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Executive Summary 

 

A number of submarine landslides have traveled large distances (100 kilometers or more) 

once the slide movement was initiated.  A growing amount of evidence suggests that one 

of the reasons for the relatively large travel distances is that the slide mass hydroplanes 

on a layer of water as the slide movement progresses.  Several theoretical models have 

been developed to simulate this process of hydroplaning and confirm hydroplaning as a 

viable mechanism for slide movements.  However, the theoretical models have generally 

made simplifying assumptions regarding how the fluid surrounding a slide mass interacts 

with the moving soil.  The study described in this report was undertaken to understand 

better the fluid-slide mass interaction and develop a better representation of the 

hydrodynamic forces acting on a moving slide mass.   

Numerical modeling, using commercially available fluid modeling software (FLUENT), 

was carried out to study the fluid forces on a slide mass.  The analyses showed that there 

is a significant “lift” effect that the surrounding fluid exerts on the slide mass.  This lift 

effect has not been considered in any of the previous models for slide hydroplaning. 

Once the hydrodynamic forces on a moving slide mass were understood better, simplified 

representations of these forces were developed.  These representations were then 

incorporated into a “block” model of the moving slide (soil) mass to simulate the 

movement of a slide through water, including the formation of a fluid layer between the 

slide mass and underlying parent material.  Once the numerical model for the moving 

slide mass was developed it was used to simulate soil movements measured in a previous 

investigation with a series of laboratory-scale model tests.  Results of the numerical 

model developed in the present study were found to agree well with the experimental 

observations.  This good agreement seems to confirm the likelihood that some submarine 

slides may hydroplane and travel relatively large distances. 

The model has not yet been exercised to examine how predicted slide movements might 

compare with actual field observations.  Although all the data necessary to conduct 

simulations of actual slides is often not available, some comparisons should be feasible 
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and would provide a valuable confirmation of the model development to date and help 

guide further developments.  These comparisons are recommended as the next step for 

future studies. 

Lastly, the model that has been developed considers the slide mass as a rigid block 

because of the complexity of the fluid-slide mass interaction.  This approach was 

convenient for developing a computer program to model the progression of slide 

movements, including the motion of the block, the interaction with the surrounding fluid, 

and the eventual onset of hydroplaning.  For the slide motion prior to the onset of 

hydroplaning, the interaction with the slide mass and underlying soil foundation was also 

included.  However, the current model developed does not consider deformation of the 

moving slide mass itself, including the possible separation of portions of the slide mass 

from each other as they move.  There is some evidence from actual slides that this aspect 

of the movement may also be important and can have an effect on when slide movement 

stops.  Also, the existing model uncouples the soil and water motions, while in actuality 

the motions are fully coupled.  Further studies are still needed to develop a model that 

includes these additional aspects of slide movement and hydroplaning.   
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Chapter 1: Introduction 

Submarine landslides present an important risk to offshore structures and related 

facilities such as pipelines.  Although submarine slides have many similarities to their 

subaerial counterparts, there are important differences.  Hance (2002) conducted a 

comprehensive survey and developed an extensive database of submarine slope failures.  

He reported that out of 399 slides examined, 334 occurred on slopes flatter than 10 

degrees.  He also reported that among a total of 434 slides, 194 slides traveled a distance 

greater than 10 km; three slides traveled more than 500 km.  The reasons for slides on 

such flat slopes having such large travel (“run-out”) distances are only partially 

understood.  One possible explanation for such large run-out distances is that 

hydroplaning occurs where the slide mass moves on a thin layer of water.  The layer of 

water works as a lubricant between the slide mass and underlying ground and thus 

reduces the resistance on the base of the slide mass.   

Experimental, analytical and numerical studies have been conducted to 

understand hydroplaning and its effect on submarine landslides.  However, currently no 

tools incorporate the mechanism of hydroplaning and predict the process of a landslide 

from initiation to cessation of movement.  The hydrodynamic forces on the slide mass, 

and the deformation and movement of a slide mass when hydroplaning occurs are not 

well understood or explained.   

The objective of the research reported on herein is to develop a numerical model 

for submarine slides, with emphasis on possible hydroplaning.  The interaction between a 

sliding mass and the surrounding fluid is decoupled as two problems: 1) the flow around 

a sliding mass and 2) the movement of the slide mass under the hydrodynamic stresses 

applied by the surrounding flow.   

The research conducted for this dissertation is presented in seven chapters.   
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1) In chapter 2, previous research on hydroplaning of subaqueous slides is 

summarized.   

2) In chapter 3, numerical simulations for the hydrodynamic conditions 

around a slide mass are discussed.  Particular emphasis is given to the 

stresses applied on the slide mass by the surrounding fluid before and 

during hydroplaning.   

3) In chapter 4, a block model for subaqueous slides involving possible 

hydroplaning is presented.  The hydrodynamic stresses obtained from the 

research discussed in chapter 3 are integrated in the block model as stress 

boundary conditions.   

4) In chapter 5, the block model is validated by comparison with the 

experimental results on subaqueous slides reported by Mohrig, et al 

(1999).   

5) In chapter 6, conclusions of the research are summarized 
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Chapter 2: Background 

Hydroplaning happens when a thin layer of fluid (air, water, oil, mud or other) is 

trapped between two objects moving relative to each other.  The thin layer of fluid acts as 

a lubricant and reduces the friction between the two objects.   

Hydroplaning was proposed as a mechanism for submarine landslides by Mohrig, 

et al. (1998).  They suggested hydroplaning as a mechanism to explain why submarine 

landslides have larger run-out distances than their subaerial counterparts even though the 

resistance from the surrounding water is greater than that from surrounding air.   

In this chapter, the research conducted on hydroplaning in general is summarized 

first.  Experimental, analytical and numerical studies on the hydroplaning of subaqueous 

slides specifically are then summarized.  The limitations of this previous research are also 

discussed.    

 

2.1 PREVIOUS RESEARCH ON GENERAL HYDROPLANING 

The study and application of hydroplaning starts in the late 19th century.   The 

term hydroplane first appeared as a name for racing boats in 1870’s.  American designer, 

Clinton Crane, produced one of the earliest large racing hydroplanes according to Ewart, 

W. D. (1962).  Hydroplanes obtained a high speed because of an air-cushion formed 

between the bottom of the boat and the underlying water reducing the resistance on the 

bottom of the boat.   

Harrin, E. N. (1958) reported the first experimental demonstration for 

hydroplaning of pneumatic tires.  He observed a thin layer of water between the tire 

surface and the pavement in a tire treadmill test.  Further research on hydroplaning of 

pneumatic tires was conducted by the National Aeronautics and Space Administration in 



4 

the 1960’s.  In 1983, Browne and Whicker (1983) developed a model for tire-fluid 

interaction during steady-state hydroplaning of a tire.   

Heim (1882) first suggested that landslides traveled on a thin layer of air (at the 

early stage of sliding) or mud (at the later stage of sliding).  Shreve (1968a, 1968b) 

concluded that a relatively thin layer of compressed air acted as a lubricant for the Elm 

and Frank landslides based on the characteristics of the slides and the reports by 

eyewitnesses.  Moriwaki et al. (1985) conducted simple point-mass modeling for the 

Ontake-san avalanche and recognized that assuming entrainment of water and 

fluidization of the sliding avalanche boundary resulted in numerical results closest to 

field conditions.   Finally, Mohrig, et al. (1998) pointed out that submarine landslides 

with long run-out distances might have involved hydroplaning.     

 

2.2 EXPERIMENTAL STUDY ON HYDROPLANING OF SUBAQUEOUS SLIDES 

Laval et al. (1988), Mohrig et al. (1998, 1999) and Marr et al. (2001) have all 

conducted experimental studies of hydroplaning of subaqueous slides.  Details from the 

experiments are summarized in Tables 2.1 and 2.2.  Laval et al. (1988) poured sand 

suspensions into a channel filled with water.  They observed a thin layer of water under 

the front of the slide mass.  Mohrig et al. (1998, 1999) used slurry instead of sand 

suspensions.  They conducted parallel experiments on subaqueous slides and on subaerial 

slides.  Hydroplaning was observed in eight of ten subaqueous slides.  The run-out 

distances of subaqueous slides that hydroplaned were longer than those of subaerial 

slides.  Mohrig et al. also proposed a densimetric Froude number, dFr , to characterize the 

onset condition of hydroplaning.  The densimetric Froude number dFr  is defined as: 

 

θ
ρ
ρ

cos1 gH

UFr

w

s

d

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=  
(2.1) 



5 

whereU  is the average velocity of sliding, sρ and wρ are the densities of the slurry and 

water, g is the acceleration due to gravity, H  is the average thickness of debris and θ  is 

the slope angle of the channel bottom.  The minimum value of the Froude number 

critdFr , for hydroplaning to occur was reported to be 0.3 based on Mohrig, et al’s 

experiments.  The minimum sliding velocity critU for hydroplaning to occur can be 

calculated as: 

θ
ρ
ρ

cos1, gHFrU
w

s
critdcrit ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−=  (2.2) 

Marr et al. (2001) also used premixed slurry and reported frequent hydroplaning of the 

slide masses.  They reported that hydroplaning resulted in structureless deposits, tension 

cracks, compression ridges, water-escape structures and detached slide-blocks.



6 

 

 
Table 2.1: Properties of sliding mass used in experimental studies of hydroplaning 
Tests Water content Bulk density 

( 33 /10 mkg× ) 
D50 ( mμ ) Mineralogy Hydraulic 

conductivity 
(m/s) 

Yield 
strength 
(Pa) 

Viscosity 
(Pa-s) 

Laval et 
al. (1988) 

Solution or 
suspension in 
saline water 

1.04-1.32 45-112.5 Quartz only    

Mohrig et 
al. (1998) 

16.5% of tap 
water 

2.08 (±0.03)  57  Quartz only 5103 −×  29  14  

Mohrig et 
al. (1999) 

39% of tap water 1.6 1-3  for clay 
57 for silt 
and sand 

40% kaolin, 40% 
silt and 20% sand 

4101 −×  49 , 36 
and 33  

0.035, 0.023 
and 0.019  

Marr et al. 
(2001) 

25%, 30% and 
40% of tap water 

1.56-1.93  Clay, silica sand 
and coal slag 

 9.9-50.7  
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Table 2.2: Setup of experiments and observations 
Tests Equipment Initiation Observations 

Laval et al. 
(1988) 

Plexiglass channel (4 m long, 0.35 m deep and 0.2 
m wide), slope variance from 1 º to 7 º 

2l, 4l or 8l of Saline-water 
solutions or sand suspensions 
were released from the gate of 
the tank  

A thin layer of ambient water was incorporated by gravitational instability under the 
overhung surge front. 

Mohrig et al. 
(1998) 

Channel (10 m long, 3 m high and 0.2 m wide) 
suspended in water tank with two segments, slope 
variance from 0º (horizontal) to 20º 

Approximately 0.16 m3 of 
slurry (debris) was poured at 
the upper end of the tank in a 
period of 60 seconds or less.   

 

 Debris flow hydroplanes when the densimetric Froude number dFr is between 0.3 and 0.4.  

Necking happens behind the head due to the flow attenuation between the lubricated front 
and the more bed-attached body.  The ratio of the height of head to the height of average 

debris body increases with dFr .  The penetration distance of water underneath a 

hydroplaning debris flow increases with dFr and can reach 10 times the average flow 

depth.  The debris underlain by water film ceases to flow internally and moves forward as a 
block.  Hydroplaning also increases the frontal velocity.  New head forms after the 
detachment of the former head.   

Mohrig et al. 
(1999) 

Channel (10 m long, 3 m high and 0.2 m wide) 
suspended in water tank with two segments, slopes 
are 6º and 1º.  Two types of channel bottoms are 
hard bottom consisting of rough, inerodible rubber 
matting and soft bottom consisting deposit of an 
antecedent subaerial flow.   

