PLANT MONITORING REPORT METRO GREENSPACES SITES PORTLAND, OREGON

Prepared for:
Metro Regional Parks and Greenspaces 600 NE Grand Ave. Portland, Or 97232-2736

Prepared by:
Adolfson Associates, Inc. 333 SW 5 ${ }^{\text {th }}$ Ave., Suite 600 Portland, Oregon 97204
[Note: This study was funded, in part, by a Greenspaces grant sponsored by the U.S. Fish and Wildlife Service and Metro.]

EXECUTIVE SUMMARY

Adolfson Associates, Inc. (Adolfson) was contracted by Metro Regional Parks and Greenspaces (Metro) to perform botanical monitoring of four Metro greenspaces: Cooper Mountain ($190^{\text {th }}$ and Kemmer Rd.), Multnomah Channel (Along Multnomah Channel, HWY 30, just north of Logie Trail Rd.), Coffee Lake Bottoms/Tonquin Geologic Area (Along south edge of Grahams Ferry Rd.), and Banks (Along HWY 6 west of Banks, OR).

At Cooper Mountain, 30 diagnostic species were identified by Metro for monitoring. Five macroplots were selected and marked in the field by Metro, and 80 transects within these macroplots were sampled using the nested frequency approach. Monitoring occurred in 2002 on six days in May and June. Data indicate that burning may increase species diversity.

At Multnomah Channel, 30 diagnostic species were identified by Metro for monitoring and additional species encountered were recorded on data sheets. Metro selected sixteen 50-meter transects within each of three flood zones and marked them in the field. Monitoring occurred on July 25 and August 16, 2002, allowing for water levels to be drawn down in the deeper flooded areas. The point-intercept approach was used to estimate aerial herbaceous cover along the permanent plant transects. Transects were largely dominated by reed canarygrass (Phalaris arundinacea). Transects that were flooded later in the growing season had higher species diversity, indicating that flooding may decrease the presence of reed canarygrass and allow other species to establish. More data are needed to establish this or any other trend.

At Coffee Lake Bottoms, 15 diagnostic species were identified by Metro for monitoring and additional species encountered were recorded on data sheets. Metro selected eight 50-meter transects in the Texas Oil macroplot and four 50-meter transects in the Wetland Conservancy macroplot and marked them in the field. Monitoring occurred on July 5, 2002. The pointintercept approach was used to estimate aerial herbaceous cover along the permanent plant transects. The Texas Oil transects at Coffee Lake Bottoms were largely dominated by reed canarygrass. The Wetland Conservancy transects at Coffee Lake Bottoms were largely dominated by meadow foxtail (Alopecurus pratensis). Management in these areas should focus on reducing these dominant non-native species to allow others to establish.

A combination of methods was used to sample the vegetation at the Banks site. Point-intercept sampling was conducted along 4 transects within a 20 acre wetland north of Cedar Canyon Rd. (Cedar Canyon transects). These transects all revealed monocultures of reed canarygrass. In addition, two types of vegetative cover sampling focused on targeted native and exotic vegetation occurring within a flooded scrub-shrub wetland, in two $50 \mathrm{~m} \times 50 \mathrm{~m}$ macroplots located along HWY 6. One area was dominated by Geyer willow (Salix geyeranii) (Willow Plot), and another area was dominated by reed canarygrass and other emergent vegetation (Herbaceous Plot).

In the Willow Plot, the data did not reveal a specific trend. More data are needed to establish any correlation. The Herbaceous transects (0.7 to 0.8 meters average water depth) were dominated by reed canarygrass.

TABLE OF CONTENTS

EXECUTIVE SUMMARY
PROJECT AUTHORIZATION AND SCOPE OF WORK 1
Phase I 1
Phase II 1
PROJECT DESCRIPTION 2
Cooper Mountain 2
Multnomah Channel 2
Coffee Lake Bottoms 2
Banks 3
METHODS 3
Cooper Mountain 3
Multnomah Channel 4
Coffee Lake Bottoms 5
Banks 5
Cedar Canyon Transects 5
Willow Plot 6
Herbaceous Plot 6
RESULTS 7
Cooper Mountain 7
Multnomah Channel 7
Coffee Lake Bottoms 7
Banks 8
CONCLUSIONS 8
Cooper Mountain 8
Multnomah Channel 8
Coffee Lake Bottoms 8
Banks 9
REFERENCES 10
FIGURES AND TABLES 1
APPENDIX A: SCOPE OF WORK A-1
APPENDIX B: DIAGNOSTIC SPECIES LISTS B-1
APPENDIX C: DATA SHEETS C-1

LIST OF FIGURES

Figure 1. Cooper Mountain Macroplots
Figure 2. Multnomah Channel Flood Zones and Transects
Figure 3. Coffee Lake Transects
Figure 4. Banks Study Areas
Figure 5. Nested Frequency Square Diagram
Figure 6. Cooper Mountain Species Diversity
Figure 7. Multnomah Channel Species Diversity
Figure 8. Water Depth Versus Species Diversity
Figure 9. Willow Cover Versus Water Depth

LIST OF TABLES

Table 1. Cooper Mountain Macroplots
Table 2. Cooper Mountain Average Species Diversity (H)
Table 3. One-way Analysis of Variance (Minitab Release 13.32)
Table 4. Percent Cover and Species Diversity for Multnomah Channel Transects
Table 5. Percent Cover of Diagnostic Species on Texas Oil Transects, Coffee Lake Bottoms
Table 6. Percent Cover of Diagnostic Species on Wetland Conservancy Transects, Coffee Lake Bottoms
Table 7. Percent Cover, Species Diversity, and Water Depth of Willow Transects, Banks
Table 8. Percent Cover, Species Diversity, and Average Water Depth of Herbaceous Transects, Banks

PROJECT AUTHORIZATION AND SCOPE OF WORK

Adolfson Associates, Inc. (Adolfson) was contracted by Metro Parks, Trails, and Greenspaces (Metro) to perform botanical monitoring of four Metro greenspaces:

1. Cooper Mountain ($190^{\text {th }}$ and Kemmer Rd.);
2. Coffee Lake Bottoms/Tonquin Geologic Area (Along south edge of Grahams Ferry Rd.);
3. Multnomah Channel (Along Multnomah Channel, HWY 30, just north of Logie Trail Rd.); and
4. Banks (Along HWY 6 west of Banks, OR).

The project was conducted in two phases as described below.

Phase I

During Phase I, Adolfson worked collaboratively with Metro to refine sampling protocols (e.g., diagnostic species lists, transect locations, sampling methodology) for the project. Phase I was conducted from March 19, 2002 through April 1, 2002. Deliverables included the following:

1. Diagnostic Species Lists for each site. The Diagnostic Species List contained a list of plant species, typically including both desirable and invasive species, which Metro chose to monitor in order to evaluate the effects of management strategies and other variables on the plant community at each site. At sites with low species diversity, all species encountered were recorded instead of establishing a Diagnostic Species List. The final Diagnostic Species Lists for each site were developed by Metro. Adolfson contributed species recommendations for Multnomah Channel and Cooper Mountain.
2. Metro developed and provided to Adolfson a written plan describing detailed sampling methods (e.g., sampling approach, number of samples/sampling unit, sampling unit dimension (e.g., macroplot size, transect length) to be used at each site/sampling unit (Appendix A: Phase II Scope of Work).
3. Metro developed and provided to Adolfson maps of all sites identifying locations of sampling units.

Phase II

Phase II consisted of implementing the monitoring protocols for each Metro site tabulating the data and writing this report. All details of Phase II are included in Appendix A: Phase II Scope of Work, and are summarized in the methods section below. Phase II began in May 2002. Plant monitoring occurred by September 2002 at all locations except Banks, which was a late addition to the project. Monitoring at Banks finished at the end of October 2002. Report writing continued through December 2002. Deliverables for Phase II include the following:

1. Digital database files linked to GIS shapefiles. Metro agrees to provide the Contractor with either geographic coordinates of the transects or a shapefile containing the transect endpoints.
2. One Draft Plant Monitoring Report describing the fieldwork and the data collected.
3. One Final Plant Monitoring Report

PROJECT DESCRIPTION

The purpose of this monitoring project is to establish baseline data on the vegetation present at the selected sites. As the sites are managed in the future, Metro can collect additional data to compare to the baseline data. Comparisons between years will allow Metro to assess the effects of the management techniques that were employed.

