

1

## **BSL3 Practices**

Sandia National Laboratories Laboratory Biosecurity and Biosafety for BSL3 Laboratories India January 2007

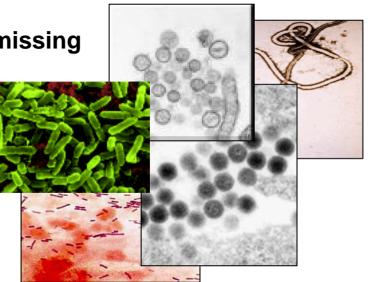
#### www.biosecurity.sandia.gov



SAND No. 2006-3687C Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.



#### **BSL 3 Practices**


- Administrative
  - Written SOPs discussed in Program Management briefing
  - Material control & accountability
- Access controls
  - Training requirements
  - Personnel screening / reliability
  - Visitor controls / protocols
- Standard & special lab practices
- Personnel protective equipment (PPE)



## Administrative Procedures: Material control & accountability

#### Ensure the complete and timely knowledge of:

- What materials exist
- Where the materials are
- Who is accountable for them
- NOT: to detect whether something is missing
- What materials in what forms
- Agent
  - What agents are high risk?
  - Viable? Whole organism or DNA?
- Quantity
  - Any amount can be significant
  - A threshold amount for toxins
- Form
  - Repository stocks, working samples, in host, contamination
- Detail—what level is adequate for MC&A?
  - Material as *items*
  - Each vial as a separate inventory record?
- Capture—when does MC&A start & stop?
  - Naturally occurring; clinical samples; disposition







## Administrative Procedures: Material control & accountability

- All material should have an associated "accountable person"
  - The person best in a position to answer questions about the associated material
  - Not someone to blame!
  - Ensure that no material is "orphaned"
- Procedures should ensure accountability
  - Experimental work: laboratory procedures
  - Inventory: know what you have
  - Reporting: document routine MC&A practices
  - Audit/ assessment: is this working?
    - Ensures effective *implementation* of MC&A
  - Training: personnel understand requirements





## Access Controls: Establishing Restricted Areas

- Access control ensures that only authorized individuals are allowed into certain areas
  - Increasingly strict controls as you move toward higher risk assets
- Limited Areas
  - Unique item
  - Controlled possession
  - Electronic or physical key
- Exclusion Areas
  - Unique item
  - Unique knowledge
  - Controlled possession
  - Electronic key card <u>and</u> keypad or biometric device

or

Controlled key <u>and</u> second individual to verify identity







- Increased need for staff training as risk increases
- All lab and support personnel receive training on hazards, precautions, exposure procedures, escort responsibilities, biosecurity procedures
- All lab personnel must demonstrate proficiency in lab-specific procedures
- Training should be repeated every year and when procedures change
- All training is documented



**Internationa** 



### **Access Controls: Personnel Screening**

- Goal: Know that the individual is properly trained and can be trusted to work with the biological materials in the lab
- Before granting access:
  - Verify credentials
  - Verify completion of all pre-requisite training
  - Check references
  - Mentor and observe their lab skills
  - Ensure extensive experience at BSL 2 first
  - Medical surveillance
  - Assure supervision by competent scientist
  - Criminal history
  - In-depth background investigation





#### **Access Controls: Visitors**

#### Types

- Personal Visitors
  - Family members
- Casual Visitors
  - Tours, seminars
  - Equipment repair technicians
- Working Visitors
  - Visiting researchers
  - Facility maintenance personnel

#### Controls

- All visitors should have a host at the facility
- Visitors should be escorted in restricted areas



### **Access Controls: Badges**

 Badges should be issued to those individuals authorized to be in restricted areas







#### Badge return

- Upon employee termination
- Daily or at the conclusion of a limited term for visitors
- Report lost or stolen badges
- Consider safety implications



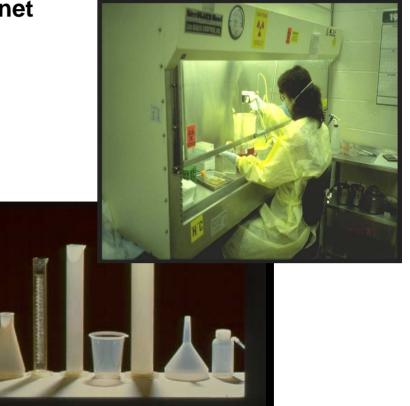
#### **Exposure Routes**

- Airborne (A)
- Skin contact (S)
- Mucous membrane contact (M)
- Ingestion (I)
- Percutaneous injection (P)



## Standard and Special Lab Practices: Role in Preventing Exposure

- No mouth pipetting: A, I, S
- Careful manipulation of fluids: A, S, M
- Care with sharps: P, S, A, M
- Use of PPE: S, M, A, I
- Frequent hand washing: S, M, I
- Decontamination of work surfaces: S, M, I
- No eating, drinking, etc in labs: S, I