Approximately 30 l of slurry 
(debris) was released from the 
head tank through a slot (20 
mm high and 170 mm wide).   

 

Hydroplaning causes larger run-out distances on inerodible bed and mutes the role of debris 
rheology.   It also causes head to run out ahead of the body and results in a thickness of 
deposit well below that associated with the yield strength.  Hydroplaning suppress the 
remobilization of an antecedent debris deposit due to 1) thikness of an antecedent deposit 
well below that associated with yield strength and 2) overpassing subaqueous debris flow on 
a film of fluid.   

Marr et al. 
(2001) 

Glass-walled flume (10 m long and 0.3 m wide) 
with three segments, slope variance from 0º 
(horizontal) to 4.6º  

91 kg premixed slurry was 
released from an aperture (0.3 
m wide and 0.03 high) 

Hydroplaning was most frequently observed in strongly coherent flows and resulted in 
structureless deposits, major slope-response changes in thickness, tension cracks, 
compression ridges, water-escape structures and detached slide-blocks. 
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2.3 ANALYTICAL SOLUTION ON HYDROPLANING OF SUBAQUEOUS SLIDES 

Harbitz et al. (2003) developed a one-dimensional analytical solution for a slide 

under steady-state hydroplaning based on dynamic lubrication theory.  In this section, 

dynamic lubrication theory is first introduced and Harbitz et al. (2003)’s solution is then 

discussed.    

2.3.1 Dynamic Lubrication Theory 

Dynamic lubrication theory addresses the two-dimensional flow between two 

infinitely long flat plates moving relative to each other as shown in Figure 2.1.  The 

forces applied on an element of fluid by the surrounding fluid are shown in Figure 2.2.  

Dynamic lubrication theory involves the following assumptions: 

1. The distance between the two plates h  is small; 

2. The fluid between the plates is a Newtonian liquid; 

3. The kinetic pressure in the fluid p is constant in the y direction, i.e. 0=
∂
∂

y
p ;   

4. The flow is fully developed along the x  direction, i.e. 0=
∂
∂

=
∂
∂

x
v

x
u , where 

u and v are the flow velocities in the x and y  directions respectively; 

5. The flow is steady, i.e. 0=
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

tt
p

t
v

t
u τ , where t is time andτ is the 

viscous shear in the fluid.   
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In order to determine the velocities u and v , the continuity equation of flow 

between the plates and the equilibrium conditions for an element of fluid are considered.  

The continuity equation for 2-D flow is  

0=
∂
∂

+
∂
∂

y
v

x
u

 (2.3)

According to Assumption 4 above, the first term of Equation 2.3 is zero, i.e.  

0=
∂
∂

x
u  (2.4)

Substituting Equation 2.4 into Equation 2.3 yields: 

 

Fig. 2.1  2-D flow between plates 

 

 

 

Fig. 2.2  Stresses on an element of fluid 
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0=
∂
∂
y
v  (2.5)

Integrating Equation 2.5 with respect to y gives: 

),( txcv =           (2.6)

Where ),( txc is a function of x and t .  According to Assumptions 4 and 5 above, the 

partial derivatives of velocity v with respect to x and t are zero, i.e.: 

0=
∂
∂

=
∂
∂

t
v

x
v  (2.7)

Substituting Equation 2.6 into Equation 2.7 gives: 

0),(),(
=

∂
∂

=
∂

∂
t

txc
x

txc  (2.8)

Equation 2.8 requires that: 

constantc(x,t) =  (2.9)

Combing Equation 2.9 with 2.6 gives: 

constantv =           (2.10)

The boundary conditions for velocity v are: 

⎩
⎨
⎧

==
==

hyatv
yatv

0
00

          (2.11)

Equations 2.11 and 2.10 yield: 

0== constantv           (2.12)

Equation 2.10 shows that the velocity v is always zero.   

According to Assumptions 3 and 5 above, the partial derivatives of kinetic 

pressure p with respect to y and t are zero, i.e.: 



11 

0=
∂
∂

=
∂
∂

t
p

y
p        (2.13)

Equation 2.13 then suggests: 

)(xfp =  (2.14)

Where )(xf is a function of x only, i.e., kinetic pressure p only varies with x .   The 

partial derivative of kinetic pressure p with respect to x is the same as the derivative of 

p with respect to x , i.e.: 

dx
dp

x
p

=
∂
∂        (2.15)

Equilibrium of forces on the element in the x  direction gives:  

0)( =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

++⎟
⎠
⎞

⎜
⎝
⎛

∂
∂

+−− dxdy
y

dydx
x
ppdxpdy τττ  

or   0=
∂
∂

−
∂
∂

yx
p τ     

(2.16)

Substuting Equation 2.15 into 2.16 yields: 

0=
∂
∂

−
ydx

dp τ        (2.17)

The relationship between shear stress τ and the rate of shear strain 
y
u

∂
∂ for a Newtonian 

fluid can be expressed as 

y
u

∂
∂

= μτ        (2.18)

where μ  is the dynamic viscosity of the fluid.  Substituting (2.18) into (2.17) then gives 

02

2

=
∂
∂

−
y
u

dx
dp μ  or  

dx
dp

y
u

μ
1

2

2

=
∂
∂      (2.19)

Integrating Equation 2.19 with respect to y  yields: 
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⎥⎦
⎤

⎢⎣
⎡ ++= )()(
2
11

21
2 xcyxcy

dx
dpu

μ
   (2.20)

Where )(1 xc and )(2 xc are functions of x governed by the boundary conditions for 

velocity,u .  The boundary conditions for velocity, u , are as follows:  

⎩
⎨
⎧

==
==

hyatUu
yatu 00

          (2.21)

Where U is the velocity of the upper plate relative to the lower plate as shown in Figure 

2.1.  From Equations 2.20 and 2.21 we can write: 

⎪⎩

⎪
⎨
⎧

=

−=

0)(
2
1)(

2

1

xc

h
dx
dp

h
Uxc μ

 (2.22)

Substituting Equation 2.22 into Equation 2.20 yields:  

y
h
Uhyy

dx
dpu +⎥⎦

⎤
⎢⎣
⎡ −= )(

2
1 2

μ
 (2.23)

Equation 2.23 shows that the velocity u  varies quadratically in the y  direction.   

In summary, according to dynamic lubrication theory, the velocities u and v  of 

the fluid have the following characteristics: 

1. The velocity u can be expressed as a quadratic function y ; 

2. The velocity v is zero. 

The above characteristics of velocities u and v  are applied in Harbitz et al.’s solution. 

2.3.2 Harbitz et al.’s Solution 

Harbitz et al. (2003) solved the problem of steady-state hydroplaning of a slide 

mass analytically.  They assumed that the slide mass is a rigid block sliding along a film 

of water as shown in Figure 2.3.  The length-to-height ratio ( HL / ) of the block is 

assumed to be so large that the forces on the leading and trailing edges of the block are 

negligible.  The coordinate system moves with the lower left corner of the block in the 

x direction as shown in Figure 2.3.  The interface between the block and the underlying 
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slope is assumed to be smooth and the slope angle is constant.  The distance between the 

bottom of the block and the underlying ground h is assumed to vary linearly along the 

x direction.  The distances between the two lower corners of the block and underlying 

ground are designated as fh and th , respectively.  Harbitz et al. applied the conditions 

from dynamic lubrication theory to the flow between the block and underlying ground.  

They assumed that the flow velocity in the x  direction u is distributed quadratically in 

the y  direction.   

 

In Figure 2.4, the symbol Q  represents the total flow rate for flow in the 

x direction between the block and underlying ground.  Harbitz et al. (2003) derived an 

expression for flow rate Q in terms of the length of the block L , distances fh , th and the 

velocity of the block U .  Harbitz et al. assumed that only five types of stresses and forces 

are applied on the block.  These stresses and force are applied by the water and 

underlying ground as illustrated in Figure 2.5.  Hydrostatic pressures are accounted for by 

using the submerged weight of the block G′ .  The kinetic pressure bp  and the viscous 

shear bτ  along the bottom of the block are functions of the flow rate Q , distances fh , th  

and the velocity of the block U .  The kinetic pressure on the top surface of the block tp  

 

Fig. 2.3 Steady-state hydroplaning of a sliding block on a slope  

fh

th
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 Block
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L
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ux,
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is assumed to be zero.  The viscous shear on the top surface of the block tτ  is estimated 

using the theory for laminar or turbulent flow over a flat plate.   

 

Equilibrium of the block requires that the total forces and total moments sum to 

be zero.  Equilibrium for the three degrees of freedom and the equation for the flow rate 

Q  provide four simultaneous nonlinear equations as follows: 

0),,,(1 =QULHf  (2.24)

 

Fig. 2.4 Major variables for Harbitz et al.’s solution 

 

 

 

Fig. 2.5 Forces and moments on the hydroplaning block 
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0),,,(2 =QULHf  
(2.25)

0),,,(3 =QULHf  
(2.26)

0),,,(4 =QULHf  
(2.27)

Here 1f , 2f , 3f and 4f are non-linear functions of L , H , U and Q .  More details of 

functions can be found in Harbtz et al. (2003).  The four equations above constitute 

Harbitz et al.’s analytical solution; however the actual scheme for solving the four 

equations together for the block length L , block height H , velocityU  and flow rateQ  

was never provided by Harbitz et al.    

 

2.4 NUMERICAL MODELS ON POST-INITIATION MOVEMENT OF SUBAQUEOUS SLIDES 

De Blasio, et al. (2004) presented a one-dimensional numerical model for 

subaqueous slides that includes possible hydroplaning.  Their model is essentially an 

extension of a viscous model for non-hydroplaning debris flows by Imran et al. (2001).  

Below Imran et al’s model and other models that do not include hydroplaning are 

discussed first.  De Blasio, et al.’s model is then discussed.   

2.4.1 Numerical Models involving No Hydroplaning 

A common assumption for the models that do not involve hydroplaning is that the 

bottom surface of the slide mass is always in contact with the underlying ground.  The 

detachment of the slide mass from the underlying ground or hydroplaning can not occur.  

Several major models that do not involve hydroplaning are summarized below. 
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2.4.1.1 Lumped mass models 

Several lumped mass models idealize the slide mass as a single point and only 

provide estimations for the movement of the center of the slide mass down slope (Körner 

1976; Perla et al., 1980; Hutchinson, 1986 and others).  No movement of the slide mass 

normal to the underlying ground is considered.   

2.4.1.2 Miao, et al.’s model 

Miao, et al. (2001) modeled the slide mass as a set of deformable blocks.  They 

incorporated mass dynamics into the limit equilibrium analysis of blocks considering 

interaction and deformation of the blocks.  All the blocks are assumed to be in contact 

with the underlying ground along the bottom surfaces.   

2.4.1.3 Continuum models 

Tacher, L. et al. (2005) modeled the slide mass as a continuous solid.  They 

applied a Mohr-Coulomb model and the Hujeux elasto-plastic model in a finite element 

simulation of landslides.  Along the interface between the slide mass and underlying 

ground, the displacements of the slide mass normal to the underlying ground were 

assumed to be zero.   

2.4.1.4 Fluid models 

Blight, et al. (2005), Fread (1984), Imran et al. (2001) and others modeled 

landslides as a viscous fluid.  Imran et al. (2001)’s model is a representative example of 

these viscous flow models and is discussed in detail below.   

In Imran et al.’s model, the deformation and movement of the slide mass are 

simulated as an unsteady, non-uniform, laminar slender flow as illustrated in Figure 2.6.  