In most cases, the data presented in this report provide baseline information that can be compared with subsequent years of sampling. In addition to the species diversity and percent cover analyses presented in this report, comparisons between the relative cover of native versus invasive species may further assist Metro’s planning.

Cooper Mountain

Portions of the Cooper Mountain site have been burned to manage plant communities. One area was burned in 1997 and a different, but overlapping area was burned in 2001 (Figure 1). Metro has specified monitoring vegetation within prairie habitats that had the following burn histories: 1) burned in 1997; 2) burned in 2001; 3) burned in both 1997 and 2001 ; and 4) areas that had not been burned in recent history. This plant monitoring will establish baseline data within the areas with different burn histories. These data can be compared to future monitoring data to evaluate the effects of past and future burning on prairie plant communities at the Cooper Mountain site.

Multnomah Channel

Metro is managing seasonal water levels within specific areas of the Multnomah Channel site (Figure 2). Baseline vegetation monitoring data are needed and can be compared to future monitoring data to evaluate the effects of different draw down timing on wetland plant communities.

Coffee Lake Bottoms

Baseline vegetation monitoring data are needed within wetland areas at Coffee Lake Bottoms (Figure 3). These data can be compared to future monitoring data to assess the effectiveness of future strategies for invasive species management.

Banks

Metro requested baseline vegetation monitoring data within two palustrine emergent plant communities and one Geyer willow (Salix geyeranii) dominated scrub-shrub wetland plant community (Figure 4). Future management strategies and the effects of variation in the depth and duration of flooding at the Banks site may be evaluated when the baseline data is compared to future monitoring data. In addition, unidentified stresses appear to be affecting the health and survival of Geyer willows at the site. Baseline data can be compared to future monitoring data to evaluate changes in the health and survival of Geyer willows. Baseline water depth information can be compared to future data to determine the effects of varying water levels on Geyer willow growth.

METHODS

Sampling began in May 2002. Plant monitoring continued through October 2002. The following outlines the sampling approaches used at each site.

Cooper Mountain

Thirty diagnostic species were selected by Metro for monitoring this site (Appendix B). Eight macroplots were identified and permanently marked in the field by Metro for plant monitoring. These plots have different burn histories (Table 1, Figure 1). Monitoring occurred on May 14, 23, 24, 27, 30, 31 and June 6, 2002. Adolfson staff visited the Cooper Mountain transects on these dates in order to coincide with the period when pale larkspur (Delphinium leucophaeum) is most visible.

Ten 25-meter transects were randomly located and permanently marked by Metro in each of 8 macroplots, totaling 80 transects. Adolfson collected nested-frequency data using a 1 -meter nested frequency frame provided by Metro. The nested frequency frame consisted of three square plots measuring $0.01 \mathrm{~m}^{2}, 0.1 \mathrm{~m}^{2}$, and $1.0 \mathrm{~m}^{2}$ (Figure 5). If a species was present in the smallest square it was scored as 1 , the middle square was scored as 2 , and if a species was only in the largest square it was scored as 3 (Figure 5). Data were recorded for the thirty diagnostic species as well as microhabitat categories (e.g., dry prairie, wet prairie, shallow soil/rocky substrate) for each frame (Appendix C).

Adolfson collected data for five nested frequency frames along each transect. A transect tape was stretched between the permanent markers, and the frames were sampled in a random/ systematic fashion. Random numbers were selected using an online random number generator (Haahr, 1999). After randomly selecting a starting position between 0 and 4, frames were placed in a systematic fashion every 5 meters. Thus, if 1 was randomly selected for transect \#1, the first frame was placed at position 1 followed by 4 more frames along the same transect at positions 6 , 11,16 , and 21.

In the Upper Prairie macroplot, transects were sampled from west to east. In all other macroplots, transects were sampled from the end nearest to Larkspur Lane toward the outer edge of the macroplot (i.e., macroplots on the east side of Larkspur Lane were sampled from east to west, and macroplots on the west side of Larkspur Lane were sampled from west to east). For all
transects, the nested frequency square was placed to the right of the transect tape, with the nested corner at the sampling position (e.g., if the starting position was at 3 meters, the nested corner of the square was placed at 3 meters, adjacent to the right edge of the tape) (Figure 5).

One of the five positions along each transect was randomly selected for future photo monitoring and two corners were marked with pin flags.

Many of the permanent markers used to locate the transects were not obviously marked with the correct transect number and were often difficult to locate in the dense vegetation. This lack of markings led to an error in sampling the 2001 macroplot. Transects $1,2,7,8,9$, and 10 were sampled using the correct methods. Transects $3,4,5$, and 6 were slightly skewed. These four transects were included in the data analysis for this report, but should be excluded when these data are compared to future monitoring results unless this transect layout is duplicated.

For each macroplot, Adolfson calculated frequency estimates of each target species as they occurred within each of the three nested plot sizes. The size of the plot influences the frequencies of target species detected. The larger the plot, the greater the probability that a target species will occur within the plot. If the frequency value for a given frame size is large, there is limited sensitivity to track increases in species frequency over time. If the frequency value for a given frame size is small, there is limited sensitivity to track decreases in species frequency over time. Nested frequency counts provide the flexibility of selecting the plot size that is most useful in analyzing changes over time. The way frequencies change between sampling periods may determine the appropriate frame size to analyze. If a species experiences a substantial decline, a large plot size with an initially high frequency estimate may be the appropriate one to analyze. Characteristics of a target species, such as size, also influence selection of a particular plot size for analysis. A plot size that is appropriate for one species may not be appropriate for another. The frequency estimate for each plot size is equal to the percentage of plots sampled in which the target species occurred (number of occurrences divided by number of plots sampled, multiplied by 100).

Adolfson also summarized the data for each transect by averaging the three frequency estimates corresponding to the three plot sizes. The summarized data were used in calculations of species diversity rather than choosing one plot size to represent all of the target species. The Shannon Index (H) of species diversity was calculated for all transects at Cooper Mountain (Rosenzweig, 1995). The frequency estimates for each plot size and the average frequency estimates are linked to the GIS database and presented in Appendix C.

Multnomah Channel

At this site, 30 diagnostic species were selected during Phase I for monitoring and additional species encountered were recorded on data sheets (Appendix B). Metro located sixteen 50-meter transects and marked them in the field (Figure 2). There were 6 transects in Flood Zone I (shallow flooding - areas of the floodplain between 10 and 12 ft AMSL), 6 transects in Flood Zone II (deep flooding - areas of the floodplain between 8 and 10 ft AMSL) and four transects within Flood Zones III (deepest flooding - areas of the floodplain below 8 ft AMSL). The flood zones are distinguished by the depth of flooding and the length of time standing water remains.

Monitoring occurred on July 25, 2002 in Flood Zones I and II and August 16, 2002 in Flood Zone III. The time between site visits allowed for water levels to naturally draw down in Flood Zone III, which was flooded until early August. The point-intercept approach was used to estimate aerial herbaceous cover along the permanent transects.

A starting point was randomly-determined between 0 and 4 meters for each transect as requested by Metro. Twenty regularly spaced point-intercept samples (1 sample every 2 meters) were recorded from each transect. The point-intercept sampling apparatus was provided by Metro and was a pole that approximately 2 meters long and 1.5 centimeters in diameter, with a surface area of 0.094 square meters. It was placed directly to the right of the transect tape. The apparatus was held perpendicular to the ground and any plant touching the device’s tip as it was slowly dropped to the ground surface was recorded on data sheets (Appendix C).

Coffee Lake Bottoms

At this site, 15 diagnostic species were selected during Phase I for monitoring (Appendix B). Metro marked the location of twelve 50-meter transects in the field (Figure 3). There were 8 transects established within two flood zones in the Texas Oil macroplot. Transects 1-4 were established in lower portions of the floodplain below 140 ft AMSL. Transects 5 - 8 were established in portions of the floodplain between 140 and 142 ft AMSL. Four transects were also established and monitored in the Wetland Conservancy macroplot. Monitoring occurred on July 5, 2002. The point-intercept approach was used to estimate aerial herbaceous cover along the permanent plant transects.

A starting point was randomly-determined between 0 and 4 meters for each transect. Twenty regularly spaced point-intercept samples (1 sample every 2 meters) were recorded from each transect. The point-intercept sampling apparatus provided by Metro was used and was placed directly to the right of the transect tape as described under Multnomah Channel above. (Data sheets are located in Appendix C).