Airborne (A) Skin contact (S) Mucous membrane contact (M) Ingestion (I) Percutaneous (P)



## BIOLOGICAL THREAT REDUCTION

## **Standard and Special Laboratory Practices**


- All procedures with live agent must be performed inside the biosafety cabinet
- No work with open vessels on open bench
- Use of paper covering on work surface assists clean-up
- Use of appropriate disinfectant in cabinet
- Substitute plastic for glass
- Careful pipetting techniques
- Wash hands often
- No mouth pipeting
- No eating or drinking in lab
- Minimize aerosol generation
- Decontaminate work surfaces
- Safe sharps handling
- Wear applicable PPE





## **Standard and Special Laboratory Practices: Minimizing Aerosols**

- Use careful pipetting practices
- Avoid drops onto hard surfaces
- Wipe up spills promptly with appropriate disinfectant
- Use capped tubes when mixing, blending, or vortexing
- Pour liquids carefully
- Avoid bubbles





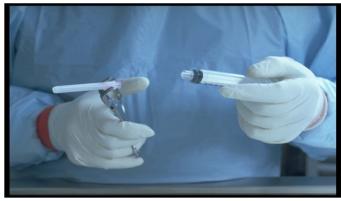




## Standard and Special Laboratory Practices: Careful Pipetting Techniques

- Never blow out last drop in pipette
- Use pipetting aids with filters
- Use horizontal pipette collection tubs
- Never mix by suction + expulsion
- Discharge liquid down side of container, using tip-to-wall contact
- Deliver as close as possible to contents
- Work over plastic-backed absorbent matting










## Standard and Special Laboratory Practices: Safe Use of Sharps

- Sharps includes scalpels, blades and wires, anything that can cut or puncture
- Percutaneous exposure risk
  - Employ safe work practices
  - Only use sharps if absolutely required as part of a process
- Aerosol risk
  - Use biosafety cabinet for removal of air from needle
- Utilize safe sharp devices
- Keep hands away from needles
- Use mechanical methods for needle removal
- Never bend, recap or manipulate sharps by hand.
- Dispose of entire unit into sharps container
- Collect reusable sharps in labeled, leakproof container









# **Personal Protective Equipment**

• Why:

▲ International

- Provides a barrier against skin, mucous membrane or respiratory exposure to infectious agents
- To prevent spread of contamination
- Types:
  - Gloves
  - Gowns, lab coats, coveralls, scrubs
  - Goggles
  - Safety glasses with side shields
  - Face shield
  - Booties, head covers
    - Closed toe shoes (no sandals)
  - Respirators
- Limitations:
  - Does not eliminate the hazard
  - Integrity wanes with use (change gloves frequently)
  - Not all gloves created equal select best glove for the task





## **Personal Protective Equipment**

- Personal protective equipment is NOT worn outside of the lab or taken home to be laundered!
- Reusable protective clothing should be autoclaved on-site
- For BSL 3
  - Back closing lab coat
    - Wrap around gowns with tight cuffs
  - Gloves
    - Single pair for entry
    - Double gloving for work in BSCs, transport, spill clean-up
  - Shoe coverings
  - Face protection
    - Safety glasses or goggles
  - Respiratory protection may be required (i.e. M.tb, SARS)
- Staff must be trained in aseptic removal proceduresgloves last





### **Personal Protective Equipment: Respirators**

- Uses a filter medium to remove contaminant
  - Reduces aerosol exposure
- N95 Respirator
  - Disposable
  - Classified by:
    - Filter efficiency 95% (N95), 99% (N99), 99.97% (N100)
    - Series N (not oil resistant), R (oil resistant), P (oil proof)
- Powered Air Purifying Respirator (PAPR)
  - Disposable hood
  - Breathing tube
  - Motor/blower unit
  - Cartridges
  - Nickel Cadmium (NiCad) battery pack
  - Used when
    - Persons with facial hair or facial anomalies that interfere with the seal cannot wear an N95 respirator
    - High-risk aersol generating procedures present
- Surgical masks are not respirators
  - Provide droplet protection, not aerosol protection
  - Provide patient protection
  - Keeps hands out of mouth









## **Personal Protective Equipment: <u>Respiratory Protection Program</u>**

- Medical evaluation
  - Determine individual's fitness to use a respirator
  - Physician or other healthcare provider
    - Medical evaluation questionnaire
    - Physical exam at physician's discretion
- Fit test
  - Accepted/approved qualitative or quantitative protocol
  - When
    - Prior to initial use
    - Annually
    - Whenever different respirator is worn
    - Whenever a problem reported
    - Whenever a change (e.g. facial change, weight loss) is reported
- Training
  - Criteria for respirator selection
  - Limitations of respirator types
  - Proper method for donning
  - Checking facepiece for seal and proper operation
  - Respirator maintenance





#### **PPE Examples**





## **Removing Gloves**