Any flow in the z  direction is neglected and all flow conditions in the z  direction are 

assumed to be constant.  The moving mass is assumed to remain continuous.  The effect 

of static pressures applied on the slide mass by the surrounding fluid is accounted for by 

using the effective weight of the slide mass.  Hydrodynamic stresses applied on the slide 
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mass by the surrounding fluid are neglected.  Imran et al. divided the slide mass into a 

shear layer and plug layer.  In the plug layer, the velocity u is assumed to be constant 

along the y direction.  Therefore the shear strain in the plug layer is zero.  The shear layer 

is the transition between the underlying slope and the plug layer and shear strain occurs.   

 

The continuity and equilibrium equations in a coordinate system fixed on the 

slope as in Figure 2.6 are as follows.   

0=
∂
∂

+
∂
∂

y
v

x
u

 (2.28)

y
g

x
Hg

y
uv

x
uu

t
u

ss

w

s

w

∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+

∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−=

∂
∂

+
∂
∂

+
∂
∂ τ

ρ
θ

ρ
ρ

ρ
ρ 1sin11 (2.29)

)()( yHgp ws −−=′ ρρ  (2.30)

where u  and v  are the velocities in the x  and y  directions, t is time, wρ and sρ are the 

densities of the ambient fluid and slide mass, respectively, g is the acceleration due to 

gravity, H  is the height of the slide mass, τ is the shear stress and p′  is the pressure due 

to the effective weight of the slide mass.  Imran et al. used the Herschel-Bulkley 

rheological model to describe the relationship between the rate of shear strain γ& and the 

shear stress τ .  The rate of shear strain γ& can be expressed in term of shear stressτ  as: 

 

Fig. 2.6 Imran et al.’s model of slides 
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 (2.31) 

 
where yieldτ is a yield stress and rγ& is a reference rate of shear strain.  This model reduces 

to a Bingham model when n is 1.0.   

Imran et al. applied the following boundary conditions on the slide mass: 

1. There is no slip at the interface between the slide mass and underlying ground, 

i.e. 

⎩
⎨
⎧

==
==

00
00

yatv
yatu

 (2.32)

2. The top surface of the slide mass is a kinematic boundary, i.e.  

Hyat
x
Hu

t
Hv =

∂
∂

+
∂

∂
=  (2.33)

For initial conditions, the slide mass is assumed to be stationary and not moving.  The 

initial shape and dimensions of the slide mass are specified.  The sliding process is 

assumed to stop when the maximum of velocity u within the slide mass is less than 10 

cm/s.   

Imran et al. solved Equations 2.28 to 2.30 numerically using an explicit finite 

difference scheme.  They simulated numerically the laboratory experiments on subaerial 

and subaqueous slides conducted by Mohrig, et al. (1998).  The numerical results from 

the simulations on subaerial slides agreed well with the measurements reported by 

Mohrig, et al.  However the run-out distances of subaqueous slides predicted by Imran et 

al.’s model were much shorter than those reported by Mohrig, et al.   

2.4.1.5 Disadvantage of models involving no hydroplaning 

None of the numerical models discussed in section 2.4.1 include hydroplaning.  In 

these models, the driving forces on subaqueous slides are considered smaller than those 
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on the subaerial counterparts due to buoyancy.  Therefore the predictions of run-out 

distances for subaqueous slides are smaller than those for their subaerial counterparts.  

These predictions are inconsistent with the observations by Mohrig, et al. (1998, 1999) 

discussed earlier.    

2.4.2 De Blasio, et al.’s Model 

De Blasio, et al. (2004) presented a one-dimensional numerical model for slides 

that includes possible hydroplaning.  They modified Imran et al.’s model by considering 

the possible detachment of the slide mass from the underlying ground.  The geometry and 

coordinate system of the model are shown in Figure 2.7.    

 

 

(a) Coordinate system and geometry of the slide mass 

 

 

(b) Geometry of the wedge between the slide mass and underlying ground 

Fig. 2.7 Geometry and coordinate system for De Blasio, et al.’s model 
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In De Blasio et al.’s model, the slide mass is assumed to be a viscous fluid and the 

sliding process is divided into four stages.  The four stages of sliding are as follows: (1) 

the slide mass flows directly on the surface of the underlying ground, (2) a wedge of 

water forms at the interface between the slide mass and underlying ground, but the wedge 

is not thick enough for the slide mass to hydroplane, (3) the slide mass hydroplanes and 

(4) hydroplaning stops and the slide mass decelerates.  For stages (1), (2) and (4), the 

viscous shear on the top surface is assumed to be the only hydrodynamic stress applied 

on the slide mass.  This viscous shear is estimated using the coefficient of viscous drag 

derived for cylinders by Newman (1977).  Along the bottom surface of the slide mass, 

shear stress is assumed to be applied by the underlying ground.  For the first stage, the 

shear stress on the bottom surface of the slide mass is related to the yield stress of the 

sliding mass.  The second stage starts when the velocity of the slide mass reaches a 

“critical” value.  The critical velocity critU  is determined using Equation (2.2) and the 

critical Froude number critdFr ,  is assumed to be 1.0.  For the second stage, a wedge of 

water is introduced suddenly at the interface between the slide mass and the underlying 

ground near the front of the slide mass.  As shown in Figure 2.7 (b), the thickness of the 

wedge h  is a function of the coordinate x .  Initial values of thickness h  and length l  of 

the wedge are assumed arbitrarily.  Within the wedge, the kinetic pressure p  is assumed 

to vary linearly along the x  direction.  The velocity u  of water within the wedge is 

assumed to vary quadratically in the y  direction as discussed earlier in section 2.3.1.  

The flow of water within the wedge is solved for together with the flow of the sliding 

material.  The changes of the wedge’s dimension ( h and l ) are also computed.  The shear 

stress on the bottom surface of the slide mass is assumed to be applied by the underlying 

ground despite the existence of the wedge.  Any influence on this shear stress produced 

by the wedge of water is neglected.  The third stage starts when the maximum value of 

thickness maxh  is greater than the height of roughness rh  at the interface between the 

slide mass and the underlying slope.  The height of the roughness rh  is assumed to be 
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several millimeters for laboratory tests and several decimeters for cases in the field.  In 

the third stage, the portion of slide mass under which the thickness h  is greater than 

height rh  is assumed to hydroplane.  The shear stress on the bottom of the hydroplaning 

portion of the slide mass is assumed to be the viscous shear at the top surface of the water 

wedge.  A drag due to kinetic pressure p applied by the surrounding fluid is added on the 

slide mass.  This drag is estimated using the coefficient of pressure-induced drag derived 

for cylinders by Newman (1977).  The fourth stage of sliding is assumed to start when the 

maximum thickness maxh is smaller than the height of roughness rh .  The fourth stage is 

similar to the second stage and the slide mass decelerates until it stops.   

 

2.5 EXAMINATION OF PREVIOUS RESEARCH ON HYDROPLANING OF SLIDES 

In this section, the previous experimental, analytical and numerical research on 

hydroplaning of subaqueous slides are examined and limitations are discussed.   

2.5.1 Examination of Harbitz et al.’s solution 

A numerical method is used to solve Equations 2.24 to 2.27 in Harbitz et al.’s 

solution for the block length L , block height H , velocity U  and flow rate Q .  The 

numerical method and results are discussed further below.   

2.5.1.1 Numerical method 

For this research, a Newtonian iterative procedure was used to solve Harbitz et 

al.’s Equations 2.24 to 2.27.  A computer program nopressure.cpp was written in the C 

programming language to implement the procedure.  Details of the program and 

Newtonian procedure are discussed below. 

The program nopressure.cpp reads from a file named gld.in.  The parameters 

specified as input data and their physical meanings are summarized in Table 2.3.  The 

program writes the numerical results summarized in Table 2.4 to a file named gld.out.   
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Table 2.3 Input parameters and their physical meanings 
Parameter Physical Meaning 
L   The initial value for the length of the block (m) 
H  The initial value for the height of the block (m) 
U  The initial value for the velocity of the block (m/s) 
Q  The initial value for the flow rate ( sm /2 ) 
φ  Slope angle of the underlying ground (degree) 
k  The ratio of the distance between the lower corner of the block and 

underlying ground at the tail th to the length of the block L , i.e. 
L
h

k t=  

r  The ratio of the distance between the lower corner of the block and 

underlying ground at the front fh to that at the tail th , i.e. 
t

f

h
h

r =  

wυ  The kinematic viscosity of pure water ( sm /2 ) 

sR  
The effective specific gravity of the sliding block, i.e. 

w

ws
sR

ρ
ρρ −

= , 

where sρ is the density of the block, and wρ  is the density of the 
surrounding fluid. 

s  The ratio of the viscosity of the fluid between the block and underlying 

ground to that of pure water, i.e.  
w

s
υ
υ

= , whereυ is the viscosity of the 

fluid between the block and underlying ground.   
 
 
 
Table 2.4 Output variables and their physical meanings 
Parameter Physical Meaning 
L   Calculated value for the length of the block (m) 
H  Calculated value for the height of the block (m) 
U  Calculated value for the velocity of the block (m/s) 
Q  Calculated value for the flow rate ( sm /2 ) 
error  The numerical error in the last iteration 
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A flow chart for the computer program is shown in Figure 2.8.  In the Newtonian 

iterative procedure, a matrix A is defined as: 

41
2

)()(
1, toifor

dL
dLLfdLLf

A ii
i =

−−+
=  (2.34)

41
2

)()(
2, toifor

dH
dHHfdHHf

A ii
i =

−−+
=  (2.35)

41
2

)()(
3, toifor

dU
dUUfdUUf

A ii
i =

−−+
=  (2.36)

41
2

)()(
4, toifor

dQ
dQQfdQQf

A ii
i =

−−+
=  (2.37)

Where 1,iA  to 4,iA  are the four terms at the i th row of matrix A .  More details on the 

Newtonian procedure can be found in Ansorge, et al. (1982).  The numerical error for the 

thi )1( +  iteration is defined as: 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−−−
= ++++

+
i

ii

i

ii

i

ii

i

ii
i Q

QQ
U

UU
H

HH
L

LL
error 1111

1 ,,,max  (2.38)

Where iL , iH , iU and iQ  are the variables calculated in the ith  iteration and 1+iL , 1+iH , 

1+iU and 1+iQ  are the variables calculated in the thi )1( +  iteration.   
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2.5.1.2 Numerical results 

 

Fig. 2.8 Flow chart of program nopressure.cpp 
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A total of 22 cases were analyzed using the computer program where the slope 

angle of the underlying ground φ  changes from 0.01 to 10 degrees.  The input conditions 

for the numerical cases are listed in Table 2.5.  The tolerance of the numerical error 

defined is 310− .  Calculated values for the unknowns ( L , H ,U  and Q ) are plotted versus 

the slope angle of the underlying ground φ  in Figures 2.9 to 2.12.  Considerable 

scattering was observed in the computed values, possibly as a result of the error tolerance 

being too large.  However attempts to reduce the apparent scattering by reducing the error 

tolerance were generally unsuccessful and the iterations were eventually terminated 

before convergence was achieved. 