Banks

A combination of methods was used to sample the vegetation at the Banks site. Point-intercept sampling was conducted along 4 transects within a 20 acre wetland north of Cedar Canyon Rd. (Figure 4). Within a flooded willow wetland, two types of vegetative cover sampling focused on targeted native and exotic vegetation. Sampling was confined to two 50-meter by 50-meter macroplots located within areas dominated by Geyer willow (Figure 4) and reed canarygrass (Phalaris arundinacea) and other emergent vegetation (Figure 4) along HWY 6.

Cedar Canyon Transects

The Cedar Canyon transects were surveyed on August 20, 2002 using point-intercept sampling along 50-meter transects. No diagnostic species were selected for monitoring. Instead, all species encountered were recorded on data sheets (Appendix C). Metro marked four 50-meter transects in the field.

Point-intercept sampling methods follow those described above for Multnomah Channel. Data sheets are located in Appendix C.

Willow Plot

The Willow Plot was sampled on October 22 and 23, 2002, using the line-intercept approach. Because of the difficulty of moving through this plot, sampling was limited to four 50-meter transects. The transects began along the south boundary of the plot and ran north. The first transect, was located by randomly selecting a number between 1 and 20 (2) and starting the transect that many meters east of the SW corner post (2 meters). The other 3 transects were located 15,30 , and 45 meters east of the $1^{\text {st }}$ transect.

At Metro’s request, the transects were sampled in 10-meter segments, and PVC posts were installed every 10 -meters as sampling proceeded, using tape measure and compass to lay the line.

All live vegetation visible above the water surface was measured along the transects (i.e., submerged aquatic vegetation was not sampled). A pole, or pole and optical device, was used to accurately determine the extent of canopy intercept along the transects. Intercept information was collected for shrubs and herbaceous vegetation that intercepted the line for more than five contiguous centimeters. Water depth was measured along the transect every 2 meters, beginning at 0 meters.

Herbaceous Plot

The Herbaceous Plot was sampled on October 24, 2002, using the point-intercept approach. Samples were collected along four 50 -meter transects. The transects began along the south boundary of the plot and ran north. The first transect was located by randomly selecting a number between 1 and 10 (6) and starting the transect that many meters east of the SW plot post (6 meters). The other 3 transects were located 10, 20, and 30 meters east of the $1^{\text {st }}$ transect.

Because of the difficulty moving through the plot, transects were sampled in two 20-meter sections followed by one 10 -meter section. PVC posts were installed every 20 meters as sampling proceeded, and one was installed at the end of the transect.

All live vegetation visible above the water surface was measured along the four transects (i.e., submerged aquatic vegetation was not sampled). Intercept information was collected for all vegetation. Samples began along each transect with a random start within the first 3 m of the beginning of the transect (e.g., $0 \mathrm{~m}, 1 \mathrm{~m}, 2 \mathrm{~m}$, or 3 m from segment posts) and then every 2 meters after until 20 samples were collected from that transect. This yielded a total of 20 samples per 50 -meter transect. Water depth was measured along the transects at the point-intercept sample locations.

RESULTS

The following reports the results of data analysis for all sites. Species diversity (H) was calculated for Cooper Mountain and Multnomah Channel transects. Species diversity was not calculated for other transects due to the low number of species present (often less than five).

Cooper Mountain

The average species diversity (H) of macroplots at Cooper Mountain was calculated (Table 2, Figure 6). Average H of the 1997/01-I macroplot was significantly greater ($\mathrm{p}<0.001$) than the averages of all other macroplots (ANOVA; Minitab Release 13.32). Average H of the 1997/01II macroplot was significantly lower than the averages of all other macroplots (ANOVA; Minitab Release 13.32). An analysis of variance for all plots against each other is shown in Table 3.

California oatgrass (Danthonia californica) was included on the diagnostic species list. Hitchcock and Chase (1971) describe the species as having glabrous leaf sheaths. However, Hickman (1993) identifies two varieties of California oatgrass, one of which (Danthonia californica var. americana) has densely hairy leaf sheaths. Adolfson followed the convention established by Hitchcock and Chase (1971) for identification of the species and thus did not record the presence of California oatgrass within the Cooper Mountian nested frequency counts. It was later discovered that Danthonia californica var. americana as described by Hickman (1993) was present within the Cooper Mountain macroplots. If Danthonia californica var. americana is included on future diagnostic species lists, it should be considered to have been omitted from the 2002 list.

Multnomah Channel

The Multnomah Channel transects were largely dominated by reed canarygrass (Table 4). Other common species included common spikerush (Eleocharis palustris) and Columbia sedge (Carex aperta). Transects 1, 14, and 16 had the highest species diversity (H) (Table 4, Figure 7). Transects 9 and 12 had species diversities less than 0.2 . Transects 2 and 7 had species diversities of 0 ; these two transects were monocultures of reed canarygrass.

Coffee Lake Bottoms

Seven of the 15 diagnostic species were found while sampling the Texas Oil transects at Coffee Lake Bottoms. The Texas Oil transects were largely dominated by reed canarygrass (Table 5). Other common species from the diagnostic species list included meadow foxtail and sedges (Carex spp.). Transects 1, 2, 4, and 5 were monocultures of reed canarygrass.

Four of the 15 diagnostic species were found on the Wetland Conservancy transects at Coffee Lake Bottoms. The transects were largely dominated by meadow foxtail (Table 6). Other common species included reed canarygrass, soft rush (Juncus effusus), and sedges.

Banks

All four Cedar Canyon transects contained 100 percent reed canarygrass (Appendix C). The Willow transects were characterized by Geyer willow, reed canarygrass, Douglas spiraea (Spiraea dougalsii), simple stem bur-reed (Sparganium emersum), nodding beggar ticks (Bidens cernua), and swamp smartweed (Polygonum hydropiperoidies). In the Willow macroplot, transect W2 had the highest species diversity, and transect W4 had the lowest (Table 7). Average water depth ranged from 0.5 meters to 0.7 meters (Table 7).

The herbaceous transects were characterized by reed canarygrass, Douglas spiraea, simple stem bur-reed, nodding beggar ticks, swamp smartweed, and slough sedge (Carex obnupta), with some mature Geyer willow (taller than 1 meter). Average water depth ranged from 0.7 meters to 0.8 meters (Table 8).

CONCLUSIONS

Cooper Mountain

The preliminary baseline data do not suggest that burning increases species diversity (Table 2). Additional data are needed to illustrate a correlation if present. Additional analysis of native versus non-native species may provide further information over time related to the success of burning as a management practice for this site. It should be noted that the benefits of burning can be equivocal since fire actually favors certain invasive plant species (Fuchs, 2001). It is recommended that future monitoring at Cooper Mountain analyze trends in native versus nonnative species cover in relation to burning frequency over time.

Multnomah Channel

Reed canarygrass dominates many of the Multnomah Channel transects. However, species diversity was higher for the transects that remain flooded longer into the growing season (Transects 13, 14, 15, and 16) (Table 4). Flooding may reduce the occurrence of reed canarygrass and allow other species to establish.

Coffee Lake Bottoms

The Texas Oil transects at Coffee Lake Bottoms were largely dominated by reed canarygrass, except for Transect 8 which was dominated by meadow foxtail. The Wetland Conservancy transects at Coffee Lake Bottoms were largely dominated by meadow foxtail. Management in these areas should focus on reducing these dominant non-native species to allow native species to establish.

Banks

There does not appear to be a relationship between water depth and species diversity (Figure 8) or water depth and willow percent cover (Figure 9). More data are needed to detect a correlation between water depth and species diversity at the Banks site. It is unknown whether the absence of herbaceous species, such as reed canarygrass, will change the coverage of Geyer willow in the Willow Plot.

The Herbaceous transects were dominated by reed canarygrass and were deep (0.7 to 0.8 meters average water depth).

REFERENCES

Elzinga, C. L., D. W. Salzer, and J. W. Willoughby. 1998. Measuring \& Monitoring Plant Populations. BLM Technical Reference 1730-1. BLM, National Business Center, BC650B, P.O. Box 25047, Denver, CO, 80225-0047. 476p.

