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Outline

Methods for structural determination/modeling.
- computational approaches.

- homology modeling.

- an example (what, why, how, things learned).
Applied to signaling protens.

- toll-like receptors.

- what can structural modeling do/help?




Ways to determine protein
structures

X-ray crystallography

NMR

Cryo EM

L ow-resolution methods (SAXS, Neutron)
Computational (in silico) prediction



Protein folding prediction

e From sequence to 3-D structure
e abinitio

- conformational sampling

- target function (potential energy, €tc)
e Knowledge based

- homology modeling

- threading



Protein folding prediction (continue)

ab initio - classical.
- 30 years of works (Scheraga, Karplus, Levitt,
etc)

- many software developed: CHARMM, AMBER,
GROMOS, NAMD, etc)

- capable of predicting structures of small
proteins.



Protein folding prediction (continue)

knowledge-based, homology modeling

- proteins with similar sequence/function fold into
smilar folds.

- the accuracy is approaching mid-resolution
crystal.

- Independent of protein size.
- easy and straight-forward.

- many software available (modeller, swiss-prot,
etc).



Homology modeling
(Comparative modeling)

The target protein needs to have >30% sequence identity
with template protein(s) of known structure(s).

Accurate sequence alignment is crucial for the success of
the model structure.

Structural comparison using root-mean-square-deviation
(RMSD) metric as a measure between two structures.

a typical model has ~2 A agreement between the matched
C, atoms at 70% sequence identity.

More info In:
http://en.wikipedia.org/wiki/Homology modeling



Can homology modeling works
with low sequence identity?

e Tramontano (1998), Methods. A companion
to Methods in Enzymology 14: 293-300.

 Tung, et al., (2004) J Gen Virol 85: 3249-
3259.



Hemagglutinin (HA)

« Surface glycoprotein (aka membrane fusion
protein, envelope protein), has two components
(HA1, HA?2) linked by disulfide bond.

e Thefunctiona unitisatrimer.

* HA binds to receptor of the host cell and
Initiates membrane fusion.

o Structurally, influenza HA 1s best studied and
served as a model system for understanding
membrane fusion between virus and host cell.



HA (continue)

Crystal structure of influenza-a HA was solved in
the 70s.

Crystal structure of influenza-c HA/NA fusion
protein was solved in 1998.

Structure of influenza-b HA 1s not known.

To model the structure of the influenza-b HA
using a knowledge-based approach.

Pair-wise sequence identities between HAs from
flu-a, flu-b, flu-c are all under 20%.

Using structural alignment of HA from flu-a and
flu-c, added sequence of HA from flu-b to produce
a 3-way alignment.



3-way
alignment



23 conserved
residues



Model flu-b HA 1 structure






Model validation

Good stereochemistry (procheck) ?

Functionality of HA1 -- binding of the sialic
acid?

Can the model accommodates naturally
occurring deletions/insertions?

Supporting observed mutations?



Quality of the model

 Bonds.
* VVan der waal contacts.
 Man-chain torsional angles (¢, ).

98% in the combined core and allowed regions,
none in the disallowed region.






Residue 269

A signature of the sublineages
“Pro” In Y amagata sublineage.
“Ser” 1n Victoria sublineage.

“Pro” to “Ser” 1s anon-conservative
change.

changes involves both charge (neutral to polar)
and size (“Ser” islarger).



1 nucleotide change

PRO:

SER:
THR:
ALA:

LEU:
HIS:
GLN:
ARG:

CCu, CCC, CCA, CCG

Ucu,
Acu,
Gcu,

cUu,
CAu,

cGu,

Ucc,
Acc,
Gcc,

cUc,
CAcC

cGc,

Uca,
Aca,
Gca,

cUa,

cAa,
cGa,

Ucg
Acg
Gcg

cUg

CAg
cGg



Different amino acid types at 269



T-269 interfere with
(G-198 and E-1909.
Therefore, Thr, Leu,
His, Glnor Arg are
all unfavorable at
this position.