 

Table 2.5  Input conditions for numerical cases 
Case No. )/( 2 smwυ  r  k  (degree)φ  sR  s  

1 1.00E-06 4 5.00E-05 0.01 0.8 1.0 
2 1.00E-06 4 5.00E-05 0.03 0.8 1.0 
3 1.00E-06 4 5.00E-05 0.07 0.8 1.0 
4 1.00E-06 4 5.00E-05 0.10 0.8 1.0 
5 1.00E-06 4 5.00E-05 0.20 0.8 1.0 
6 1.00E-06 4 5.00E-05 0.30 0.8 1.0 
7 1.00E-06 4 5.00E-05 0.40 0.8 1.0 
8 1.00E-06 4 5.00E-05 0.50 0.8 1.0 
9 1.00E-06 4 5.00E-05 0.60 0.8 1.0 

10 1.00E-06 4 5.00E-05 0.70 0.8 1.0 
11 1.00E-06 4 5.00E-05 0.80 0.8 1.0 
12 1.00E-06 4 5.00E-05 0.90 0.8 1.0 
13 1.00E-06 4 5.00E-05 1.00 0.8 1.0 
14 1.00E-06 4 5.00E-05 2.00 0.8 1.0 
15 1.00E-06 4 5.00E-05 3.00 0.8 1.0 
16 1.00E-06 4 5.00E-05 4.00 0.8 1.0 
17 1.00E-06 4 5.00E-05 5.00 0.8 1.0 
18 1.00E-06 4 5.00E-05 6.00 0.8 1.0 
19 1.00E-06 4 5.00E-05 7.00 0.8 1.0 
20 1.00E-06 4 5.00E-05 8.00 0.8 1.0 
21 1.00E-06 4 5.00E-05 9.00 0.8 1.0 
22 1.00E-06 4 5.00E-05 10.00 0.8 1.0 
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Fig. 2.9 Calculated length of the block using Harbitz et al.’s solution  

Fig. 2.10 Calculated height of the block using Harbitz et al.’s solution 
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Fig. 2.12 Calculated flow rate between the bottom surface of block and underlying 
ground using Harbitz et al.’s solution 

Fig. 2.11 Calculated velocity of the block using Harbitz et al.’s solution  
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2.5.1.3 MODIFICATION OF HARBITZ ET AL.’S SOLUTION 

In an attempt in this study to reduce the problems of numerical stability in Harbitz 

et al.’s solution, the solution was modified.  A force addR  was added to the block in the 

negative x  direction.  The force addR  was assumed to be produced by a kinetic pressure 

up  on the leading edge of the block.  The pressure up  was assumed to be uniform and 

equal to the stagnation pressure, stagp ,  calculated as: 

2

2
1 Up wstag ρ=  (2.39)

Using the same input conditions as in Table 2.5, the numerical results from the 

modified solution are shown in Figures 2.13 to 2.16 along with those from the original 

solution.  In all cases stable numerical results were obtained with the modified solution.  

The component of the effective weight of the block G′ in the x  direction is the total 

driving force applied on the block down slope.  This total driving force is equal to the 

total resistance R  on the block because the block is assumed to be in a steady state of 

motion.  Therefore the total resistance R  can be calculated as: 

φsinGR ′=  (2.40)

The ratios of the added force addR  to the total resistance R  and the slope angles φ  for all 

the computed cases are plotted in Figure 2.17.  The ratios of the length to the height of 

the block HL /  are also plotted versus the slope angle φ  in Figure 2.18.  As shown in 

Figures 2.17 and 2.18, when the slope becomes steeper, the effect of the added force addR  

becomes more significant and the length-to-height ratio ( HL / ) of the block decreases.  

Therefore Harbitz, et al.’s assumption that the kinetic pressure up along the leading edge 

of the block was negligible is not reasonable when the slope becomes steep.  This 

unreasonable assumption was the cause of numerical instability in Harbitz et al.’s 

solution.   
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Fig. 2.13 Calculated length of the block using Harbitz et al.’s original solution and 

modified solution 

 
 
 

 Fig. 2.14 Calculated height of the block using Harbitz et al.’s original 

solution and modified solution 
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Fig. 2.15 Calculated velocity of the block using Harbitz et al.’s original solution and 

modified solution  

Fig. 2.16 Calculated flow rate between the bottom surface of block and underlying 

ground using Harbitz et al.’s original solution and modified solution 
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 Fig. 2.17 Variation of the ratios RRadd /  with slope angleφ  

Fig. 2.18 Variation of the ratios HL /  with slope angle φ  
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2.5.1.4 Limitations of Harbitz et al.’s solution 

Without the modifications described in the previous section, the solution by 

Harbitz et al. is numerically unstable.  The deficiency of Harbitz et al.’s solution is 

apparently caused by neglecting the kinetic pressure up  along the leading edge of the 

block.  The effect of the pressure up  can be significant as the ratio of length to height 

HL /  decreases and the slope angle φ  increases.  Therefore the assumption that the 

pressure, up , along the leading edge of the block is negligible is not valid especially as 

the slope angle φ  increases.   

2.5.2 Examination of on-set condition for hydroplaning 

De Blasio et al. (2004) assumed that the critical value of Froude number critdFr ,  is 

1.0 for the slide mass to start hydroplaning.  In contrast, Mohrig et al. (1998) reported 

that the minimum value of the Froude number dFr  was 0.3 for slide mass to hydroplane.  

The difference between De Blasio et al.’s assumption and Mohrig et al.’s experimental 

observations suggests that further study of the physical meaning of Froude number dFr  is 

appropriate.  Rearrangement of Equation 2.1 gives 

θρρ

ρ

cos)(
2
1

2
1

2

2

gH

U
Fr

wd

w

d −
=  

(2.41) 

Or in terms of the stagnation pressure given be Equation 2.38 

θρρ cos)(2
1 2

gH
p

Fr
wd

stag
d −

=  (2.42) 

The normal stress on the bottom surface wσ  caused by the effective weight of the slide 

mass can be calculated as 

( ) φρρσ cosgHwsw −=  (2.43) 
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Substitute Equation 2.43 into 2.42 gives: 

w

stag
d

p
Fr

σ
=2

2
1  (2.44) 

Rearrangement of Equation 2.44 gives: 

w

stag
d

p
Fr

σ
2

=  (2.45) 

Thus Froude number dFr  represents the magnitude of the stagnation pressure stagp  

relative to the normal stress wσ  and suggests the on-set condition of hydroplaning is 

related to the stresses and forces applied on the side mass by the surrounding fluid and 

underlying ground.   

 In Harbitz et al.’s solution and De Blasio et al.’s model, it was assumed that the 

kinetic pressure, bp , along the bottom surface of the slide mass was the only stress 

applied by the surrounding fluid in the direction normal to the underlying slope.  Based 
on their assumption, hydroplaning should occur when the stagnation pressure stagp  is 

equal to the normal stress wσ  and the total force on the slide mass in the direction normal 

to the underlying slope is zero.  In this case, the theoretical critical Froude number for 
hydroplaning to happen critdFr ,  should be 2  according to Equation 2.45.  However 

values of the critical Froude number critdFr ,  was 1.0 and 0.3 according to De Blasio et al. 

and Mohrig et al, respectively.  The difference among De Blasio et al.’s assumption, 

Mohrig et al.’s experimental observations and the theoretical value of the critical Froude 
number critdFr ,  suggests further study is needed for the stresses on the slide mass applied 

by the surrounding fluid in order to understand hydroplaning of subaqueous slides.    
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2.6 FUTURE RESEARCH ON HYDROPLANING OF SUBAQUEOUS SLIDES 

The limitations of existing models for subaqueous slides involving hydroplaning 

require further study on the mechanism of hydroplaning and its effect on a slide.  In order 

to better understand hydroplaning, the stresses and forces on the slide mass applied by the 

surrounding fluid were studied by numerical modeling as described in the next chapter.   
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Chapter 3: Study of Hydrodynamic Stresses 

In order to better understand the motion of subaqueous slides and the occurrence 

of hydroplaning, the stresses applied on the slide by the surrounding fluid need to be 

further studied.  In this chapter, the flow around a sliding mass and the hydrodynamic 

stresses applied on the mass by the surrounding fluid are analyzed numerically.  

Commercial software known as, Fluent 6.1, is used for the numerical modeling.  The 

numerical model, its implementation, results of numerical analyses and conclusions are 

presented in this chapter.     

 

3.1 NUMERICAL MODEL 

A numerical model was constructed to study the forces applied by the surrounding 

fluid on a slide mass moving through fluid.  For the numerical model, the slide mass was 

assumed to have a constant shape and velocity.  The slide mass was represented by a 

streamline shaped body as shown in Figure 3.1.  The front surface of the slide mass is 

shown in Figure 3.2 with more detail.  The portion from point I  to point S  is a circular 

arc.  In the local coordinate system moq −−  (Figure 3.3), the arc from point I  to point 

S  is expressed as: 

)00222 rmandrqforrmq ≤≤≤≤=+  (3.1)

Where r  is the radius of the arc as shown in Figure 3.1.  The curve from point I  to point 

J  is part of an ellipse.  In the local coordinate system aob −−  (Figure 3.4), the curve 

from point I to point J  is expressed as: 

)(001
22

rHaandwbfor
rH

a
w
b

−≤≤≤≤=⎟
⎠
⎞

⎜
⎝
⎛

−
+⎟

⎠
⎞

⎜
⎝
⎛  (3.2)
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Where H  is the height of the slide mass, and w  is the width of the front portion of the 

slide mass as shown in Figure 3.1.  The ratio between the height of the slide mass ( H ) 

and the width of the front portion ( w ) is defined as the “height-to-width ratios” ( wH / ).  

The width of the slide mass normal to the yox −− plane in Figure 3.1 is assumed to be 

infinite.  The reference for the coordinate system is on the slide mass, and the 

surrounding flow is assumed to be steady 2-D flow around a fixed rigid body.  The 

velocities u and v of the surrounding fluid far away from the slide mass are referred to as 

“inflow velocities”.  In the following discussion, the inflow velocity is symbolized as U  

in the x direction and is assumed to be zero in the y direction.  A gap is assumed between 

the slide mass and the underlying ground for the cases where hydroplaning is assumed to 

occur.  The bottom surface of the slide mass is assumed to be parallel to the surface of the 

underlying ground.  The distance between the bottom surface of the slide mass and the 

underlying ground is designated as h .  The surrounding fluid is considered to be water.  

The boundary conditions for the flow are illustrated in Figure 3.5 and described as 

follows: 

1. along the left edge of the calculation domain ( 0=x ), the velocities are 

equal to the inflow velocities, i.e. Uu = and 0=v ;  

2. at the top edge of the calculation domain, the velocities are equal to the 

inflow velocities, i.e. Uu = and 0=v ;  

3. along the right edge of the calculation domain, the flow is assumed to be 

fully developed and, thus, does not change along the horizontal direction, 

i.e.  0=
∂
∂

=
∂
∂

x
v

x
u ;  

4. the bottom edge of the calculation domain is treated as a moving, non-slip 

wall representing the ground surface moving relative to the slide mass 

with a constant horizontal velocity, i.e. Uu = and 0=v ;  
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5. the surfaces of the slide mass are stationary non-slip walls because the 

slide mass does not move relative to itself, i.e. 0=u and 0=v .   

The commercial software known as, Fluent 6.1, was used for the numerical 

modeling.  A Reynolds-Stress turbulent model was used to simulate the flow.  Fluent uses 

an iterative scheme to solve the governing equations of flow.  Convergence is determined 

based on the values of scaled residuals defined as the ratios of the corrections to the 

primitive variables divided by the primitive variables themselves for any given iteration.  

The primitive variables include horizontal velocity, vertical velocity and mass flow rate 

of the fluid.  For example, the scaled residual for the horizontal velocity at the 1+i  

iteration is calculated as  

)1(
)()1(

)1(
+
−+

=+
iu

iuiu
ieu  

(3.3)

where )1( +iu  is the value of horizontal velocity calculated in the thi )1( +  iteration,  )(iu  

is the value of horizontal velocity calculated in the thi)(  iteration and i  is the number of 

iterations.  In the numerical modeling all scaled residuals were required to be smaller 

than 10-5 for convergence.   

The commercial software known as Gambit 2.1 was used as the preprocessor for 

Fluent.  Gambit was used to model the geometry of the calculation domain and to 

generate meshes.   
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Fig. 3.1  Geometry of the numerical model 
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Fig. 3.2  Front of the slide mass  

 

Fig. 3.3  Curve from point I to point S   

 

Fig. 3.4  Curve from point I to point J   
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Fig. 3.5  Boundary conditions for the numerical model 

0=
=

v
Uu

inletvelocity

0=
=

v
Uu

inletvelocity

0=
∂
∂

=
∂
∂

x
v

x
u

outflow

0=
=

v
Uu

wallmovingnonslip

0
0

=
=

v
u

wallstationarynonslip

0
0

=
=

v
u

wallstationarynonslip



 41

3.2 NUMERICAL CASES 

Ten cases were analyzed to study the hydrodynamic stresses on the slide mass.  