Fuchs, Marilyn A. 2001. Towards a Recovery Strategy for Garry Oak (Quercus garryana) and Associated Ecosystems in Canada: Ecological Assessment and Literature Review. Technical Report GBEI/EC00030. Environment Canada, Canadian Wildlife Service, Pacific and Yukon Region. http://www.goert.ca/assets/docs/litreview.pdf

Haahr, Mads. July 1999. "True Random Number Service: Web Interface to the True Random Numbers". http://www.random.org/. Viewed by E. Questad in May through August 2002.

Hickman, James C. 1993. The Jepson Manual: Higher Plants of California. University of California Press, Berkeley and Los Angeles, California.

Hitchcock, A.S., and Agnes Chase. 1971. Manual of the Grasses of the United States. Second Edition. Dover Publications, New York, New York.

Rosenzweig, M. L. 1995. Species Diversity in Space and Time. Cambridge University Press, New York, NY.

FIGURES AND TABLES

NORTH No Scale	Original graphic by: Metro Regional Parks and Greenspaces
\square	Macroplot
Burned 1997 only (approximate)	
Burned 2001 only (approximate)	
Burned both 1997 and 2001 (approximate)	
\square	

FIGURE 1. Cooper Mountain Macroplots METRO PLANT MONITORING PORTLAND, OR AND VICINITY

Figure 5. Nested Frequency Square Diagram

Figure 6. Cooper Mountain Species Diversity

a, b, and c designate significantly different ($\mathrm{p}<0.001$) means (Table 3)

Figure 7. Multnomah Channel Species Diversity

Figure 8. Average Water Depth vs. Species Diversity

Figure 9. Willow Cover vs. Average Water Depth

Table 1. Cooper Mountain Macroplots

Habitat Type	Number of Macroplots	Macroplot Names	Burn History
Upper Prairie	1	Upper Prairie	Not burned
Control	2	Control-I, Control-II	Not burned
1997 Burn	1	1997	Burned in 1997
1997/2001 Burns	2	$1997 / 01-I, 1997 / 01-$ II	Burned in 1997 and 2001
2001 Burn	2	$2001-I, 2001-I I$	Burned in 2001

Table 2. Cooper Mountain Average Species Diversity (H)

Burn History	Burned Once			Burned Twice		Not Burned		
Macroplot	1997 (a)	$2001-I$ (a)	$2001-I I$ (a)	$1997 / 01-I$ (b)	$1997 / 01-I I$ (c)	Control-I (a)	Control-II (a)	Upper Prairie (a)
Average H	2.417	2.396	2.497	2.695	2.327	2.409	2.444	2.413
Standard Deviation	0.081	0.162	0.111	0.068	0.076	0.097	0.157	0.138

a, b, and c designate significantly different ($\mathrm{p}<0.001$) means (Table 3).

Table 3. One-way Analysis of Variance (Minitab Release 13.32)

Source	Degrees of freedom	Sum of squares	Mean squares	F-statistic	P-value
Factor	7	0.8445	0.1206	8.90	0.000
Error	72	0.9759	0.0136		
Total	79	1.8204			

ANOVA for all plots against each other, resulting in only one P-value.

Table 4. Percent Cover and Species Diversity for Multnomah Channel Transects

Flood Zone I (shallow)							Flood Zone II (deep)						Flood Zone III (deepest)			
Species*	$\begin{array}{\|c\|} \text { Transect } \\ 1 \\ \hline \end{array}$	$\begin{array}{\|c} \hline \text { Transect } \\ 2 \end{array}$	$\begin{array}{\|c} \text { Transect } \\ 3 \end{array}$	$\begin{array}{\|c} \text { Transect } \\ 4 \end{array}$	$\begin{array}{\|c\|} \hline \text { Transect } \\ 5 \end{array}$	$\begin{array}{\|c\|} \hline \text { Transect } \\ 6 \end{array}$	$\begin{array}{\|c} \hline 7 \\ \hline \end{array}$	$\begin{array}{\|c} \text { Transect } \\ 8 \end{array}$	$\begin{gathered} \text { Transect } \\ 9 \end{gathered}$	$\begin{array}{\|c} \text { Transect } \\ 10 \end{array}$	$\begin{array}{\|c} \hline \text { Transect } \\ 11 \end{array}$	$\begin{array}{\|c} \hline \text { Transect } \\ 12 \end{array}$	$\begin{array}{\|c\|} \hline \text { Transect } \\ 13 \end{array}$	$\begin{array}{\|c} \hline \text { Transect } \\ 14 \end{array}$	$\begin{array}{\|c} \hline \text { Transect } \\ 15 \end{array}$	$\begin{array}{\|c\|} \hline \text { Transect } \\ 16 \end{array}$
PHAR	95	100	100	100	100	100	100	100	100	100	100	100	40	55	55	35
AGGI	15	0	0	5	0	5	0	0	0	0	0	0	0	0	0	0
ELPA	5	0	15	0	0	20	0	20	0	0	5	0	5	20	30	15
HOJU	25	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CASP	15	0	0	10	0	5	0	0	0	0	5	5	0	0	0	0
BRSP	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOMU	10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LOCO	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CAAP	0	0	20	0	25	25	0	0	5	20	0	0	0	0	0	0
CIAR	0	0	0	20	0	0	0	0	0	0	0	0	0	0	0	0
RUDI	0	0	0	10	0	0	0	0	0	0	0	0	0	0	0	0
POHY	0	0	0	0	0	0	0	5	0	0	0	0	0	5	0	5
SASP	0	0	0	0	0	0	0	10	0	0	0	0	0	0	0	0
JUEF	0	0	0	0	0	0	0	0	0	0	0	0	20	5	0	0
SALA	0	0	0	0	0	0	0	0	0	0	0	0	90	15	90	75
SCSP	0	0	0	0	0	0	0	0	0	0	0	0	0	15	10	35
LUPA	0	0	0	0	0	0	0	0	0	0	0	0	0	40	0	0
EQSP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	5	0
H	1.499	0	0.749	1.014	0.500	1.063	0	0.820	0.191	0.451	0.368	0.191	1.040	1.655	1.255	1.340
* PHAR	Phalari	s arundinac			AGGI Ag	Agrostis giga	antea	ELPA	A Eleoch	haris palustris			HOJU	Hordeum ju	batum	
CASP	Carex sp				BRSP B	Bromus sp.		LOM	M Lolium	m multifloru			LOCO	Lotus corni	culatus	
CAAP	Carex a	perta			CIAR C	Cirsium arve		RUD	I Rubus	discolor			SASP	Salix sp.		
POHY	Polygan	um hydrop	iperoidies		JUEF Ju	Juncus effusus		SALA	A Sagitta	aria latifoli			SCSP	Scirpus sp.		
LUPA	Ludwig	a palustris			EQSP E	Equisetum sp										

Table 5. Percent Cover of Diagnostic Species on Texas Oil Transects, Coffee Lake Bottoms

Transect Number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$
Phalaris arundinacea	100	100	100	100	100	50	85	
Spiraea douglasii			10					
Rubus spp.						15		
Rosa spp.					45			
Alopecurus pratensis						15	25	100
Carex spp.						30	30	
Typha latifolia							10	

Table 6. Percent Cover of Diagnostic Species on Wetland Conservancy Transects, Coffee Lake Bottoms

Transect Number	$\mathbf{9}$	$\mathbf{1 0}$	$\mathbf{1 1}$	$\mathbf{1 2}$
Phalaris arundinacea	50	30	50	
Alopecurus pratensis	60	90	80	100
Juncus effusus	5		5	
Carex spp.			15	5

Table 7. Percent Cover, Species Diversity, and Water Depth of Willow Transects, Banks

Species	W1	W2	W3	W4
Spiraea dougalsii	21.2	11.7	12.4	6.2
Phalaris arundinacea	51.8	39.1	74.9	86.2
Polygonum hydropiperoidies	2	0.8	2.3	0.3
Salix geyeriana	14.8	60.8	52.6	39.9
Sparganium emersum	7.7	10.5	7.8	0.1
Bidens cernua	3.2	11.2	7.4	8.7
Species Diversity (H)	1.336	1.368	1.274	0.986
Average water depth (m)	0.5	0.6	0.7	0.6
Water depth standard deviation	0.0897	0.1818	0.1377	0.2327

Table 8. Percent Cover, Species Diversity, and Average Water Depth of Herbaceous Transects, Banks

