In silico Structural Biology of Signaling Proteins

Chang-Shung Tung Group Leader Theoretical Biology & Biophysics, LANL <u>ct@lanl.gov</u> 505-665-2597

Outline

- Methods for structural determination/modeling.
 - computational approaches.
 - homology modeling.
 - an example (what, why, how, things learned).
- Applied to signaling proteins.
 - toll-like receptors.
 - what can structural modeling do/help?

Ways to determine protein structures

- X-ray crystallography
- NMR
- Cryo EM
- Low-resolution methods (SAXS, Neutron)
- Computational (in silico) prediction

Protein folding prediction

- From sequence to 3-D structure
- *ab initio*
 - conformational sampling
 - target function (potential energy, etc)
- Knowledge based
 - homology modeling
 - threading

Protein folding prediction (continue)

ab initio - classical:

- 30 years of works (Scheraga, Karplus, Levitt, etc)
- many software developed: CHARMM, AMBER, GROMOS, NAMD, etc)

- capable of predicting structures of small proteins.

Protein folding prediction (continue)

knowledge-based, homology modeling

- proteins with similar sequence/function fold into similar folds.
- the accuracy is approaching mid-resolution crystal.
- independent of protein size.
- easy and straight-forward.
- many software available (modeller, swiss-prot, etc).

Homology modeling (Comparative modeling)

- The target protein needs to have >30% sequence identity with template protein(s) of known structure(s).
- Accurate sequence alignment is crucial for the success of the model structure.
- Structural comparison using root-mean-square-deviation (RMSD) metric as a measure between two structures.
- a typical model has ~2 Å agreement between the matched C_{α} atoms at 70% sequence identity.
- More info in:

http://en.wikipedia.org/wiki/Homology_modeling

Can homology modeling works with low sequence identity?

- Tramontano (1998), Methods: A companion to Methods in Enzymology 14: 293-300.
- Tung, et al., (2004) J Gen Virol 85: 3249-3259.

Hemagglutinin (HA)

- Surface glycoprotein (aka membrane fusion protein, envelope protein), has two components (HA1, HA2) linked by disulfide bond.
- The functional unit is a trimer.
- HA binds to receptor of the host cell and initiates membrane fusion.
- Structurally, influenza HA is best studied and served as a model system for understanding membrane fusion between virus and host cell.

HA (continue)

- Crystal structure of influenza-a HA was solved in the 70s.
- Crystal structure of influenza-c HA/NA fusion protein was solved in 1998.
- Structure of influenza-b HA is not known.
- To model the structure of the influenza-b HA using a knowledge-based approach.
- Pair-wise sequence identities between HAs from flu-a, flu-b, flu-c are all under 20%.
- Using structural alignment of HA from flu-a and flu-c, added sequence of HA from flu-b to produce a 3-way alignment.

T 40 ODLPGNDNST ATLCLGHHAV PNGTLVKTIT DDOIEVTNAT ELVOSSSTGK I..... DRICTGITSS NSPHVVKTAT QGEVNVTGVI PLTTTPTKSH F..... EK IKICLOKOVN SSFSLHNGFG GNLY.ATEEK RMFELV.KPK AGASVLNOST CNNPH RILDG..... IDCTLIDAL LGDPH.C.DV ANLKG TOTRGKLCPN CFNCTDLDVA LGRPK.CMGN WIGFGDSRTD KSNSAFPRSA DVSAKTADKF RFLSG. GSLMLSM FGPPGKV. DY □ 100 FONETW..DL FVE RSK AFSNCYP... Y DVPD. YASLR SLVASSG... ... TLEFITE TPSAKV..SI LHE.... VKP ATSGCFPIMH DRTK. IROLP NLLRGYE... ... NIRLSTS LYOGCGKHKV FYEGVNWSPH AAINCYR..K NWTDIKLNFO KNIYELASOS HCMSLVNALD CL. GFTWT..... GVTONGGSNA CKR.GPGSGF FSRLNWLTKS GS..... TYP VLN... VTMP NVINTETAPG GPYKVGTSGS CPNVANGNGF FNTMAWVIPK DN.....NKT AINPVTVEVP KTIPL..... QVT.AGTAGN CN.....NSF LKNPALYTOE VKPSENKCGK ENL...AFFT N..NDN.... ..FDKLYIWG IHHPSTNOEQ TSLYVOASGR VTVSTRRS.. QOT.IIPNIG YICSEG.... .. EDQITVWG FHSDDKTOME R.LYGDSNPQ KFTSSANG.. VTTHYVSQIG L. . PTOFGTY ECKLHLVASC YFIYDSKEVY NKR.GCDNYF QVIYDSFGKV VGG.LDNRVS SRPWV...RG L..SSRISIY WTIVKPGDVL VINSNGNLIA PRGY..FKMR TGKS..... GFPNQTEDEG LKQSGRIVVD YMVQKPGKTG TIVYQRGILL PQKV..W.CA SGRS..... PYTGN...SG D.. TPTMQCD MLQLKPGRYS VRSSPRFLLM PERSYCFDMK EKGPVTAVQS SIMRSDAPI. DTCISECITP IWGKGRESDY AVDQACLSTP GCMLIQKQKP YIGEADDHHG DQEMRELLSG LDYEARCISO N.GSIPNDKP FONVN..KI. TYGACPKYVK ONTLKLATGM RNVPEKOT KYGGLNKSKP YYTGE. HAK AIGNCPIWVK . TPLKLANGT KYRPPAKLLK E S.GWVNETSP FTEKYLLPP, KFGRCPLAAK .EESIPKIPD GLLIPTSGTD TTVTKPKS