The flow conditions and objective of the ten cases are summarized in Table 3.1.   
 
 
Table 3.1: Flow conditions and functions for numerical cases 
Case 
No. 

Inflow velocity 
U  (m/s) 

Distance between the 
bottom surface of the 
slide mass and underlying 
ground h (m) 

Height-to-
width ratio of 
front ( wH / ) 

Objective 

1 01 == vu  0.01 0.5 Base case 
compared with 
Cases 2 to 10 

2 010 == vu  0.01 0.5 Compared with 
Case 1 to study the 
effect of slide 
velocity 

3 01 == vu  0.02 0.5 
4 01 == vu  0.05 0.5 
5 01 == vu  0.1 0.5 
6 01 == vu  1 0.5 
7 01 == vu  10 0.5 
8 01 == vu  50 0.5 
9 01 == vu  0 0.5 

Compared with 
Case 1 to study the 
effect of gap 
thickness 

 

10 01 == vu  0 2.0 Compared with 
Case 9 to study the 
effect of frontal 
shape 

 

3.3 NUMERICAL RESULTS 

The various flow conditions and numerical results for the ten cases are discussed 

in this section.  The results for selected cases are also compared to examine the effects of 

flow conditions on the hydrodynamic stresses.  For presentation purposes, the 

hydrodynamic stresses including kinetic pressure and viscous shear are normalized by 
dividing the values by the corresponding stagnation pressure stagp  defined in Equation 



 42

2.38.  The stagnation pressure stagp  is computed from Equation 2.38 using the inflow 

velocity, U .    

3.3.1 Hydrodynamic Stresses 

For Case 1, the geometry of the flow domain and boundary conditions are as 

shown in Figures 3.6 and 3.7.  The inflow velocity in the x  direction U  is 1 m/s.  The 

distance between the bottom surface of the slide mass and underlying ground h is 0.01 m.  

The height-to-width ratio wH /  is 0.5.  The mesh is shown in Figure 3.8 and consists of 

594812 rectangular and triangular elements.   
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Fig. 3.6  Geometry for Case 1 ( smU /1= ; mh 01.0= ; 5.0/ =wH ) 
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 Fig. 3.7  Boundary conditions for Case 1 ( smU /1= ; mh 01.0= ; 5.0/ =wH ) 
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Fig. 3.8  Mesh for Case 1 ( smU /1= ; mh 01.0= ; 5.0/ =wH ) 
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3.3.1.1 Kinetic pressures 

The variation in computed non-dimensional kinetic pressures along the top and 

bottom surfaces of the slide mass with the horizontal position is shown in Figure 3.9.  As 

shown in Figure 3.9, the non-dimensional kinetic pressure is about 1.0 at the front nose of 
the slide mass.  For discussion of the pressure stagb pp /  along the bottom surface, the 

bottom surface of the slide mass is divided into two portions.  The first portion is the 

curved portion from point I  to point S  as shown in Figure 3.2.  The second portion is 

the remainder of the bottom surface.  As shown in Figure 3.2, the length of first portion is 

much smaller than that of the second portion.  Therefore, it seems reasonable to neglect 

the kinetic pressure over the first portion.  Along the second portion of the bottom 
surface, the non-dimensional pressure, stagb pp /  varies linearly.  The pressure stagb pp /  

at the beginning of the second portion of the bottom surface of the slide mass is about 
0.88 and marked by an inverted triangle in Figure 3.9.  The pressure stagb pp /  decreases 

to about 0.3 at the tail of the side mass.  For discussion of the normalized pressure 

stagt pp /  along the top surface of the slide mass, the top surface is divided into three 

portions.  The first portion is the curved portion from point I  to point J  shown in Figure 

3.2.  The pressure stagt pp /  along this portion is negative and provides lift on the slide 

mass.  The second portion is the middle portion of the top surface as shown in Figure 3.1.  
The normalized pressure stagt pp /  in this portion is constant at -0.1.  The third portion is 

the remainder of the top surface.  The normalized pressure stagt pp /  in this portion varies 

linearly from about -0.1 to 0.3 at the tail end of the slide mass.   
As discussed above, the normalized pressure, stagt pp / , along the middle portion 

of the top surface has a negative value.  This negative value of pressure stagt pp /  is 

believed to be a reflection of limitations of the numerical model.  As shown in Figure 3.6, 

the total height of the calculation domain (slide mass and surrounding fluid) is 52 m, 

which is only about 2.4 times the length of the slide mass (22 m).  For natural submarine 
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slides, the slide mass moves along the bottom of the ocean and the depth of the sea water 

is probably more than 10 times the length of the slide mass.  Thus for actual submarine 

slides, it is reasonable to assume that the top edge of the flow domain is essentially 

infinitely far from the slide mass.  The flow above the middle portion of the slide mass 

can then be approximated as flow above an infinitesimally thin plate.  According to the 

boundary layer theory (Crowe, and et al. 2000), the kinetic pressure above an 
infinitesimally thin plate is zero.  Therefore, the non-dimensional pressure stagt pp /  on 

the middle portion of the top surface of an actual submarine slide is probably zero.  The 
non-dimensional pressure stagt pp /  on the tail portion of the top surface increases linearly 

from zero beginning at the start of tail portion to 0.3 at the end of the tail portion.   

3.3.1.2 Reexamination of the on-set condition of hydroplaning 

As discussed in section 2.5.2, hydroplaning was expected to happen when the 

Froude number dFr  was 2  according to Equation 2.45.  This expectation was based on 

a common assumption adopted by Harbitz et al. (2003) and De Blasio et al. (2004) that 

the kinetic pressure, bp , along the bottom surface of the slide mass was the only stress 

applied by the surrounding fluid in the direction normal to the underlying slope.  This 
assumption is clearly unrealistic because the pressure stagt pp /  along the front portion of 

the slide mass, i.e. the curved portion from point I  to point J  shown in Figure 3.2, is 

negative.  Taking this negative pressure, stagt pp / , into consideration, hydroplaning 

should occur when the stagnation pressure stagp  is smaller than the normal stress wσ  

along the bottom surface of the slide mass.  Therefore the critical Froude number critdFr ,  

for hydroplaning to happen should be smaller than 2 , which agrees with the 

experimental observations by Mohrig, et al and the arbitrary assumptions made by De 

Blasio, et al.   
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3.3.1.3 Viscous shears 

The distributions of the normalized shear stresses along the top and bottom 
surfaces of the slide mass stagt p/τ , stagb p/τ  are shown in Figure 3.10.  The normalized 

shear stresses shown in Figure 3.10 are much smaller than the normalized pressures 

shown in Figure 3.9.   

For comparison, the shear stresses were also calculated using the analytical 

solution developed for flow above a smooth flat plate as:  

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛

= 7/1
2 027.0

2
1

υ

ρτ
Ux

Uwx

 

(3.4)

where x  is the distance from the upstream end of the plate or slide mass to the location 

of concern , xτ  is the shear stress at a location x , wρ  is the density of water, U  is the 

inflow velocity in the x  direction, and υ  is the kinematic viscosity of water.  Further 

details regarding the analytical solution can be found in Crowe, Roberson and Elger 

(2000).  The shear stresses calculated using Equation 3.4 were also normalized by the 
stagnation pressure stagp  and plotted in Figure 3.10 as the “analytical solution”.  It can be 

seen that the shear stresses calculated using Equation 3.4 are close to the ones from the 

numerical analyses with Fluent.  Thus, the analytical solution for shear stresses developed 

for flow above a smooth flat plate seems to provide an acceptable approximation for the 

shear stresses on the slide mass.   
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Fig. 3.9  Non-dimensional kinetic pressures for Case 1( smU /1= ; mh 01.0= ; 5.0/ =wH ) 
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Fig. 3.10  Non-dimensional shear stress for Case 1( smU /1= ; mh 01.0= ; 5.0/ =wH ) 
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3.3.2 Effect of Inflow Velocity 

In order to study the effect of the inflow velocity on the hydrodynamic stresses on 

a slide mass, Case 2 was analyzed with an inflow velocity U of 10 m/s.  The geometry 

for Case 2 is the same as that for Case 1.  The distance between the bottom surface of the 

slide mass and underlying ground h  is also 0.01 m, and the height-to-width ratio wH /  

is 0.5.  The same mesh used for Case 1 was used for Case 2.   

3.3.2.1 Effect of inflow velocity on kinetic pressures 

The normalized kinetic pressures for Cases 1 and 2 are shown together in Figure 

3.11.  The non-dimensional pressures for these two cases are nearly identical.  Along the 
top surface of the slide mass, the non-dimensional pressure stagt pp / are so close that it is 

hard to distinguish the pressures for Case 1 from those for Case 2.  Therefore the 

influence of inflow velocity on the non-dimensional kinetic pressure is negligible.   

3.3.2.2 Effect of inflow velocity on viscous shears 

The non-dimensional shear stresses on the surface of the slide mass for Case 2 are 

shown in Figure 3.12.  The shear stresses are also computed using Equation 3.4.  After 
divided by the stagnation pressure stagp , the computed shear stresses are also plotted in 

Figure 3.12 as analytical solution.  It can be seen that the shear stresses calculated using 

Equation 3.4 are close to the numerical results.  Therefore the analytical solution for 

shear stresses developed for flow above a smooth flat plate appears to provide acceptable 

approximation for shear stresses on the slide mass regardless of the inflow velocity.   
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Fig. 3.11  Non-dimensional shear stress for Case 1( smU /1= ; mh 01.0= ; 5.0/ =wH ) and Case 

2( smU /10= ; mh 01.0= ; 5.0/ =wH ) 
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Fig. 3.12  Non-dimensional shear stress for Case 2( smU /10= ; mh 01.0= ; 5.0/ =wH ) 
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3.3.3 Effect of Distance between the Bottom Surface of the Slide Mass and 
Underlying Ground  

In order to study the influence of distance between the bottom surface of the slide 

mass and underlying ground h  on the hydrodynamic forces applied to the surfaces of the 

slide mass, Cases 3 to 8 were analyzed with distances h  of 0.02m, 0.05m, 0.1m, 1m, 

10m, and 50m respectively.   

3.3.3.1 Effect of distance h  on kinetic pressures 

The non-dimensional kinetic pressures along the surfaces of the slide mass for 

Cases 3 to 8 are shown in Figures 3.13 through 3.18, respectively.  For comparison, the 

non-dimensional kinetic pressures along the top surface of the slide mass for all six cases 

are plotted together in Figure 3.19.  It can be seen that the change of pressures along the 
top surface of the slide mass ( stagt pp / ) is insignificant as the distance, h , changes.   