Species	H1	H2	H3	H4
Phalaris arundinacea	70	35	80	65
Carex obnupta	5			
Bidens cernua	5	10	5	10
Polygonum hydropiperoidies	10	25	10	5
Spiraea dougalsii	20	10	5	5
Sparganium emersum		25		10
Salix geyeriana			15	10
Average water depth (m)	0.8	0.8	0.7	0.7
Water depth standard deviation	0.1387	0.1838	0.2441	0.2954

APPENDIX A: SCOPE OF WORK

APPENDIX B: DIAGNOSTIC SPECIES LISTS

Adolfson's Recommendations for Cooper Mountain and Multnomah Channel Diagnostic Species Lists

Table 1. Plant Species Recommended for Monitoring at Cooper Mountain

Scientific Name	Common Name	Comment
Achillea millefolium	Yarrow	Increases with fire
Bromus vulgaris*	Columbia brome	Decreases with burning, native species
Cirsium arvense	Canada thistle	Fire-adapted invasive species
Cynosurus echinatus*	Hedgehog dogtail	Common grass species at the site
Cytisus scoparius	Scot's broom	Common invasive species at the site
Delphinium leucophaeum	Pale larkspur	Rare species
Deschampsia elongata*	Slender hairgrass	Responds to fire, but occurs mostly in wet areas
Erodium cicutarium	Filaree	Increases with file, non-native species
Plantago lanceolata	English plantain	Common, non-native species at the site

*Since many grass species respond to fire, other native or non-native grasses that commonly occur in burn units would be interesting to monitor. We did not have sufficient data to recommend additional grass species.

Table 2. Plant Species Recommended for Monitoring at Multnomah Channel

Scientific Name	Common Name	Comment
Bidens cernua	Nodding beggars-tick	FACW+, native, shallow inundated areas
Bidens frondosa	Devil's beggars-tick	FACW+, native, shallow inundated
Carex obnupta	Slough sedge	OBL, native
Carex vesocara var. major	Inflated sedge	OBL, native, margins of inundated areas
Festuca arundinacea	Tall fescue	FAC-, invasive, flooding may control
Iris pseudocorus	Yellow iris	OBL, invasive
Juncus articulatis	Jointed rush	OBL, native
Juncus effusus	Soft rush	FACW, native
Lythrum salicaria	Purple loosestrife	FACW+, invasive
Phalaris arundinacea	Reed canary grass	FACW, invasive, common
Sagitaria latifolia	Wapato	OBL, native
Scirpus microcarpus	Small-fruit bullrush	OBL, native
Sparganium emersum	Narrow-leaf burreed	OBL, native

Cooper Mountain Diagnostic Species List

Common Name

1. Scot's broom
2. Rose
3. Farewell-to-spring
4. Wooly sunflower
5. Prairie star flower
6. Oregon saxifrage
7. English plantain
8. Subclover
9. Native Clovers
10. Vetch
11. Exotic thistles
12. Common cryptantha
13. Lilies
14. Bachelor button
15. Yarrow
16. Pale larkspur
17. Silver hairgrass
18. Alaska brome
19. Cheat grass
20. Soft brome
21. Barren brome
22. Hedgehog dogtail
23. California oatgrass
24. Arrhenatherum oatgrass
25. Blue wild rye
26. Barren fescue
27. Koeler's grass
28. Velvetgrass
29. Kentucky bluegrass
30. Rushes

Botanical Name

Cytisus scoparius
Rosa eglanteria
Clarkia amoena
Eriophyllum lanatum
Lithophragma parviflora
Saxifragia integrifolia
Plantago lanceolata
Trifolium subterraneum
(Trifolium bifidum, T. microcephalum, T. microdon, T. oliganthum, T. tridentatum, and T. variegatum)

Vicia spp.
Cirsium arvense and C. vulgare
Cryptantha intermedia
Family Liliaceae
Centaurea cyanus
Achillea millefolium
Delphinium leucophaeum
Aira caryophyllea
Bromus sitchensis
Bromus tectorum
Bromus mollis
Bromus sterilis
Cynocurus echinatus
Danthonia californica
Arrhenatherum elatius
Elymus glaucus
Festuca bromoides
Koeleria cristata
Holcus lanatus
Poa pratensis
Juncus spp.

Multnomah Channel Diagnostic Species List

Common Name

1. Reed canarygrass
2. Tufted hairgrass
3. Perennial rye
4. Common velvetgrass
5. Redtop
6. Inflated sedge
7. Stalk-grain sedge
8. Slough sedge
9. Columbia sedge
10. Tule
11. Cattail
12. Common rush
13. Creeping spikerush
14. Creeping buttercup
15. Pennyroyal
16. Beggar-ticks
17. Canada thistle
18. Bull thistle
19. Purple loosestrife
20. Wapato
21. Swamp smartweed
22. Smartweed
23. Himalayan blackberry
24. Douglas spiraea
25. Rose
26. Willow
27. Open
28. Open
29. Open
30. Open

Botanical Name

Phalaris arundinacea
Deschampsia cespitosa
Lolium perenne
Holcus lanatus
Agrostis gigantea
Carex vesicara
Carex stipata
Carex obnupta
Carex aperta
Scirpus spp.
Typha latifolia
Juncus effusus
Eleocharis palustris
Ranunculus repens
Mentha pulegium
Bidens spp.
Cirsium arvense
Cirsium vulgare
Lythrum salicaria
Sagittaria latifolia
Polygonum hydropiperoides
Potamogeton natans
Rubus discolor
Spiraea douglasii
Rosa spp.
Salix spp.

Coffee Lake Bottoms Diagnostic Species List

Common Name

1. Douglas spiraea
2. Blackberry
3. Willow
4. Rose
5. Reed canarygrass
6. Meadow foxtail
7. Common rush
8. Spikerush
9. Sedge
10. Thistle
11. Purple loosestrife
12. Cattail
13. Swamp smartweed
14. Bird's-foot trefoil
15. Water pennywort

Botanical Name

Spiraea douglasii
Rubus spp.
Salix spp.
Rosa spp.
Phalaris arundinacea
Alopecurus pratensis
Juncus effusus
Eleocharis spp.
Carex spp.
Cirsium spp.
Lythrum salicaria
Typha latifolia
Polygonum hydropiperoides
Lotus corniculatus
Hydrocotyle ranunculoides

APPENDIX C: DATA SHEETS

Macroplot: Cedar Canyon
Transect \#:
1 \qquad

Field Personnel: EQ, PH
Starting point (m): 5

	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	$\%$	Cover	
1	Phalaris arundinacea	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100		
2																								
3																								
4																								
5																								

Banks - Cedar Canyon
Macroplot: Cedar Canyon
Transect \#: \qquad 2 2

Date: 20-Aug-02
Field Personnel: EQ, PH
Starting point (m): \qquad

Banks - Cedar Canyon
Macroplot: Cedar Canyon
Transect \#: 3

Date: 20-Aug-02
Field Personnel: EQ, PH
Starting point (m): 0

	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	$\%$	Cover	
1	Phalaris arundinacea	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100		
2																								
3																								
4																								
5																								

Banks - Cedar Canyon

Date: 20-Aug-02
Field Personnel: EQ, PH
Starting point (m): 1

| | Point Intercept \# | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | $\%$ | Cover | |
| ---: | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :--- | :--- | :--- | :--- | :--- |
| 1 | Phalaris arundinacea | 100 | | |
| 2 | |
| 3 | |
| 4 | |
| 5 | |

Transect \#: BH1
Starting point (m): 0

Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Percent cover
Phalaris arundinacea	1	1			1	1	1	1	1	1		1	1	1	1		1	1			70
Deschampsia cespitosa																					0
Lolium perenne																					0
Holcus lanatus																					0
Agrostis gigantea																					0
Carex vesicara																					0
Carex stipata																					0
Carex obnupta																				1	5
Carex aperta																					0
Scirpus spp.																					0
Typha latifolia																					0
Juncus effusus																					0
Eleocharis palustris																					0
Ranunculus repens																					0
Mentha pulegium																					0
Bidens spp. (cernua)																1					5
Cirsium arvense																					0
Cirsium vulgare																					0
Lythrum salicaria																					0
Sagittaria latifolia																					0
Polygonum hydropiperoides				1	1																10
Potamogeton natans																					0
Rubus discolor																					0
Spiraea douglasii					1				1			1	1								20
Rosa spp.																					0
Salix spp.																					0
Hordeum jubatum																					0
Carex sp.																					0
Bromus sp.																					0
Lolium multiflorum																					0
Lotus corniculatus																					0
Sparganium emersum																					0

| Water Depth (meters) | 0.8 | 0.7 | 0.9 | 0.7 | 0.4 | 0.7 | 0.6 | 0.8 | 0.8 | 0.9 | 0.8 | 0.5 | 0.9 | 0.7 | 0.8 | 0.9 | 0.8 | 0.8 | 0.9 | 0.9 |
| :--- |
| Average Depth | 0.8 | | | | | | | | | | | | | | | | | | | |
| Standard Deviation | 0.1387 | | | | | | | | | | | | | | | | | | | |

Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Percent cover
Phalaris arundinacea												1	1	1	1	1	1		1		35
Deschampsia cespitosa																					0
Lolium perenne																					0
Holcus lanatus																					0
Agrostis gigantea																					0
Carex vesicara																					0
Carex stipata																					0
Carex obnupta																					0
Carex aperta																					0
Scirpus spp.																					0
Typha latifolia																					0
Juncus effusus																					0
Eleocharis palustris																					0
Ranunculus repens																					0
Mentha pulegium																					0
Bidens spp. (cernua)				1										1							10
Cirsium arvense																					0
Cirsium vulgare																					0
Lythrum salicaria																					0
Sagittaria latifolia																					0
Polygonum hydropiperoides		1				1	1		1		1										25
Potamogeton natans																					0
Rubus discolor																					0
Spiraea douglasii											1	1									10
Rosa spp.																					0
Salix spp.																					0
Hordeum jubatum																					0
Carex sp.																					0
Bromus sp.																					0
Lolium multiflorum																					0
Lotus corniculatus																					0
Sparganium emersum	1		1	1	1			1													25

| Water Depth (meters) | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.9 | 0.9 | 0.5 | 0.8 | 0.2 | 0.9 | 0.6 | 0.5 | 0.8 | 0.9 | 0.9 |
| :--- |
| Average Depth | 0.8 | | | | | | | | | | | | | | | | | | | |
| Standard Deviation | 0.1838 | | | | | | | | | | | | | | | | | | | |

Transect \#: BH3
Starting point (m): 1

Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Percent cover
Phalaris arundinacea	1		1	1			1	1	1		1	1	1	1	1	1	1	1	1	1	80
Deschampsia cespitosa																					0
Lolium perenne																					0
Holcus lanatus																					0
Agrostis gigantea																					0
Carex vesicara																					0
Carex stipata																					0
Carex obnupta																					0
Carex aperta																					0
Scirpus spp.																					0
Typha latifolia																					0
Juncus effusus																					0
Eleocharis palustris																					0
Ranunculus repens																					0
Mentha pulegium																					0
Bidens spp. (cernua)														1							5
Cirsium arvense																					0
Cirsium vulgare																					0
Lythrum salicaria																					0
Sagittaria latifolia																					0
Polygonum hydropiperoides					1	1															10
Potamogeton natans																					0
Rubus discolor																					0
Spiraea douglasii																1					5
Rosa spp.																					0
Salix spp. (geyeriana)						1	1	1													15
Hordeum jubatum																					0
Carex sp.																					0
Bromus sp.																					0
Lolium multiflorum																					0
Lotus corniculatus																					0
Sparganium emersum																					0

[^0]Transect \#: BH4
Starting point (m): 2

Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	Percent cover
Phalaris arundinacea	1			1			1	1	1			1		1	1	1	1	1	1	1	65
Deschampsia cespitosa																					0
Lolium perenne																					0
Holcus lanatus																					0
Agrostis gigantea																					0
Carex vesicara																					0
Carex stipata																					0
Carex obnupta																					0
Carex aperta																					0
Scirpus spp.																					0
Typha latifolia																					0
Juncus effusus																					0
Eleocharis palustris																					0
Ranunculus repens																					0
Mentha pulegium																					0
Bidens spp. (cernua)	1																		1		10
Cirsium arvense																					0
Cirsium vulgare																					0
Lythrum salicaria																					0
Sagittaria latifolia																					0
Polygonum hydropiperoides			1																		5
Potamogeton natans																					0
Rubus discolor																					0
Spiraea douglasii									1												5
Rosa spp.																					0
Salix spp. (geyeriana)														1		1					10
Hordeum jubatum																					0
Carex sp.																					0
Bromus sp.																					0
Lolium multiflorum																					0
Lotus corniculatus																					0
Sparganium emersum			1	1																	10

[^1]Field Personnel: Erin Questad, Patrick Hendrix
Transect \#: W 1

			W1-1			W1-2		W1-3		W1-4			W1-5			Total Dist.	\% Cover
1	Spirea	Start	0	90	720					495			0	850			
	douglasii	Stop	50	240	800					530			595	1000			
	SPDO	Distance	50	150	80					35			595	150		1060	21.2
2	Phalaris	Start	0	240		240	725	110	370	0	330	915	0	475	805		
	arundinacea	Stop	50	500		390	920	285	1000	205	765	1000	115	570	1000		
	PHAR	Distance	50	260		150	195	175	630	205	435	85	115	95	195	2590	51.8
3	Polyganum	Start	100	540													
	hydropiperoides	Stop	130	610													
	POHY	Distance	30	70												100	2
4	Salix	Start	240	830		0	475			605							
	geyeranii	Stop	450	1000		190	495			755							
	SAGE	Distance	210	170		190	20			150						740	14.8
5	Sparganium	Start				900		0		530			150				
	emersum	Stop				1000		110		585			270				
	SPEM	Distance				100		110		55			120			385	7.7
6	Bidens	Start						255		310			780	830			
	cernua	Stop						310		380			795	850			
	BICE	Distance						55		70			15	20		160	3.2

Field Personnel: Erin Questad, Patrick Hendrix
Transect \#: W2

			W2-1				W2-2	W2-3				W2-4	W2-5		Total Dist.	\% Cover
1	Spirea	Start	285	825			230						310			
	douglasii	Stop	600	945			325						365			
	SPDO	Distance	315	120			95						55		585	11.7
2	Phalaris	Start	35	270	500	970	0	320	375	545			250	510		
	arundinacea	Stop	200	360	870	1000	625	330	505	640			435	765		
	PHAR	Distance	165	90	370	30	625	10	130	95			185	255	1955	39.1
3	Polyganum	Start						325								
	hydropiperoides	Stop						365								
	POHY	Distance						40							40	0.8
4	Salix	Start	655	955			0	0				250	0	580		
	geyeranii	Stop	790	1000			1000	630				1000	60	1000		
	SAGE	Distance	135	45			1000	630				750	60	420	3040	60.8
5	Sparganium	Start					910	0	370	535	810					
	emersum	Stop					1000	65	450	675	960					
	SPEM?	Distance					90	65	80	140	150				525	10.5
6	Bidens	Start	60	300	535		490									
	cernua	Stop	220	340	840		545									
	BICE	Distance	160	40	305		55								560	11.2

Field Personnel: Erin Questad, Sarah Hartung
Transect \#: W3

			W3-1			W3-2			W3-3		W3-4			W3-5		Total Dist.	\% Cover
1	Spirea	Start	910						780		185	625	850	10			
	douglasii	Stop	980						1000		240	675	1000	85			
	SPDO	Distance	70						220		55	50	150	75		620	12.4
2	Phalaris	Start	20	390	865	190	790		0	350	0	710		0			
	arundinacea	Stop	230	785	915	230	1000		300	1000	600	1000		1000			
	PHAR	Distance	210	395	50	40	210		300	650	600	290		1000		3745	74.9
3	Polyganum	Start	360			100											
	hydropiperoides	Stop	455			120											
	POHY	Distance	95			20										115	2.3
4	Salix	Start	660			0	290	785	0		275			330	920		
	geyeranii	Stop	1000			225	595	1000	690		595			785	1000		
	SAGE	Distance	340			225	305	215	690		320			455	80	2630	52.6
5	Sparganium	Start	265	820							520			960			
	emersum	Stop	500	945							530			980			
	SPEM?	Distance	235	125							10			20		390	7.8
6	Bidens	Start	30	175	430				210		140	245	945	470			
	cernua	Stop	50	210	550				285		160	320	960	480			
	BICE	Distance	20	35	120				75		20	75	15	10		370	7.4