3-way alignment

23 conserved residues

conserved residues

			a	b	C	
HA2	-	CYS	14	4	6	
		THR	37	27	28	
		GLY	61	51	85	
		GLY	72	68	94	
		PRO	74	70	96	
		GLU	89	86	114	
		ALA	93	90	122	
	-	CYS	97	94	126	_
		GLY	134	138	169	
		CYS	139	143	174	
	-	PHE	147	152	178	
Ľ		GLY	225	238	268	
		LYS	238	253	281	
		PRO	239	254	282	
		GLY	240	255	283	
		PRO	254	269	297	
	-	CYS	281	294	373	_
		GLY	286	300	378	-
		PRO	293	307	385	
		GI.V	303	318	397	
	-	CVS	305	320	399	
		PRO	306	321	400	
		LYS	310	325	404	
GLY: 7		2		h	c	
CYS	5		-			-
PRO: 5		CVS-64	CV	5-60		
LYS: 2		CVS-76	CV	5-72	2	
THR	: 1		010 10			
GLU	: 1	_	CVS- 5	2 . T.V	S- 45.	
ALA:	: 1		CVS-27	7 (14	P-293)	?
PHE :	: 1		010 21	A	235	

Model flu-b HA1 structure

TT 40 QDLPGNDNST ATLCLGHHAV PNGTLVKTIT DDQIEVTNAT ELVQSSSTGK I...... DRICTGITSS NSPHVVKTAT QGEVNVTOVI PLTTTPTKSH FEK IKICLOKOVN SSFSLHNGFG GNLY.ATEEK RMFELV.KPK AGASVLNOST 6.00 WIGFGDSRTD KSNSAFPRSA DVSAKTADKF RFLSG..... GSLMLSM FGPPGKV.DY 60 70 80 100 80 90 100 110 120 FONETW..DL FVE....RSK AFSNCYP..Y DVPD.YASLR SLVASSG.....TLEFITE TPSAKV..SI LHE....VKP ATSOCFPIMH DRTK.IRQLP NLLRGYE.....NIRLSTS LYQGCGKHKV FYRGVNMSPH AAINCYR..K NWTDIKLNFQ KNIYELASQS HCMSLVNALD 110 120 130 140 150 130 140 150 160 GFTWT..... GVTQNGGSNA CKR.GPGSGF NVINTETAPG GPTRVGTSGS CPNVANGNGF FNTMAWVIPK DN....NKT AINPVTVEVP KTIPL..... QVT. ADTAGN CN.....NSF LKNPALYTQE VKPSENKCGK ENL...AFFT N...NDN.... .. FDKLYIWG IHHPSTNQEQ TSLYVQASGR VTVSTRRS.. QQT.IIPNIG YICSEG EDQITVWG FHSDDKTOME R.LYGDSNPQ KFTSSANG .. VTTHYVSQIG L. PTOFGTY ECKLHLVASC YFIYDSKEVY NKR. GCDNYF QVIYDSFGKV VGG.LDNRVS 240. SRPWV....RG L..SSRISIY WTIVKPGDVL VINSNCNLIA PRGY..FKMR TCKS..... GFPNQTEDED LKQSGRIVVD YMVQKPGKTG TIVYQRGILL PQKV..W.CA SGRS..... PYTGN...SD D. TPTMQCD MLQLKPGRYS VRSSPRFLLM PERSYCFDMK EKGPVTAVQS 270 280 290 300 310 SINRSDAPI. DTCISECITP KVIKOSLPL. IGEADCLHE IWGKGRESDY AVDOACLSTP GCMLIOKOKP YIGEADDHHG DOEMRELLSG LDYEARCISO N.GSIPNDKP FONVN..KI. TYGACPKYVK ONTIKLATGM RNVPEKOT KYGGINKSKP YYTGE..HAK AIGNCPIWVK .TPIKLANGT KYRPPAKILK E S.GWVNETSP FTEKYLLPP. KFGRCPLAAK .EESIPKIPD GLLIPTSGTD TTVTKPKS