As shown in Figures 3.13 to 3.18, along the bottom surface of the slide mass the 
pressures stagb pp /  decrease almost linearly beginning at a point after a very short 

distance behind the front nose of the slide mass to the tail of the slide mass.  The 
pressures stagb pp /  at the beginning of this linear variation are marked by triangles in 

Figure 3.13 to 3.18.  Again for comparison, the non-dimensional pressures at the bottom 
surface stagb pp /  for all six cases are plotted together in Figure 3.19.  It can be seen the 

non-dimensional pressure along the bottom surface of the slide mass stagb pp / changes 

when the distance h  changes.  The non-dimensional pressures marked by triangles in 

Figures 3.13 to 3.18 are plotted against the ratios of distance h  to height of the slide mass 

H  ( Hh / ) in Figure 3.20.  The non-dimensional pressures at the tail end of the slide 

mass are also plotted against the ratios Hh /  in Figure 3.21.  Smooth curves are fitted to 

the data points in Figures 3.20 and 3.21.  The equation for the curves in Figures 3.20 and 

3.21 is as follows 
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where α  is 2.57, and β  is 0.58 for the curve in Figure 3.20, and α  is 0.15, and β  is 0.4 

for the curve in Figure 3.21.   
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Fig. 3.13  Non-dimensional kinetic pressure for Case 3( smU /1= ; mh 02.0= ; 5.0/ =wH ) 
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Fig. 3.14  Non-dimensional kinetic pressure  Case 4( smU /1= ; mh 05.0= ; 5.0/ =wH ) 
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Fig. 3.15  Non-dimensional kinetic pressure for Case 5( smU /1= ; mh 1.0= ; 5.0/ =wH ) 
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Fig. 3.16  Non-dimensional kinetic pressure  for Case 6( smU /1= ; mh 1= ; 5.0/ =wH ) 
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Fig. 3.17  Non-dimensional kinetic pressure for Case 7( smU /1= ; mh 10= ; 5.0/ =wH ) 
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Fig. 3.18  Non-dimensional kinetic pressure for Case 8( smU /1= ; mh 50= ; 5.0/ =wH ) 
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Fig. 3.19  Change of non-dimensional kinetic pressure with distance h  
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Fig. 3.20  Marked non-dimensional kinetic pressures vs Hh /  
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Fig. 3.21  Non-dimensional kinetic pressure at tail end of the slide mass vs h  
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3.3.3.2 Effect of distance h  on viscous shears 

The non-dimensional shear stresses for cases 3 to 8 are shown in Figures 3.22 

through 3.27, respectively.  The shear stresses calculated using Equation 3.4 are 
normalized by the stagnation pressure stagp  and also plotted in Figures 3.22 to 3.27.  It 

can be seen that the shear stresses computed using Equation 3.4 are close to those from 

the numerical simulations.  Therefore the analytical solution for shear stresses developed 

for flow above a smooth flat plate appears to provide an acceptable approximation for 

shear stresses on the slide mass regardless of the distance, h . 
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Fig. 3.22  Non-dimensional shear stress for Case 3( smU /1= ; mh 02.0= ; 5.0/ =wH ) 
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Fig. 3.23  Non-dimensional shear stress for Case 4( smU /1= ; mh 05.0= ; 5.0/ =wH ) 
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Fig. 3.24  Non-dimensional shear stress for Case 5( smU /1= ; mh 1.0= ; 5.0/ =wH ) 
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Fig. 3.25  Non-dimensional shear stress for Case 6( smU /1= ; mh 1= ; 5.0/ =wH ) 



 70

 
 

TailFront

Horizontal positioin along the top surface

no
n-

di
m

en
si

on
al

sh
ea

r

0.0E+00

5.0E-03

1.0E-02

Numerical
Analytical

Horizontal position along the bottom surface

no
n-

di
m

en
si

on
al

sh
ea

r

0.0E+00

5.0E-03

1.0E-02
Numerical
Analytical

 
Fig. 3.26  Non-dimensional shear stress for Case 7( smU /1= ; mh 10= ; 5.0/ =wH ) 
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Fig. 3.27 Non-dimensional shear stress for Case 8( smU /1= ; mh 50= ; 5.0/ =wH ) 
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3.3.3.3 Summary on the effect of distance h  

As discussed above, a change of distance between the bottom surface of the slide 

mass and underlying ground h  has the following effect on the hydrodynamic stresses: 

1. Along the top surface of the slide mass, the non-dimensional kinetic 
pressures stagt pp /  do not change with the distance h ; 

2. Along the bottom surface of the slide mass, the non-dimensional kinetic 
pressures stagb pp /  vary linearly beginning at a point a very short distance 

behind the front nose of the slide mass and ending at the tail end of the 

slide mass.  The pressures at the beginning and end of the linear 

distribution can be estimated by Equation 3.3 for any distance h  larger 

than zero; 

3. Along the top and bottom surfaces of the slide mass, the non-dimensional 
shear stresses stagt p/τ , stagb p/τ  can be approximated by Equation 3.4 for 

any distance h  larger than zero.   

3.3.4 Effect of Hydroplaning 

In order to study the effect of hydroplaning on the hydrodynamic stresses, Case 9 

was analyzed where the slide mass did not hydroplane.  For Case 9, the bottom surface of 

the slide mass is in contact with the underlying ground.  The geometry for Case 9 is 

shown in Figure 3.28.  The exposed surfaces of the slide mass and the underlying ground 

compose the bottom of the flow domain.  The boundary conditions are shown in Figure 

3.29.  The exposed surface of the slide mass is a stationary non-slip wall because the slide 

mass does not move relative to itself.  The exposed surface of the underlying ground is a 

sliding non-slip wall because the ground moves relative to the slide mass.  The mesh for 

Case 9 is shown in Figure 3.30 and has 553664 rectangular and triangular elements.  

When the slide mass does not hydroplane, the hydrodynamic stresses are only applied on 

the exposed surfaces of the slide mass, not on the bottom surface.   
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Fig. 3.28  Geometry for Case 9( smU /1= ; 0=h ; 5.0/ =wH ) 

 

Fig. 3.29  Boundary conditions for Case 9( smU /1= ; 0=h ; 5.0/ =wH ) 
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3.3.4.1 Effect of hydroplaning on kinetic pressures 

For Case 9, the pressures along the top surface of the slide mass stagt pp /  are 

plotted in Figure 3.31.    For comparison, the pressures along the top surface of the slide 
mass stagt pp /  for Case 1 are also plotted in Figure 3.31.  It can be seen that the pressures 

stagt pp /  are so close that it is hard to distinguish the pressures for Case 1 from those for 

Case 9.  Therefore the influence of hydroplaning on the non-dimensional kinetic pressure 
along the top surface of the slide mass stagt pp /  is negligible.   

 

Fig. 3.30  Mesh for Case 9( smU /1= ; 0=h ; 5.0/ =wH ) 
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3.3.4.2 Effect of hydroplaning on viscous shears 

The non-dimensional shears along the top surface of the slide mass stagt p/τ  for 

Case 9 are shown in Figure 3.32.  The computed shears using Equation 3.4 are divided by 
the stagnation pressure stagp  and also plotted in Figure 3.32.  It can be seen that the shear 

stresses calculated using Equation 3.4 are close to the numerical results.  Therefore the 

analytical solution for shear stresses developed for flow above a smooth flat plate 

provides acceptable approximation for shear stresses on the top surface of the slide mass 

regardless of the occurrence of hydroplaning.   
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Fig. 3.31  Non-dimensional kinetic pressure for Case 9( smU /1= ; 0=h ; 5.0/ =wH )
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Fig. 3.32  Non-dimensional shear for Case 9( smU /1= ; 0=h ; 5.0/ =wH ) 
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3.3.5 Effect of Height-to-Width Ratio  

In order to study the influence of the ratio between the height ( H ) and the width 

of the front portion ( w ) of the slide mass, Case 10 was analyzed and compared with Case 

9.  In both Cases 9 and 10, the slide masses do not hydroplane ( 0=h )and the inflow 

velocity U is 1 m/s.  The only difference between Cases 9 and 10 is the height-to-width 

ratio wH /  of the slide mass.  The height-to-width ratios ( wH / ) for Cases 9 and 10 are 

0.5 and 2.0 respectively.  The front of the slide mass for Case 10 has a more abrupt 

curvature than that for Case 9.  The geometry for Case 10 is shown in Figure 3.33.  The 

mesh for Case 10 is shown in Figure 3.34 and includes 526722 rectangular and triangular 

elements.   
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Fig. 3.33  Geometry for Case 10( smU /1= ; 0=h ; 0.2/ =wH ) 
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Fig. 3.34  Mesh for Case 10( smU /1= ; 0=h ; 0.2/ =wH ) 
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3.3.5.1 Effect of height-to-width ratio wH /  on kinetic pressures 

The non-dimensional kinetic pressures along the top surfaces of the slide mass 

stagt pp /  for Cases 9 and 10 are shown in Figure 3.35.  The pressures stagt pp /  are 

similar along the middle and tail portions of the top surfaces.  The non-dimensional 
pressures stagt pp /  at the front noses of the slide masses are also similar and both equal to 

1.0.  However, the kinetic pressures stagt pp /  along the front portion of the surfaces 

(from point I  to point J  in Figures 3.36 and 3.37) are different.  The magnitude of the 

negative pressures on the slide mass with larger height-to-width ratio ( 0.2/ =wH  for 

Case 10) is much larger than that with smaller height-to-width ratio ( 5.0/ =wH  for Case 

9).   
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Fig. 3.35  Non-dimensional pressures for Case 9 ( smU /1= ; 0=h ; 5.0/ =wH ) and Case 10 

( smU /1= ; 0=h ; 0.2/ =wH ) 
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3.3.5.2 Effect of height-to-width ratio wH /  on the on-set condition of hydroplaning 

As discussed in section 3.3.1.2, hydroplaning was expected to happen when the 

Froude number dFr  was smaller than 2  after considering the negative kinetic pressure 

along the front portion of the surface of the slide mass (the curved portion from point I  

to point J  shown in Figure 3.2 for Case 1, and the curved portions from point I  to point 

J  in Figures 3.36 and 3.37 for Cases 9 and 10).  It has been shown in section 3.3.5.1 that 

the magnitude of the negative pressures on the slide mass increases as the height-to-width 
ratio wH /  increases.  Therefore the critical Froude number critdFr ,  for the on-set of 

hydroplaning should decrease with the increase of the height-to-width ratio wH /  of the 

slide mass.  The only way to determine the on-set condition of hydroplaning for a slide 

 
Fig. 3.36  Front portion of the surface for Case 9 ( smU /1= ; 0=h ; 5.0/ =wH ) 

 
Fig. 3.37  Front portion of the surface for Case 10 ( smU /1= ; 0=h ; 0.2/ =wH ) 
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mass is to analyze the dynamic response of the specific slide mass under all the 

appropriate stresses applied by the surrounding fluid.   

3.3.5.3 Effect of height-to-width ratio wH /  on viscous shears 

The non-dimensional shear stresses along the top surface for Case 10 are shown 

in Figure 3.38.  The shear stresses are also computed using Equation 3.4.  After dividing 
by the stagnation pressure stagp , the shear stresses computed using Equation 3.4 are also 

plotted in Figure 3.38.  It can be seen that the shear stresses calculated using Equation 3.4 

are similar to the shear stresses from the numerical analyses.  Therefore the analytical 

solution for shear stresses developed for flow above a smooth flat plate provides 

acceptable approximation for shear stresses on the top surface of the slide mass 

regardless of the height-to-width ratio, wH / .   
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3.3.5.4 Discussions 

Although the effect of height-to-width ratio wH /  on hydrodynamic stresses was 

studied for slides that do not hydroplane, the influence of height-to-width ratio wH /  for 

Fig. 3.38  Non-dimensional shear for Case 10 ( smU /1= ; 0=h ; 0.2/ =wH ) 
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slides that hydroplane is expected to be similar.  As concluded in section 3.3.4, the effect 

of hydroplaning on hydrodynamic stresses along the top surface of the slide mass is 

negligible.  Therefore the conclusions about the effect of the height-to-width ratio wH /  

of the slide mass on hydrodynamic stresses along the top surface of the slide mass drawn 

in sections 3.3.5.1 and 3.3.5.2 for slide masses that do not hydroplane can be applied to 

slide masses that hydroplane.  Along the bottom of slide masses that hydroplane, the 

hydrodynamic stresses are determined by the flow between the bottom surface of the 

slide mass and the underlying ground.  This flow and the hydrodynamic stresses along 

the bottom surface of the slide mass are not affected by the height-to-width ratio wH / of 

the slide mass.   