Banks - Line Intercept (Willow) Data from Geyer Willow Site
Date: 23-Oct-02
Field Personnel: Erin Questad, Sarah Hartung
Transect \#: W4

			W4-1				W4-2		W4-3		W4-4						W-5	Total Dist.	\% Cover
1	Spirea	Start	110	330					860		40	770							
	douglasii	Stop	140	380					940		170	790							
	SPDO	Distance	30	50					80		130	20						310	6.2
2	Phalaris	Start	80	920			105	630	0	530	0	425					0		
	arundinacea	Stop	735	985			580	1000	360	1000	340	1000					1000		
	PHAR	Distance	655	65			475	370	360	470	340	575					1000	4310	86.2
3	Polyganum	Start					75		40										
	hydropiperoides	Stop					80		50										
	POHY	Distance					5		10									15	0.3
4	Salix	Start					795		0		870						0		
	geyeranii	Stop					1000		660		1000						1000		
	SAGE	Distance					205		660		130						1000	1995	39.9
5	Sparganium	Start							15										
	emersum	Stop							20										
	SPEM?	Distance							5									5	0.1
6	Bidens	Start	220	390	510	710	675		740		40	205	270	435	520	710			
	cernua	Stop	275	445	520	735	685		770		45	220	380	460	565	760			
	BICE	Distance	55	55	10	25	10		30		5	15	110	25	45	50		435	8.7

Transect \# CL1; Start at 0 meters

Point Intercept \#																								
		1		2	3	4	5		6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																							
RUSP	Rubus spp.																							
SASP	Salix spp.																							
ROSP	Rosa spp.																							
PHAR	Phalaris arundinacea		1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
ALPR	Alopecurus pratensis																							
JUEF	Juncus effusus																							
ELSP	Eleocharis spp.																							
CASP	Carex spp.																							
CISP	Cirsium spp.																							
LYSA	Lythrum salicaria																							
TYLA	Typha latifolia																							
POHY	Polygonum hydropiperoides																							
LOCO	Lotus corniculatus																							
HYRA	Hydrocotyle ranunculoides																							

Transect \# CL2, Start at 0 meters

Point Intercept \#

	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																					
RUSP	Rubus spp.																					
SASP	Salix spp.																					
ROSP	Rosa spp.																					
PHAR	Phalaris arundinacea	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
ALPR	Alopecurus pratensis																					
JUEF	Juncus effusus																					
ELSP	Eleocharis spp.																					
CASP	Carex spp.																					
CISP	Cirsium spp.																					
LYSA	Lythrum salicaria																					
TYLA	Typha latifolia																					
POHY	Polygonum hydropiperoides																					
LOCO	Lotus corniculatus																					
HYRA	Hydrocotyle ranunculoides																					

Transect \# CL3; Start at 2 meters

	Point Intercept \#	1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																	1	1				10
RUSP	Rubus spp.																						
SASP	Salix spp.																						
ROSP	Rosa spp.																						
PHAR	Phalaris arundinacea		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
ALPR	Alopecurus pratensis																						
JUEF	Juncus effusus																						
ELSP	Eleocharis spp.																						
CASP	Carex spp.																						
CISP	Cirsium spp.																						
LYSA	Lythrum salicaria																						
TYLA	Typha latifolia																						
POHY	Polygonum hydropiperoides																						
LOCO	Lotus corniculatus																						
HYRA	Hydrocotyle ranunculoides																						

Transect \# CL4; Start at 1 meter

	ansect \#	CL	St	rt	1	net																
	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																					
RUSP	Rubus spp.																					
SASP	Salix spp.																					
ROSP	Rosa spp.																					
PHAR	Phalaris arundinacea	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
ALPR	Alopecurus pratensis																					
JUEF	Juncus effusus																					
ELSP	Eleocharis spp.																					
CASP	Carex spp.																					
CISP	Cirsium spp.																					
LYSA	Lythrum salicaria																					
TYLA	Typha latifolia																					
POHY	Polygonum hydropiperoides																					
LOCO	Lotus corniculatus																					
HYRA	Hydrocotyle ranunculoides																					

Transect \# CL5; Start at 4 meters

				2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																						
RUSP	Rubus spp.																						
SASP	Salix spp.																						
ROSP	Rosa spp.																						
PHAR	Phalaris arundinacea		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
ALPR	Alopecurus pratensis																						
JUEF	Juncus effusus																						
ELSP	Eleocharis spp.																						
CASP	Carex spp.																						
CISP	Cirsium spp.																						
LYSA	Lythrum salicaria																						
TYLA	Typha latifolia																						
POHY	Polygonum hydropiperoides																						
LOCO	Lotus corniculatus																						
HYRA	Hydrocotyle ranunculoides																						

Transect \# CL6; Start at 0 meters

Point Intercept \#

	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																					
RUSP	Rubus spp.							1	1			1										15
SASP	Salix spp.																					
ROSP	Rosa spp.				1	1	1	1	1	1	1	1	1									45
PHAR	Phalaris arundinacea	1											1	1	1	1	1	1	1	1	1	50
ALPR	Alopecurus pratensis	1	1	1																		15
JUEF	Juncus effusus																					
ELSP	Eleocharis spp.																					
CASP	Carex spp.																					
CISP	Cirsium spp.																					
LYSA	Lythrum salicaria																					
TYLA	Typha latifolia																					
POHY	Polygonum hydropiperoides																					
LOCO	Lotus corniculatus																					
HYRA	Hydrocotyle ranunculoides																					

Transect \# CL7; Start at 4 meters

Transect \# CL8; Start at 0 meters

Transect \# Point Intercept \#		0																						
		1		2	3		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																							
RUSP	Rubus spp.																							
SASP	Salix spp.																							
ROSP	Rosa spp.																							
PHAR	Phalaris arundinacea																							
ALPR	Alopecurus pratensis	1		1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
JUEF	Juncus effusus																							
ELSP	Eleocharis spp.																							
CASP	Carex spp.	1		1				1		1	1							1						30
CISP	Cirsium spp.																							
LYSA	Lythrum salicaria																							
TYLA	Typha latifolia																							
POHY	Polygonum hydropiperoides																							
LOCO	Lotus corniculatus																							
HYRA	Hydrocotyle ranunculoides																							

		CL9	St	rt	t 1	met																
	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																					
RUSP	Rubus spp.																					
SASP	Salix spp.																					
ROSP	Rosa spp.																					
PHAR	Phalaris arundinacea	1				1	1	1	1	1	1	1	1	1								50
ALPR	Alopecurus pratensis	1	1	1	1									1	1	1	1	1	1	1	1	60
JUEF	Juncus effusus									1												5
ELSP	Eleocharis spp.																					
CASP	Carex spp.																					
CISP	Cirsium spp.																					
LYSA	Lythrum salicaria																					
TYLA	Typha latifolia																					
POHY	Polygonum hydropiperoides																					
LOCO	Lotus corniculatus																					
HYRA	Hydrocotyle ranunculoides																					

$\begin{array}{r} \text { Transect \# } \\ \text { Point Intercept \# } \\ \hline \end{array}$		CL10; Start at 3 meters																				
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19		\% Cover
SPDO	Spiraea douglasii																					
RUSP	Rubus spp.																					
SASP	Salix spp.																					
ROSP	Rosa spp.																					
PHAR	Phalaris arundinacea		1	1	1													1	1	1		30
ALPR	Alopecurus pratensis	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	90
JUEF	Juncus effusus																					
ELSP	Eleocharis spp.																					
CASP	Carex spp.																					
CISP	Cirsium spp.																					
LYSA	Lythrum salicaria																					
TYLA	Typha latifolia																					
POHY	Polygonum hydropiperoides																					
LOCO	Lotus corniculatus																					
HYRA	Hydrocotyle ranunculoides																					

Transect \# CL11; Start at 3 meters

	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																					
RUSP	Rubus spp.																					
SASP	Salix spp.																					
ROSP	Rosa spp.																					
PHAR	Phalaris arundinacea					1	1	1	1	1	1	1		1					1		1	50
ALPR	Alopecurus pratensis	1	1	1	1	1				1		1	1	1	1	1	1	1	1	1	1	80
JUEF	Juncus effusus					1																5
ELSP	Eleocharis spp.																					
CASP	Carex spp.		1											1	1							15
CISP	Cirsium spp.																					
LYSA	Lythrum salicaria																					
TYLA	Typha latifolia																					
POHY	Polygonum hydropiperoides																					
LOCO	Lotus corniculatus																					
HYRA	Hydrocotyle ranunculoides																					