Model validation

- Good stereochemistry (procheck) ?
- Functionality of HA1 -- binding of the sialic acid?
- Can the model accommodates naturally occurring deletions/insertions?
- Supporting observed mutations?

Quality of the model

- Bonds.
- Van der waal contacts.
- Main-chain torsional angles (ϕ, ψ) .

98% in the combined core and allowed regions, none in the disallowed region.

naturally occurring deletions/insertions

white: homology modeled magenta: loop modeled; yellow: 1 aa deletion cyan: 2 aa deletion; red: 1 aa insertion

Residue 269

- A signature of the sublineages
- "Pro" in Yamagata sublineage.
- "Ser" in Victoria sublineage.
- "Pro" to "Ser" is a non-conservative change.

changes involves both charge (neutral to polar) and size ("Ser" is larger).

1 nucleotide change

- PRO: CCU, CCC, CCA, CCG
- SER: Ucu, Ucc, Uca, Ucg THR: Acu, Acc, Aca, Acg ALA: Gcu, Gcc, Gca, Gcg
- LEU: CUu, CUC, CUa, CUg HIS: CAu, CAC GLN: CAa, CAg ARG: CGu, CGc, CGa, CGg

Different amino acid types at 269

T-269 interfere with G-198 and E-199. Therefore, Thr, Leu, His, Gln or Arg are all unfavorable at this position.

Both Ser and Ala are smaller than Pro, lost some favorable contacts

Receptor binding

A/Aichi/2/68

B/Lee/40

Receptor binding (continue)

Background:

- Structural motifs are functionally relevant.
- Folds are preserved, binding interfaces are shared among proteins in the same family.
- Structures of interacting molecules can be modeled computationally with reasonable accuracy.
- Predictions can be tested experimentally.
- Experimental results can be used to refine structural models.

Things to look for

- Type of binding surface: dimers, trimers, tetramers, etc.
- Specifics in binding:

H-bonds, ion pairs, hydrophobic interactions, shape, etc.

• Interface surface area:

correlates to binding strength.

Toll-like receptor (TLR)

- Part of our innate immune system.
- Pattern recognition receptors that recognize molecules that are broadly shared by pathogens.
- Presents in vertebrates and invertebrates.
- 13 mammalian toll-like receptor families.
- First human toll-like receptor was described by Nomura et al., in 1994.

Signaling pathway of toll-like receptor

Toll like receptor

- Dunne and O'Neill <u>www.stke.org/cgi/content/full/sigtrnas;2003</u> /171/re3.
- Takeda, et el., 2003 Annu Rev Immunol 21: 335-376.
- http://en.wikipedia.org/wiki/Tolllike_receptor

Structure of TLR

Death domain (DD)

Greek key fold

Pelle DD

DD is a structural motif

	pelle	tube	card	procaspace	mus-irak-4
pelle	0.00	1.24	2.06	2.12	1.21
tube	17.3% (5.3%)	0.00	1.98	1.93	0.90
card	14.6% (7.1%)	17.8% (6.9%)	0.00	1.11	2.20
procaspace	20.2% (8.9%)	18.5% (7.3%)	19.4% (18.4%)	0.00	2.19
mus-irak-4					0.00

crystal contacts

6-mer model

a,b,c being IRAK-1 DD; d,e,f being MyD88 DD

F-56-N mutation prevents dimerization of MyD88 DD. (Burns et al., 1998)

F-56-N mutation

Loss 125 $Å^2$ of interface area due to mutation.