 

3.4 CONCLUSIONS 

A numerical model was developed and used to study the flow around a moving 

slide mass.  The study has produced a better understanding of the flow around the slide 

mass especially of the resulting pressures and shear stresses exerted on the mass.  The 

following conclusions can be drawn from the numerical modeling:  
1. When normalized by the stagnation pressure stagp , the non-dimensional 

kinetic pressures on the surfaces of the slide mass are not influenced by 

the magnitude of the inflow velocity; 

2. Along the top surface of the slide mass, hydrodynamic stresses are not 

influenced by the onset of hydroplaning or the distance between the 

underlying ground and the bottom surface of the slide mass that 

hydroplanes; 

3. The kinetic pressures on the middle portion of the top surface of the slide 

mass are essentially zero for slides in deep water; 
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4. The non-dimensional kinetic pressures on the tail portion of the top 

surface of the slide mass increases linearly from zero at the beginning of 

the tail portion of the slide mass to 0.3 at the end of the slide mass; 

5. The kinetic pressure is negative along the frontal portion of the top surface 

of the slide mass and provides a lift on the slide mass.  The magnitude of 

this negative pressure increases as the height-to-width ratio of the slide 

mass increases;  

6. Along the bottom surface of slide mass that hydroplanes, the non-

dimensional kinetic pressures vary linearly beginning at a point a very 

short distance behind the front nose of the slide mass and extending to the 

tail end of the slide mass.  The pressures at the point a very short distance 

behind the front nose and at the tail end of the slide mass can be estimated 

using Equation 3.3; 

7. The shear stress along the top and bottom surfaces of the slide mass can be 

estimated using Equation 3.4; 

Conclusion 5 explains why a slide mass hydroplanes when the Froude number 

dFr  is smaller than 2  and suggests that the dynamic response of a specific slide mass 

under all the appropriate stresses applied by the surrounding fluid needs to be analyzed in 

order to determine the on-set condition of hydroplaning for the slide mass.  A block 

model is developed in the next chapter to simulate the dynamic response of a slide mass 

and all the above conclusions derived for the hydrodynamic stresses on the slide mass are 

applied as stress boundary conditions for the block model.  In this block model, the 

hydrodynamic stresses on the surfaces of the block are estimated based on conclusions 1 

to 7 and applied as external stresses on the block.  Further details of how the stresses are 

estimated and applied in the block model are discussed in the following chapter.  
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Chapter 4: Development of Block Model for Subaqueous Slides 
involving Hydroplaning 

A block model was developed to simulate the sliding process of submarine slides.  

The results of the numerical modeling of hydrodynamic stresses described in the previous 

chapter were used to establish the boundary conditions for the sliding block.  The block 

model, including its implementation in a computer code written in the C programming 

language, is discussed in this chapter. 

 

4.1 GOVERNING EQUATIONS OF MOTION 

In the block model, the slide mass is represented as a rigid rectangular block 

which moves and rotates in the plane yox −−  as shown in Figure 4.1.  No change in 

total volume of the slide mass is assumed during the process of sliding because sliding 

usually lasts no longer than several minutes and the slide mass of interest usually consists 

of saturated fine-grained soil particles with very low permeability.  Thus there is 

negligible drainage of water into or out of the soil mass during sliding. 

 

Movement of the block involves three degrees of freedom.  The block can 

translate in the x  and y  directions and rotate in the yox −−  plane.  The translations of 

 

Fig. 4.1  Geometry and coordinate system for the block model 
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Note:  The cross marks the center of the block. 
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the center of the block (marked by a cross in Figure 4.1) and the rotation of the block 

relative to the center are computed from the following governing equations: 

M
F

x x=&&  (4.1)

M
F

y y=&&  (4.2)

I
T

=θ&&  (4.3)

where x&& , y&&  are the accelerations in the x and y directions; xF , yF  are the total external 

forces on the block in the x and y directions; θ&&  is the angular acceleration in the 

yox −− plane and T is the total external torque about the center of the block in the 

θ direction.  The quantity M in Equations (4.1) and (4.2) is the mass of the block and can 

be calculated as: 
HLM sρ=  (4.4)

The quantity I  in Equation (4.3) is the moment of inertia about the center of the block 

and can be calculated as: 

( )22

12
1 LHHLI s += ρ  (4.5)

where sρ is the total mass density of the soil, H is the height of the block and L is the 

length of the block.   

 

4.2 OCCURRENCE OF HYDROPLANING 

The occurrence of hydroplaning depends on the contact condition between the 

bottom surface of the block and the underlying ground.  In order to determine the contact 

condition, the height of roughness rh  at the interface between the block and underlying 

ground is compared with the displacement of the block in the y direction along the 

bottom surface.   

The height of roughness rh  is a small-scale variation in the height of physical 

surfaces.  At the interface between the block and underlying ground, it is determined by 
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the size of soil particles in the block and the surface property of the underlying ground.  

For underlying ground consisting of soil particles, the height of roughness rh  is assumed 

to be 95d  of the soil in the block and ground.   

The displacement of the block in the y direction may change along the x  

direction.  At the front and tail ends of the block, the displacements are designated as 

fh and th  respectively as shown in Figure 4.2.  The displacements fh and th  can be 

calculated as: 

θsin
2
1

2
1 LHyh f +−=  (4.6)

θsin
2
1

2
1 LHyht −−=  (4.7)

where y  is coordinate of the center of the block in the direction normal to the underlying 

ground, H is the height of the block, L is the length of the block and θ is the angle 

between the bottom of the block and underlying ground.   

 

Three possible contact conditions are defined by comparing the displacements 

fh , th  and the height of roughness rh  as foll0ws: 
1) No hydroplaning: The bottom surface of the block is in contact with the 

underlying ground everywhere, i.e.  

rtf hhh ≤),max(  (4.8)
2) Partial hydroplaning: Part of the bottom surface is in contact with the ground and 

the other part is not, i.e. 

),max(),min( tfrtf hhhhh ≤≤  (4.9)

 

Fig. 4.2  Distance between the block and underlying ground 
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3) Complete hydroplaning: No part of the bottom surface of the block is in contact 

with the ground surface, i.e.   

),min( tfr hhh ≤  (4.10)

The forces applied on the bottom surface of the block change with the occurrence of 

hydroplaning.  The stresses on the bottom of the block for the above three conditions are 

discussed in the following section.   

 

4.3 FORCES ON BLOCK 

The external forces on the block represent the forces due to the effective 

gravitational force, reactive forces applied on the bottom of the block by the underlying 

ground, and the hydrodynamic stresses applied on the surfaces of the block by the 

surrounding fluid.  The potential stresses and forces on the block are summarized in 

Table 4.1 and also illustrated in Figure 4.3.  The stresses and forces on the block are 

discussed as in the sections below.   
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Table 4.1.  Possible stresses on the block 
 

Stress Symbol No 
Hydroplaning 

Partial 
Hydroplaning 

Complete 
Hydroplaning 

Effective gravitational 
force at the center of the 
block 

'G  Applied 

Kinetic pressure on the 
leading edge up  Applied 

Kinetic pressure on the 
tail surface dp  Applied Applied Applied 

Kinetic pressure on the 
top surface tp  Applied 

Kinetic pressure on the 
bottom surface (pore 
water pressure on the 
bottom surface) due to 
movement down slope 

bp  
Applied as pore 
water pressure 

Applied as 
kinetic 
pressure 

Applied as 
kinetic 
pressure 

Kinetic damping force wN~  Not applied Applied Applied 
Kinetic damping 
moment wM  Not applied Applied Applied 

Viscous shear along the 
leading edge uτ  Applied 

Viscous shear along the 
tail surface dτ  Applied Applied Applied 

Viscous shear along the 
top surface tτ  Applied 

Viscous shear along the 
bottom surface bτ  Not applied Not applied Applied 

Effective support on the 
bottom surface applied 
by the ground surface 

buN ′ , bdN ′ Applied 

Damping force applied 
by the ground surface sdD , suD  Applied 

Friction on the bottom 
surface  c  Applied Not applied Not applied 
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4.3.1 Effective Weight 

The effective weight of the block 'G is calculated as: 
gHLG ws )(' ρρ −=  (4.11)

where sρ is the total density of soil, wρ is the density of water, g is the acceleration of 

gravity, H is the height of the block and L is the length of the block.  The force due to the 

effective weight 'G acts through the centroid of the block as shown in Figure 4.3 (b). 

4.3.2 Kinetic Pressure 

Surrounding fluid applies hydrodynamic stresses on the surface of the block when 

the block moves.  The two types of hydrodynamic stress are kinetic pressure and viscous 

shear.  The kinetic pressures caused by the motion of the block in the x  direction include 

the pressures on all four surfaces of the block, up , dp , tp  and bp  as shown in Figure 

4.3 (a).  These kinetic pressures are determined based on the numerical modeling of flow 

around a sliding mass that was discussed in the previous chapter.  In order to better 

explain the kinetic pressures, a local reference system sr −  as shown in Figure 4.4 is 

used.   

 
(a) Forces applied by the surrounding fluid 

 

 
(b) Forces applied by the ground surface 

 

Fig. 4.3   Forces on the block 
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4.3.2.1 Along the leading edge 

The kinetic pressure on the leading edge of the block up as in Figure 4.3 (a) varies 

linearly from the stagnation pressure 2

2
1

xwVρ  at 0=r  to zero at Hr α= , where α  is the 

head ratio of the block defined as the ratio of block’s height at the front to the average 

height of the block H .  The head ratio α  is a non-dimensional constant and is used to 

consider the effect of the frontal shape on the kinetic pressure up .  The kinetic pressure 

up  can be calculated as: 

⎟
⎠
⎞

⎜
⎝
⎛ −=

H
rVp xwu α

ρ 1
2
1 2  (4.12)

where wρ is the density of water, xV is the velocity of the block in the x direction, r is the 

local coordinate along the front surface of the block and H is the height of the block.   

4.3.2.2 Along the trailing edge 

The kinetic pressure along the trailing surface of the block dp  as in Figure 4.3 (a) 

is assumed to vary linearly in the r direction from zero at Hr = to stagp3.0  at 0=r .  

The kinetic pressure dp  are calculated as: 

⎟
⎠
⎞

⎜
⎝
⎛ −⎟

⎠
⎞

⎜
⎝
⎛=

H
rVp xwd 1

2
13.0 2ρ  (4.13)

 

4.3.2.3 Along the top surface 

The kinetic pressure along the top surface of the block tp  as shown in Figure 4.3 

(a) is assumed to vary linearly in three ranges.  The distribution of kinetic pressure tp  is 

Fig. 4.4  Local coordinate system for the block model 
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shown in Figure 4.5.  Along the s  direction, the kinetic pressure tp  varies linearly from 

zero at 0=s  to 2

2
1

xwVρλ  at Hs β
2
1

= , then to zero at Hs β= , and then to zero at 

Ls = .  The constant β  is the ratio of the length where negative kinetic pressure is 

applied to the height of the block.  The constant λ is the ratio of the lowest pressure along 

the top surface to the stagnation pressure.  The kinetic pressure tp  is calculated as: 
  

⎪
⎪
⎪
⎪
⎪

⎩
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⎪
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⎨
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⎜⎜
⎝

⎛
−=
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2
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1
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ρλ
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β

ββ

β

2
1

2
10

(4.14) 

where s  is the local coordinate along the top surface of the block as shown in Figure 4.3, 

and L  is the length of the block.   

4.3.2.4 Along the bottom surface 

The pressure along the bottom surface of the block bp  is influenced by the 

occurrence of hydroplaning.  As discussed in section 4.2, three conditions are possible.  

The pressures for the three conditions are as follows: 

 
1) No hydroplaning: Excess pore water pressure is applied along the bottom surface.  

