

NTP Mold Studies Update

Board of Scientific Counselors Meeting December 6, 2007

Dori Germolec, Ph.D. Toxicology Branch National Institute of Environmental Health Sciences

Fungi Are Ubiquitous

images from Airborne Allergens CD

Why Study Mold?

Why Study Mold?

Exposure to elevated levels of indoor mold has been associated with a number of symptoms:

Allergies, asthma, hives, bleeding lungs, cancer, CNS problems, recurring colds, chronic cough, dandruff (chronic), dermatitis, skin rashes, diarrhea, eye/vision problems, fatigue, general malaise, flu-like symptoms, sudden hair loss, headaches, hemorrhagic pneumonitis, hypersensitivity pneumonitis, irritability, itching, kidney failure, learning difficulties, mental dysfunction, personality changes, memory loss.....

Institute of Medicine Report

- Sufficient evidence of an association between exposure to damp indoor environments and some respiratory health outcomes in sensitized persons.
- Suggestive evidence of an association between damp indoor environments and respiratory illness in otherwise healthy children. Not clear if related to mold, bacteria, dust mites, cockroaches, or a combination thereof.
- Insufficient evidence to determine whether damp environments are related to a variety of health outcomes.
 - Including any association with *Stachybotrys chartarum*
- Many Data Gaps Identified
 - Neurotoxicity
 - Rheumatic diseases
 - Reproductive effects
 - Cardiopulmonary

Damp Indoor Spaces and Health, The National Academy of Sciences (2004)

Clinical Aspects of Fungal Toxicity - Many Uncertainties

- Measurement of exposure to fungal allergens has been restricted to the spores of a select number of fungi
- The potential of different fungi or fragments to cause or aggravate adverse health effects remains unclear
- Relationship between fungal exposures and clinical outcomes often unclear

- Molds were nominated for study by a private individual
 - No specific organisms, endpoints, or health effects were suggested
- Nomination has been through multiple levels of internal and external review
 - NTP BSC and Executive committee 2004
 - Endorsed study of molds and suggested that the program consider studying organisms commonly found in indoor air (i.e. Aspergillus and Penicillium) as well as Stachybotrys
 - NTP Concept review 2006
 - Solicit expert input on how to conduct large scale "real-life" exposure rodent studies and the toxicological endpoints to be measured
 - Explore the feasibility of conducting studies of "real-life" exposure scenarios to mimic the conditions found in damp or water-damaged buildings

Even early in the process there was considerable debate on what to study and how to study it

- Our goal for the meeting was to obtain input from scientists with expertise in studying molds to assist the NTP in the design and conduct of animal toxicity studies
- NTP's studies on mold would employ exposure scenarios that closely mimic real world human exposure circumstances to
 - Reveal the range of biological responses in common laboratory animal models
 - Identify potential hazards to human health

- Chemical or metabolite to be tested
 - ~ 1.5 million species exist, $\sim 80,000$ species described
- Route of exposure
 - Mostly inhalation, but also ingestion and dermal
- Species/strain/gender
- Age
 - Susceptible populations

- Whole organism versus isolated fractions or toxins
- Growing conditions
 - Temperature, humidity, substrate
- Life stages
 - Spores, age of culture
- Physical and chemical properties vary with life stages and growing conditions

- Use single organisms as well as molds co-cultured on different building materials
 - High humidity scenario, saturation scenario, fresh isolates of single species
- Define growth stage and harvest and dry for use in the entire study
 - Characterize samples with respect to mycotoxins, glucans, allergens, particle size, protease activity, colony forming units, spores.
 - Methods development or validation may be needed for some aspects of characterization
- Evaluate biomarkers appropriate for the strains of fungi being used
 - Host antibodies, fungal products, protein adducts, and metabolites in host tissues
 - Tissue burden and distribution
- Inhalation models are appropriate
 - Ancillary studies can address susceptible populations or specific endpoints

All participants felt that exposing animals to a moldy environment and examining whether there are adverse effects would be an important study to conduct

Path Forward

- Specific Aims
 - Assess organ system toxicity following inhalation exposure to molds
 - Evaluate the available biomarkers of exposure and effect (both general and specific for the organisms to be studied)
 - Evaluate the contribution of different organisms to overall health effects by studying individual isolates as well as mixtures

- Proposed Approach
 - Conduct subchronic studies in rodents using inhalation as the route of exposure
 - Test two mixtures to simulate real life exposure scenarios
 - Mixed culture of molds from a water damaged building from New Orleans, Louisiana
 - Mixed culture of molds from a damp building with reported health effects (sick-building syndrome)
 - Test four isolates of individual organisms