Transect \# Point Intercept \#		CL12; Start at 5 meters																					
		1		2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
SPDO	Spiraea douglasii																						
RUSP	Rubus spp.																						
SASP	Salix spp.																						
ROSP	Rosa spp.																						
PHAR	Phalaris arundinacea																						
ALPR	Alopecurus pratensis	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
JUEF	Juncus effusus																						
ELSP	Eleocharis spp.																						
CASP	Carex spp.												1										5
CISP	Cirsium spp.																						
LYSA	Lythrum salicaria																						
TYLA	Typha latifolia																						
POHY	Polygonum hydropiperoides																						
LOCO	Lotus corniculatus																						
HYRA	Hydrocotyle ranunculoides																						

$\mathrm{S}=$ starting meter, $\mathrm{F}=$ frame flagged

Transect \# Frame \#		1: S4, F1					2: S4, F5					3: S4, F3					4: S1, F2				5: S1, F3				6: S0, F2					7: S3, F4				8: S4, F3					9: S0, F1						10: S0, F1						Frequency		
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	5	6	11	19	20	21	22	23	42	26	27	28	29	30	31	32	33	4		6			9		1	2	43	44	45	46	47	48	49			Plot Size:	1	2
	Shrubs																																																				
CYSC	Cytisus scoparius	3					3					2					3	3			1									1	1									2	1					1	3					12	16
ROEG	Rosa eglanteria																																																			0	0
	Forbs																																																			0	0
ACMI	Achillea millefolium																							3					3					3					3				3	3								0	2
CECY	Centaurea cyanus		2	2			2	3	3	2		1																					3	1		3			2	3			3							2		4	16
CISP	Cirsium sp.									3																																										0	0
CLAM	Clarkia amoena									3																																										0	0
CRIN	Cryptantha intermedia																																																			0	0
DELE	Delphinium leucophaeum	3	3				2	3				3	3					3						2								3	3						3										3			0	4
ERLA	Eriophyllum lanatum								2											3									2		1	3	1				3		2													6	12
LILY	Family Liliaceae																																																			0	0
LIPA	Lithophragma parviflora																																																			0	0
PLLA	Plantago lanceolata		3					2				1	2	1	3	3				3								2												3												4	10
SAIN	Saxifragia integrifolia																			2																														1		2	4
TRSU	Trifolium subterraneum																																																			0	0
NC	Native Clovers													2	1					3				3							3			3		3	3	3					3	3						2		2	6
VISP	Vicia spp.	1	1	3	1	1	1	2	1	1	1	1	2	1	2	1	1	1	2	3	2	1	1	1	2		1	1	1	1	1	1	1	2	1	2	2	3	2	3	1	1	1	1	3	3	2		2			60	86
	Grasses/Rushes																																																			0	0
AICA	Aira caryophyllea		1						3						3					3							1											3					2	3						1		6	10
AREL	Arrhenatherum elatius																																																			0	0
BRMO	Bromus mollis	1	1		3	1	2	1	1		2	1	3	2	2	1	1	3	2	1	1	1	1	3			1	1	2	3	3	1	1	2	1	1	2	2	2	1	3	2	1	1	1	2	2	2	2	3		48	76
BRSI	Bromus sitchensis																																																			0	0
BRST	Bromus sterilis		3	2		2					2							3	3	3	2	2	3		1	2	3		2	3	3	2	2	2	2	3	1		3	3		2	1			1	3		1			10	36
BRTE	Bromus tectorum	1	3	1	3		3		1	3	3	1	2		1	1	2			3	3	1	3				1	2		3	2	3	3		2	3	1	1			3	2		2		3	3					26	40
CYEC	Cynocurus echinatus		1						2	3				3	3	2				1	3			3			3		2	3	2	1		1	2	1	1	1	3	3		1	1	2			2			2		20	40
DACA	Danthonia californica																																																			0	0
ELGL	Elymus glaucus	3			3	2		1		1	2					2		1	2			3	3					2				1	1								3											12	22
FEBR	Festuca bromoides																																																			0	0
HOLA	Holcus lanatus	3	3		3	2	3			3				3	3			3	,	3	3		1		,		3	3		3	3	3		2	3	2	3	1	1		1	3		3		3	3			1		10	16
KOCR	Koeleria cristata																																																			0	0
POPR	Poa pratensis	3	1				3	3		3	2	3	2					1										1				2									2					2						6	16
JUSP	Juncus spp.					3				1					2	1				2				3				3	2			1	1	3			2	3				3					3					8	16
		$\frac{0}{2}$	$\stackrel{0}{0}$	$\begin{array}{\|l\|} \hline 0 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \\ 9 \end{array}$	$\frac{0}{2}$	$\stackrel{\square}{0}$	\sim	\sim	$\frac{1}{2}$	\%	$\frac{0}{2}$	¢	$\frac{0}{2}$	${ }^{0}$		$\frac{1}{2}$	$\frac{0}{2}$	$\frac{1}{2}$	${ }_{2}^{0}$	$\frac{0}{2}$	$\stackrel{n}{2}$	$\frac{0}{2}$	$\frac{0}{\Sigma}$	$\frac{1}{2}$	$\frac{1}{2}$	ค	$\frac{1}{2}$	号		ค		$\frac{n}{2}$	$\frac{0}{2}$	$\frac{0}{2}$	0	0	0	0	0	u		¢											

Date: 6/6/2002
(heransect point (bottom, left corner).
$S=$ starting meter, $F=$ frame flagged

Macroplot: 1997/01-II

$S=$ starting meter, $F=$ frame flagged

$\mathrm{S}=$ starting meter, $\mathrm{F}=$ frame flagged

Macroplot: 2001-II
Note: Surveyed transect from east to west. Placed frame with nested corner at the transect point (bottom, left corner).
$S=$ starting meter, $F=$ frame flagged

Macroplot: Upper Prairie
Date: 5/30/2002
. Surveyed transect from west to east. Placed frame with nested corner at the transect point (bottom, left corner).
$S=$ starting meter, $F=$ frame flagged

Macroplot: Control-

Date: 5/30/2002
Surveyed transect from west to east. Placed frame with nested corner at the transect point (bottom, left corner)
$S=$ starting meter, $F=$ frame flagged

Macroplot: Control

Date: 5/31/2002

$S=$ starting meter, $F=$ frame flagged

The average of the three nested plot size frequency values are shown for each transect. Actual frequency values for each nested plot size are also shown for each macroplot.

The average of the three nested plot size frequency values are shown for each transect. Actual frequency values for each nested plot size are also shown for each macroplot.

Multnomah Channel

Date: 25-Jul-02
Transect \#: MC12
Starting point (m): 1

	Point Intercept \#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	\% Cover
1	Phalaris arundinacea	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	100
2	Deschampsia cespitosa																					0
3	Lolium perenne																					0
4	Holcus lanatus																					0
5	Agrostis gigantea																					0
6	Carex vesicara																					0
7	Carex stipata																					0
8	Carex obnupta																					0
9	Carex aperta																					0
10	Scirpus spp.																					0
11	Typha latifolia																					0
12	Juncus effusus																					0
13	Eleocharis palustris																					0
14	Ranunculus repens																					0
15	Mentha pulegium																					0
16	Bidens spp.																					0
17	Cirsium arvense																					0
18	Cirsium vulgare																					0
19	Lythrum salicaria																					0
20	Sagittaria latifolia																					0
21	Polygonum hydropiperoides																					0
22	Potamogeton natans																					0
23	Rubus discolor																					0
24	Spiraea douglasii																					0
25	Rosa spp.																					0
26	Salix spp.																					0
27	Carex sp.																			1		5
28																						0

[^0]: Water Depth (meters)

 | 0.1 | 0.9 | 0.8 | 0.9 | 0.9 | 0.8 | 0.8 | 0.8 | 0.5 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.8 | 0.0 | 0.8 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 Average Depth
 Standard Deviation

[^1]: Water Depth (meters)

 Average Depth
 Standard Deviation
 0.2954

