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Abstract—A new method for analyzing analog single-event tran-
sient (ASET) data has been developed. The approach allows for
quantitative error calculations, given device failure thresholds. The
method is described and employed in the analysis of an OP-27
op-amp.

Index Terms—Analog, heavy ions, OP-27, operational-amplifier,
single-event transient (SET).

I. INTRODUCTION AND BACKGROUND

HEAVY ions penetrating sensitive structures in microelec-
tronic circuits generate a charge which can produce a

voltage shift at a circuit node. This voltage deviation or pulse
is known as a single-event transient (SET) [1]–[42]. Over the
years, there have been several attempts to categorize the SET
response of analog devices [43]–[59].

In the traditional analysis methodology, the cross-section for
any transient to occur versus the effective linear energy transfer
(LET) is used. However, in many cases only a transient above
a certain amplitude and longer than some critical duration are
likely to cause system failure. In this case the traditional ap-
proach results in a large over-estimate of single-event system
errors. The goal of this work is to develop a new technique to
analyze analog SET data.

This document will show how this method was developed,
and employ it in the analysis of analog single-event transient
(ASET) data from the OP-27 op-amp.

These results are combined with CREME96 to calculate
analog circuit SET upset rates for the space environment.

II. TEST CIRCUIT

The OP-27 was tested in three widely used configurations:
voltage follower, noninverting amp, and inverting amp. Tran-
sients were not observed for the voltage follower configurations.
It is important to note that operational amplifiers with different
designs do not behave in the same fashion with respect to ASET,
for example the LM124 does indeed show SETs in the voltage
follower configuration, whereas the OP-27 does not. A pos-
sible explanation for the absence of ASETs on the OP-27 in the
voltage follower configuration is that with a gain of 1 the tran-
sients that are generated were insufficient to trigger the oscillo-
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scope, which was set just above the noise level. The test circuits
for these configurations are shown in Fig. 1. To facilitate these
configurations, the device under test (DUT) board was designed
with six high frequency relays. The relays allowed the DUT to
be configured into all three test circuits without changing the test
board. The data collection process is described in Savage, et al.
[43]. Since the OP-27 was free to respond over the full range
of supply voltages, both positive and negative output voltage
pulses were measured.

The test setup was computer-controlled, which greatly re-
duced the chance of operator error. The input voltage, , was
set at biases of 1.00 V, 0.40 V, 0.06 V, 0.40 V, and

1.00 V. was held at a nominal value of 5 V.
The output of the DUT was measured with a high impedance

field effect transistor (FET) probe, which was connected to a
1 GHz digital oscilloscope.

III. EXPERIMENTAL RESULTS

The cross-section is calculated by dividing the number of
events by the fluence of ions incident on the DUT. The number
of events is recorded by the oscilloscope. Plotting the cross-sec-
tion against the ion stopping power or LET produces a typical
cross-section curve [54]. Fig. 2 shows the cross-section curve
for the OP-27 as a noninverting amplifier with a gain of 10 for

equal to 0.06 V, 0.40 V, and 1.00 V. Fig. 3 shows the
cross-section curve for the OP-27 as an inverting amplifier with
a gain of 10 for equal to 0.06 V, 0.40 V, and 1.00 V.
The data was taken at the Texas A&M University cyclotron,
using Ne (100, 150, 200, and 250 MeV), Cu (409, 543, 677,
and 808 MeV), Xe (792 and 1573 MeV), Ho (901, 1300, 1601,
and 1987 MeV), and Au (986, 1477, 1940, and 2349 MeV).

By comparing Figs. 2 and 3, it is evident that the response
of the device as a noninverting amplifier with of 0.40 V is
very similar to the response of an inverting amplifier with a
of 0.40 V. The same is true for both amplifiers with of

1.00 V and 1.00 V, respectively.
While Figs. 2 and 3 are the traditional approach to visualizing

single-event data, they do not address signal parameters, such as
pulse height. These signal parameters are of interest to system
designers and circuit modelers. The authors of this paper have
developed a methodology that incorporates the signal parame-
ters into an error rate model.

IV. PULSE-HEIGHT VERSUS PULSE-WIDTH

Signals captured by the digital oscilloscope were saved in
real time to a laptop computer. This allowed the full width at
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Fig. 1. Circuit configurations of the OP-27.

half maximum (pulse-widths) and the transient signal ampli-
tudes (pulse-heights) of the individual pulses to be measured.

Figs. 4–8 show pulse-height and pulse-width plotted as a
function of LET for the OP-27 in inverting and noninverting
configurations. Transients were not observed for the voltage
follower, and hence data are not shown for that configuration.

There are two results that are immediately apparent. First,
there is an obvious effect on device response due to LET.
Second, the response of the device as an inverting amplifier
with a of 0.40 V is very similar to the response as a
noninverting amplifier with a of 0.40 V. However, when
a of 0.06 V is applied to both an inverting amplifier and
a noninverting amplifier this graphical observation does not
hold true, as shown in Figs. 7 and 8 respectively. This is to be
expected, as the input transistors of the OP-27 are symmetric
with respect to the power rails. Therefore a negative input in
an inverting mode would appear nearly identical to a positive
input in a noninverting mode.