- Proposed Approach
 - Test four isolates of individual organisms
 - Stachybotrys chartarum isolate 1 (macrocyclic tricothecene chemotype)
 - Stachybotrys chartarum isolate 2 (atranone chemotype)
 - Greenish-black fungus found worldwide
 - Colonizes high-cellulose material that becomes chronically moist or water damaged due to excessive humidity, water leaks, condensation or flooding
 - Aspergillus versicolor
 - Common on gypsum board, floor, carpet, mattress and upholstered-furniture dust, and damp walls.
 - Alternaria alternata
 - Commonly isolated from plants, soil, food, and indoor air environment
 - Important in allergy, infection and asthma severity

- Endpoints for subchronic toxicity studies
 - Characterize the test materials both prior to and during the studies
 - Evaluate relevant mycotoxins, glucans, allergens, particle size, protease activity, colony-forming units, spores, and endotoxin levels)
 - Develop and validate methods; this may be accomplished using existing analytical chemistry contracts
 - Evaluate neurotoxicity using a functional observation battery, olfactory sensing, and cognitive tests
 - Examine impact on cardiovascular, respiratory, gastrointestinal, and immune systems

Significance and Expected Outcomes

- These studies will provide important information regarding:
 - Which fungal organisms may be causative agents for human health effects
 - Target organs for fungal toxicity
 - Dose-dependent effects with particular emphasis on respiratory, immune, and neurologic endpoints
 - The utility of biomarkers other than IgE as measures of exposure and effect

- Rodent studies will provide information on additional clinical measures or outcomes that should be examined in epidemiologic studies
- Information from clinical collaborations will be used to develop biomarkers of exposure and effect for the NTP rodent studies

Clinical Collaboration - Heading off Environmental Asthma in Louisiana (HEAL) Study

- Primary objective is to implement and test an Asthma Counselor (AC) program that addresses the multidimensional impact of hurricane Katrina on children with asthma in New Orleans
 - Is there an increase in allergens due to moisture? mold, cockroaches, dust mites, etc.
 - What is the impact of the disrupted health care system?
 - What is the effect of stress?

HEAL Study Design - 1

- Randomized one-year intervention
- Subjects 450 children (4-12 years old) with moderate to severe asthma and their caregivers
 - Must have previous asthma diagnosis
- Endpoints
 - Symptoms
 - wheezing, disrupted sleep, slow down or discontinue physical activity due to asthma
 - Biological Measures
 - Spirometry and peak flow measures, quality of life, asthma medication use, unscheduled clinic or ED visits, hospitalizations, biomarkers of exposure
 - Environmental Measures
 - Baseline levels of molds and other allergens
 - Moisture and humidity

HEAL Study Design - 2

- Clinical Evaluation
 - History, physical examination and questionnaire
 - Pulmonary function testing
 - Skin prick allergen testing (expanded mold panel)
 - Blood draw CBC, total IgE and allergen specific IgE, genetic archiving
- Environmental evaluations
 - Visual inspection, air, dust and HEPA filter sampling
 - Mold, moisture, allergens

HEAL Study - NTP (NIEHS/NIOSH) Collaboration

- Total IgE
- Allergen Specific IgE
 - Specific allergen reactivity in patients with atopic dermatitis dust mite, cockroach, cat, dog, rat, mouse
 - Mixed mold screening panel Penicillium notatum, Cladosporium herbarum, Aspergillus fumigates, Candida albicans, Alternaria alternata, and Helminthosporium halodes
 - Katrina specific mold evaluation
 - 4 molds from screening panel and 6 identified with increased prevalence post-Katrina (including Stachybotrys chartarum and Aspergillus versicolor)
 - All samples positive in mold mix screen to be tested
 - 50 mold mix negative
- Specific IgG
 - 4 Common molds

HEAL Study - Preliminary Results

- Total IgE 60/87 (69%) subjects tested to date have elevated IgE (>100 kU/L)
- Allergen Specific IgE
 - Mixed mold screening panel
 - 39/87 (45%) subjects had a positive ImmunoCap test to the mixed mold screening panel
 - Katrina specific mold evaluation
 - Of the 39 positive samples, reactivity to eight individual molds was high and ranged from 77% to 94% (*Alternaria alternata*). Reactivity to 2 of the molds, *Aspergillus niger* and *Chaetomium globosum* was low at approximately 15%.

images from: Airborne Allergens CD Hjelmroos, Benyon, Culliver, Jones & Tovey