<«



Both Ser and Ala
are smaller than
Pro, lost some
favorable contacts



A H-bond between S-
<+“— 269 and E-197
stabilizes the structure



Receptor binding

A/Aichi/2/68 B/Lee/40



Receptor binding (continue)

Gray: A/Aichi/2/68
Cyan: B/Lee/40



Background:

Structural motifs are functionally relevant.

Folds are preserved, binding interfaces are
shared among proteins in the same family.

Structures of interacting molecules can be
modeled computationally with reasonable
accuracy.

Predictions can be tested experimentally.

Experimental results can be used to refine
structural models.



Thingsto look for

e Type of binding surface:
dimers, trimers, tetramers, etc.
e Specificsin binding:
H-bonds, ion pairs, hydrophobic interactions, shape, etc.
* Interface surface area:
correlates to binding strength.



Toll-like receptor (TLR)

Part of our innate Immune system.

Pattern recognition receptors that recognize
molecules that are broadly shared by
pathogens.

Presents in vertebrates and invertebrates.
13 mammalian toll-like receptor families.

First human toll-like receptor was described
by Nomuraet al., in 1994,



Signaling pathway of toll-like receptor



Toll like receptor

e Dunne and O’ Nelill

www.stke.org/cgi/content/full/sigtrnas; 2003
[171/re3.

e Takeda, et ., 2003 Annu Rev | mmmunol
21: 335-376.

 http://en.wikipedia.org/wiki/Toll-
like receptor




Structureof TLR

Ectodomain
(LRRS)

™

TIR Bell et al., 2003



«—— MyD88
TIR (DD, TIR)

(Adaptor molecules)

\ IRAK



Death domain (DD)

Pelle DD

Greek key fold



DD isastructural motif

pelle tube card procaspace | mus-irak-4
pelle 0.00 124 2.06 212 121
tube 17.3% 0.00 1.98 193 0.90
(5.3%)
card 14.6% 17.8% 0.00 1.11 2.20
(7.1%) (6.9%)
20.2% 18.5% 19.4%
procaspace (8.9%) (7.3%) (18.4%) 0.00 2.19
mus-irak-4 0.00




crystal contacts



3-mer model



6-mer model

a,b,c being IRAK-1DD; d,e,f being MyD88 DD



oligomers




F-56-N mutation prevents dimerization
of MyD88 DD. Bunsetal., 1998)



F-56-N mutation

L oss 125 A2 of interface area due to mutation.



TIR: Tol/nterleukin-1 receptor domain

B—o. folds



|nterface area

S-4388



MyD88 TIR 4-mer



|Nterface areas

A-B: 1345 AZ
A-C: 540 A2
B-D: 638 A2
C-D: 1116 A2



Ectodoman of TLR

N

LRR motifs



L RR motif (24 residues)

XL 2 XL 2X L "X N 0L Poxxxx F2Ox x L 23x

L represents obligate hydrophobic residues including:
Isoleucine, valine, methionine, and phenylaanine;

F isaconserved phenylaanine;

N is aconserved asparagine
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19-25 tandem copies of LRRsin human TLRs



Ectodomain of TLR-3

Choe et al., 2005
Bell et al., 2005

23 LRRs
Horseshoe shaped



Receptor-ligand interactions

« Using a multiscale docking procedure to
develop TLR3 ectodomains/ds RNA
structural complex.

e |nterface surface areafor TLR3 ectodomain
dimer is small (~600 A2).

 Ligand binding increase the stability of the
receptor dimer?



TLR3 ectodomain dimer + dsRNA



Modeling TLR4 ectodomain

e Structure of TLR3 ectodomain is known.

e Sequence identity between TLR3 and TLR4
ectodomains islow (26%).

 Dueto LRR moitifs, a structure-based
alignment can be used to align the two
seguences.



Structure-based alignment
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TLR-4
ectodomain



(Bell et al., 2003)



