testing of a Bridge Weigh-In-Motion System in Cold Environmental Conditions

Eugene O'Brien⁽¹⁾, Arturo Gonzalez⁽¹⁾, Ales Znidaric⁽²⁾ and Peter McNulty⁽³⁾

⁽¹⁾ University College Dublin, Ireland

- ⁽²⁾ Slovenian National Building and Civil Engineering Institute, Ljubljana, Slovenia
- ⁽³⁾ Jones Environmental Limited, Ireland

Cold Environmental Test

Testing of Bridge WIM and other 4 Pavement WIM technologies: •Two Piezoquartz Strip Sensors •Piezoceramic Nude Cable •Bending Plate •Bending Beam

3890

3500 N

2500

3500.1.

• Integral Bridge composed of two spans, 14.6 m each

550

7000

J_ 3500

4850

6136

• Axle Detectors

Strain Sensors

Data Acquisition Equipment

Bridge WIM Calibration

Repeated Runs of Calibration Truck

B-WIM versus Pavement WIM Systems (Gross Vehicle Weight) **DuWIM** Ε 30 D(25) Two piezoquartz 20 **D(20)** Piezoceramic C(15)10Β(Bending Plate BH A(5) Bending Beam

B-WIM Testing

B-WIM Testing

B-WIM Testing

Conclusions

- A Bridge WIM system has been successfully implemented in sub-Artic Climatic Conditions.
- Overall accuracy classes of C(15) in the first two test periods and B(10) in the third test period.
- B-WIM has compared favourably to other WIM technologies, specially concerning Gross Vehicle Weights.