Fig. 2. Cross-section curve for the OP-27 as a noninverting amplifier.

Fig. 3. Cross-section curve for the OP-27 as an inverting amplifier.

Fig. 4. Pulse-height versus pulse-width curve for the OP-27 as a noninverting
amplifier with V = +0.4 V.

For this methodology, the raw data presented in Figs. 4 and
5 were binned, from which the frequency of pulse-heights was
obtained. Next, the frequency of pulse-heights was integrated
so that any specific pulse-height will be the exact number of
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Fig. 5. Pulse-height versus pulse-width curve for the OP-27 as an inverting
amplifier with V = �0.40 V.

Fig. 6. Pulse-height versus pulse-width curve for the OP-27 as a inverting
amplifier with V = �1.00 V.

Fig. 7. Pulse-height versus pulse-width curve for the OP-27 as a inverting
amplifier with V = �0.06 V.

pulses with that height or greater. The cross-sections of pulse-
height were then calculated by folding the normalized integrated
frequency of pulses with the DUT cross-sections. These data

Fig. 8. Pulse-height versus pulse-width curve for the OP-27 as a noninverting
amplifier with V = �0.06 V.

Fig. 9. Distribution of pulse-heights for the OP-27 as an inverting amplifier.

are now presented in Fig. 9 as the cross-section of pulse-heights
versus LET. This methodology is shown in Fig. 10 for clarity.

V. ASET AMPLITUDE CONTOUR PLOTS

The distribution of pulse-heights for the OP-27 as an inverting
amplifier, shown in Fig. 9, is limited to the range of ions used
during the experiment, and is subject to statistical fluctuations.
To extend the analysis of the data, each pulse-height was best
fit to an equivalent lognormal curve, as is shown in Fig. 11.
Each fitted curve represents a contour of constant pulse-height.
When these contours of constant pulse-height are combined,
a contour plot is produced which represents the probability
of experiencing a transient signal with a given amplitude at
a given LET. This plot puts transient data in a logical format
that can be understood by system engineers. The pulse-heights
shown represent minimum transient amplitude, where 4 V are
transients of at least 4 volts and greater, and 0 V are transients
of any amplitude.

Figs. 12 and 13 show the ASET response of the OP-27 at a
of 0.06 V as a noninverting and inverting amplifier. The data
clearly show that the device response is different for the two
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Fig. 10. Methodology to convert ASET data into distribution functions.

Fig. 11. Example of lognormal data fitting of pulse-heights for the OP-27 as
an inverting amplifier.

configurations. As previously stated, the input transistors of the
OP-27 are symmetric with respect to the power rails. Because
of this, when the same bias is applied to two different config-
urations the internal configurations for each bias condition is
different.

Figs. 14 and 15 show the ASET response of the OP-27 as
a noninverting amp with 0.40 V and inverting ampli-
fier with 0.40 V. The data clearly display that the de-
vice response is identical for these configurations. The internal
configurations for each bias condition are similar when biases
of opposite polarity are applied to two different configurations
because the input transistors of the OP-27 are symmetric with
respect to the power rails.

These figures allow system engineers to estimate cross-
section, or probability, of SET output voltages spikes for any
incident ion of known LET.

Both pulse-width and pulse-height can be evaluated using
the same methodology by eliminating those pulses that will not

Fig. 12. Contour plot for the OP-27 as a noninverting amplifier at�0.06 V.

cause system upset and only plot those pulses that will cause
upset. Fig. 16 shows a contour plot for the OP-27 as a nonin-
verting amplifier at 0.40 V for pulses wider than 5 s.

A three-dimensional (3-D) figure can be generated by re-
peating this procedure several times for different pulse-widths.
The cross-section would be on the -axis, the LET would be
on the -axis, and the pulse-width would reside on the -axis.
Fig. 16 can be then seen as a slice from this 3-D figure.

The error rates can be calculated by using CREME96 [60].
The rapid fall-off in the cross-section above 80 MeV/mg/cm
is not a major concern as the flux of ions with LET above
28 MeV/mg/cm (Ni) is negligible. If an application is sen-
sitive to a pulse greater than 5 s and to any amplitude, the
calculated error rate is upsets/day. In an applica-
tion which is sensitive to a pulse greater than 5 s, and to an
amplitude greater than 6.4 V, the error rate is
upsets/day. Fig. 17 shows the results of a CREME96 heavy ion
error rate for pulses greater than 5 s.
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Fig. 13. Contour plot for the OP-27 as an inverting amplifier at�0.06 V.

Fig. 14. Contour plot for the OP-27 as an inverting amplifier at�0.40 V.

Fig. 15. Contour plot for the OP-27 as a noninverting amplifier at+0.40 V.

Fig. 16. Contour plot for the OP-27 as a noninverting amplifier at+0.40 V for
pulses wider than 5 �s.

Fig. 17. CREME96 heavy ion error rate for the OP-27 as a noninverting
amplifier at +0.40 V for pulses greater than 5 �s.

VI. CONCLUSION

In this paper, a new technique to analyze ASET data is
demonstrated. The developmental path is shown and the
method is applied to test data from the OP-27 op-amp. The
method allowed for actual calculation of upset cross-sections,
for both pulse-amplitude and pulse-width, for any incident ion.
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