TIR: Toll/Interleukin-1 receptor domain

 $\beta - \alpha$ folds

Interface area

MyD88 TIR 4-mer

Interface areas

A-B: 1345 Å² A-C: 540 Å² B-D: 638 Å² C-D: 1116 Å²

Ectodomain of TLR

LRR motif (24 residues)

$xL^{2}xxL^{5}xL^{7}xxN^{10}xxL^{15}xxxxF^{20}xxL^{23}x$

L represents obligate hydrophobic residues including: isoleucine, valine, methionine, and phenylalanine;

F is a conserved phenylalanine;

N is a conserved asparagine

19-25 tandem copies of LRRs in human TLRs

Ectodomain of TLR-3

Choe et al., 2005 Bell et al., 2005

23 LRRs Horseshoe shaped

Receptor-ligand interactions

- Using a multiscale docking procedure to develop TLR3 ectodomains/ds RNA structural complex.
- Interface surface area for TLR3 ectodomain dimer is small (~600 Å²).
- Ligand binding increase the stability of the receptor dimer?

TLR3 ectodomain dimer + dsRNA

Modeling TLR4 ectodomain

- Structure of TLR3 ectodomain is known.
- Sequence identity between TLR3 and TLR4 ectodomains is low (26%).
- Due to LRR motifs, a structure-based alignment can be used to align the two sequences.

Structure-based alignment

OOL BOL DWORNBLOWLEDEL OOL			120 1 TEAE	140 140	
SQLTSLDVGFNTISKLEFELCQ	STKNLDLS	2FNPL SQLSDF	SFESTPELOVI	DISECTOTIED	GAYOSI,SHI,STLTI
	55 60	70	80	90	100 11
160 170 SHNGLSSTKLGTQVQLENLQEL	180 LLSNNKIQALI	190 KSEELDIFANS	200 SLKKLELSSN-	210 22 QIKEFSPGCFHA	0 230 IGRLFGLFLNN
TGNPIQSLALGAFSGLSSLQKL	VAVETNLAS	SLENFPIGHL	TLKELNVAHNI	IQSFKLPEYFSN	LINLEHLDLSS
0 120 130	140	5 150	160	170	180
240 250	260	270	280	290	300
VQL GPSL TEKL CLELANTS IRN NKI-OSIYCTDLRVL HOMPLLN	LSLSNSQUSTI LSLDLSL-NPN	ISNTTFLGLKV MNFIOPGAFKE	VINLTMLDLSYN CIRLHKLTLRNN	FDSLNVMKTCIO	FAWLFQLEY GLAGIEVHR
190 200 [~]	210	220	230	240 2	50
.310 320 .	330	340	350	. 360 . 3	370 38
FFLEYN-NIQHLFSHSLHGLFN	VRYLNLKRSFT	rkõsistysti	KIDDFSFQWL	CLEHLNMEDNDI	PGIKSNMFTGLI
LVLGEFRNEGNLEKFDKSALEG	LCNLTIEEFRI 0 290	LAYLDYYI	DDIIDLFNCLJ 300 3	NVSSFSLVSV 10 3:	TIERVKDFSYNE 20 330
0 39 <u>0</u> 400 NI.KYI.SI.SNSFTSIRTI.TNETE	410 VSLAHSPLHTI	420 420	430 ESDAFSWLOHI		450 OELTGOEWRGL
GWQHLELVNGKFGQF	PTLKLESLKRI	LTFTSNKGO	NAFSEVDLESI	EFLDLSRNGISF	KGCCSQSDFGT
340	350	360 '	370 .	380	390 4
460 470	480 4	490 5	00 51	.0 ,520	530
ENIFEIYLSYNKYLQLTRNSFAL	LVFSLQRLML	REVALKNVDSS	SPSPFQPLFNLI	ILDLSNNNIANI	NDDMLEGLEKLEIL
00 410 420) 460	470
540550 ! DLOHNNLARLWKHANPGGPIYFI	560 LKGLSHLHILI	570 5 NLESNGFDEIB	80 59 VEVFKDIFELF	0 600	610 PASVFNNOVSL
KMAGNSFQENFLPDI	FTELFNLTFLI	DISÖdÖFEÖF8	PTAFNSISSLÇ	QVL NMSHNNFFSL	DTFPYKCLNSL
480 490	500	510	520	530	540
620 630	640	650			
KSLNLOKNI ITSVEKKVFGPAF	NLTELDMRFI	NPFDCTCESIA	WFVNWINETHI	NIPELSSHYLCN	TPPHYHGFPVRLFD
550 560 5'	70 58	аргастсьн <u>о</u> а 30 59)Ο Στηδωτυρδκότ	ILVEVENMECATP:	SPUĞGUL ADSTULI.

TLR-4 ectodomain