The pressure bp  is assumed to be uniform and can be calculated as: 

 
Fig. 4.5  The distribution of pressure tp  along the top surface of the block 
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2

2
1

xwb Vp ρ=  (4.15)

where wρ is the density of water, xV is the velocity of the block in the x direction; 

2) Partial hydroplaning: Excess pore water pressure is applied on the non-

hydroplaning part of the bottom surface;  the kinetic pressure is applied on the 

hydroplaning part of the bottom surface.  The bottom pressure bp  is assumed to 

be uniform and determined by Equation 3.3.  The pressure bp  is calculated as: 
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where H is the height of the block, fh is the distance from the front end of the block 

to the underlying ground and th is the distance from the tail end of the block to the 

underlying ground; 

3) Complete hydroplaning: Kinetic pressure is applied on the entire bottom surface 

of the block.  Along the s  direction, the pressure bp  is assumed to vary linearly.  

Based on Equation 3.3, the bounding values for the pressure bp  are 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

58.0
2

57.21

1
2
1

H
h

V
f

xwρ  at 0=s  and 

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛+

4.0
2

15.01

3.0
2
1

H
h

V
t

xwρ  at Ls = .  The 

pressure bp  can be calculated as: 
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4.3.3 Viscous Shear 

The viscous shears caused by the motion of the block in the x direction include 

uτ , dτ , tτ  and bτ as shown in Figure 4.3 (a).  Shear stresses along the leading and 

trailing (front and tail) surfaces of the block uτ , dτ are neglected.  The shear stress along 

the bottom of the slide mass bτ  is only applied when complete hydroplaning occurs as 

discussed in section 4.2.  Along the top and bottom surfaces of the block, shear 

stress tτ and bτ  are estimated by the theory for a turbulent boundary layer along a flat 

plate as  
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⎟
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2 027.0
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ρττ
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V
x

xwbt  (4.18)

where υ is the kinematic viscosity of water.  More details about the theory for turbulent 

boundary layers can be found in Crowe, et al. (2000).   

4.3.4 Support by Underlying Ground 

When the block is in contact with the underlying ground, a positive effective 

normal stress may be applied at the bottom surface of the block by the underlying ground.  

For simplicity, the effective normal stresses are simulated by two springs.  The springs 

are assumed to produce the same total normal force and moment as produced by the 

normal stresses in the soil distributed along the bottom of the block.  As shown in Figure 

4.6, the two springs connect the lower corners of the block to the underlying ground.  The 

forces produced by the springs on the block are designed as '
buN and '

bdN respectively for 

the front and trailing corners.   
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The forces '
buN and '

bdN  depend on the displacements of the block at the front and 

trailing corners fh and th respectively.  The force-displacement curve of the springs 

( fbu hN −' and tbd hN −' ) is shown in Figure 4.7.   

 

As shown in Figure 4.7, the tensile strength of the springs is zero.  When 

compressed, the springs are linearly elastic.  The forces applied by the springs '
buN and 

'
bdN  are zero when displacements fh and th  are positive.  When the displacements 

fh and th are negative, the forces '
buN and '

bdN  can be calculated as: 
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Fig. 4.6  Springs between the block and underlying ground 

 

Fig. 4.7  Force-displacement curve of the springs 
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where k is a spring constant.  The constant k is determined based on the settlement at the 

surface of an elastic ground under a rectangular footing (Das, 1999) as follows: 

10
1

1 2ν−
=

Ek  
(4.21)

Where E  is the modulus of elasticity and ν  is the Poisson’s ratio for the underlying soil.  

The parameters E  and ν  are parameters defined in terms of effective stresses of the soil.   

4.3.5 Resistance by Underlying Ground 

When the block is in contact with the underlying ground, a shear stress is applied 

on the bottom of the block.  The stress is assumed to be equal to the un-drained shear 

strength ( c ) of soil at the interface for no hydroplaning condition.  For partial and 

complete hydroplaning conditions, the stress is assumed to be zero.  The un-drained shear 

strength c is calculated as 

⎟
⎠
⎞

⎜
⎝
⎛

+=

2
H
xc sy
&

μτ  
(4.22)

where yτ  is the static shear strength of soil corresponding to infinitely low strain rate, x&  

is the slide velocity of the block, H  is the height of the block and sμ  is a constant.  The 

second term in Equation 4.22 represents the influence of strain rate on the shear strength 

of soil c .  The strain rate at the bottom surface of the block is assumed to be ⎟
⎠
⎞

⎜
⎝
⎛

2
/ Hx& .   

4.3.6 Damping Effect 
Two types of damping effects are considered in the block model.  One is referred 

to as kinetic damping which is applied by the surrounding water.  The other is soil 

damping which is applied by the underlying ground.  The damping forces are discussed 

as follows.   

4.3.6.1 Kinetic damping 

Kinetic damping is produced by the hydrodynamic stresses due to the block’s 

motion in the y direction and rotation in the yox −− plane.  These hydrodynamic 



96 

stresses are shown in Figure 4.8.  Compared with the kinetic pressure along the bottom 

surface of the block bp~ , the other hydrodynamic stresses are negligible.  The kinetic 

pressure bp~  is only applied after the block reaches the complete hydroplaning condition. 

When the bottom surface of the block is parallel to the underlying ground, i.e. 

tf hh =  and 0=θ , the kinetic pressure bp~  can be estimated analytically.  According to 

the analytical solution for squeeze film lubrication (Panton, 1984), the kinetic pressure 

bp~  can be expressed as: 
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The distribution of kinetic pressure bp~  is also plotted in Figure 4.9.  As shown in Figure 

4.9, the pressure bp~  is symmetric about the midpoint of the bottom surface ( 2/Lx = ).    

The peak value of pressure bp~  is y
hh

L

rf

&
3

3

),max(2
3 μ

−  at the midpoint of the bottom 

surface, i.e. 2/Lx = .  The integration of pressure bp~  along the bottom surface of the 

block yields the total normal force on the bottom surface wN~  as: 

 

Fig. 4.8  Hydrodynamic stresses producing kinetic damping effect 
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The moment wM  about the center of the block produced by the kinetic pressure bp~  is 

zero.   

When the bottom surface of the block is not parallel to the underlying ground, i.e. 

tf hh ≠  and 0≠θ , the total normal force bN~  is approximated by using the average value 

of the displacements, fh and th , at the leading and trailing ends of the block expressed 

as: 

Fig. 4.9  Kinetic pressure bp~  for tf hh =  and 0=θ  
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The moment wM  is assumed to be: 
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It can be seen that Equation 4.26 yields a moment wM  of zero when the bottom surface 

of the block is parallel to the underlying ground ( 0=θ ). 

4.3.6.2 Soil damping 

When the block is in contact with the underlying ground, the kinetic energy of the 

block dissipates into the underlying ground by wave propagation.  To simulate the effect 

of energy dissipation, soil damping forces sdD and suD are applied on the lower corners of 

the block as shown in Figure 4.2 (b).  When the downstream corner of the block is not in 

contact with the underlying ground, i.e. 0>th , the force sdD  is zero.  When the 

downstream corner of the block is in contact with the underlying ground, i.e. 0≤th , the 

force sdD  is estimated by Equation 4.27.  Similarly, the force suD  is calculated by 

Equation 4.28.   
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Where gρ  is the total density of soil in the underlying ground, and G  is the shear 

modulus of the underlying soil.  Equations 4.27 and 4.28 are based on the analytic 

solutions for the dynamic response of footings on elastic ground.  More details can be 

found in Richart, et. al. (1970).   

 

4.4 TIME INTEGRATION SCHEME 

The sliding process of the block is disretisized into a step-by-step phenomenon 

using Newmark scheme (Newmark, 1959).  The initial conditions, and the updating 

method between two immediate steps are discussed as follows. 

4.4.1 Initial Conditions  

At the beginning, i.e. 0=t , the coordinate )0(x , velocities )0(y&  and )0(θ&  of the 

block are assumed to be zero.  The block is also assumed to be at static rest along the y  

and θ  directions before any kinetic forces are applied.  By equating the component of the 

effective weight ( 'G ) along y  direction with the support of the underlying ground 

( '
buN and '

bdN ), the initial coordinate )0(y  of the block is computed.  By setting the 

resultant moment of the support ( '
buN and '

bdN ) and resistance ( Lc ⋅ ) by underlying 

ground to be zero, the initial coordinate )0(θ of the block is computed.  The initial 

velocity )0(x&  is assumed to be known.  The dynamic equilibrium of the block is then 

solved for to compute the initial accelerations )0(x&& , )0(y&& and )0(θ&& .    

4.4.2 Newmark Scheme  

During any increment of time, the accelerations of the block are assumed to be 

constant and equal to the average value of the accelerations at the beginning and end of 

the time increment.  For any time step, the variables including accelerations ( )(tx&& , )(ty&& , 

)(tθ&& ), velocities ( )(tx& , )(ty& , )(tθ& ) and coordinates ( )(tx , )(ty , )(tθ ) at the beginning 

of the time increment ( ttime = ) are given.  An iterative method is used to compute the 
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variables, )( ttx Δ+&& , )( tty Δ+&& , )( tt Δ+θ&& , )( ttx Δ+& , )( tty Δ+& , )( tt Δ+θ& , )( ttx Δ+ , 

)( tty Δ+ , and )( tt Δ+θ  at the end of the time increment ( tttime Δ+= ).   

For the first iteration, the accelerations at the end of the increment are assumed to 

be equal to those at the beginning, i.e. 
)()( txttx &&&& =Δ+   

(4.29)

)()( tytty &&&& =Δ+   
(4.30)

)()( ttt θθ &&&& =Δ+   
(4.31)

For each iteration, the following steps are conducted: 

6. The average accelerations during the increment, velocities and 

displacements at the end of the increment are calculated as follows: 

 
( ))()(*5.0)( ttxtxx tttotfrom Δ++=Δ+ &&&&&&  (4.32)
( ))()(*5.0)( ttytyy tttotfrom Δ++=Δ+ &&&&&&  (4.33)

( ))()(*5.0)( ttttttotfrom Δ++=Δ+ θθθ &&&&&&  (4.34)

txtxttx tttotfrom Δ+=Δ+ Δ+ )()()( &&&&  (4.35)
tytytty tttotfrom Δ+=Δ+ Δ+ )()()( &&&&  (4.36)

tttt tttotfrom Δ+=Δ+ Δ+ )()()( θθθ &&&&  (4.37)

2
)(2

1)()()( txttxtxttx tttotfrom Δ+Δ+=Δ+ Δ+&&&  
(4.38)

2
)(2

1)()()( tyttytytty tttotfrom Δ+Δ+=Δ+ Δ+&&&
(4.39)

2
)(2

1)()()( tttttt tttotfrom Δ+Δ+=Δ+ Δ+θθθθ &&&  
(4.40)

 

7. The forces on the block at the end of the increment are calculated using 

the displacement and velocity calculated by Equations 4.35 to 4.40. 

8. The dynamic equilibrium of the block is solved for to compute the 

accelerations at the end of the increment ( )( ttx Δ+&& , )( tty Δ+&& and 

)( tt Δ+θ&& ).   



101 

9. The newly computed accelerations, newttx )( Δ+&& , newtty )( Δ+&& and 

newtt )( Δ+θ&&  are compared with )( ttx Δ+&& , )( tty Δ+&& and )( tt Δ+θ&& ) used in 

step 1.  An error for the iteration is computed as: 

⎟
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(4.41) 

10. If the error is not acceptably small, the newly computed accelerations are 

substituted into Equations 4.32 to 4.40 to start another iteration;  Steps 1-5 

are repeated until the error is acceptably small.   

After the iterations are completed, the next time step is considered.  The newly 

computed variables, )( ttx Δ+&& , )( tty Δ+&& , )( tt Δ+θ&& , )( ttx Δ+& , )( tty Δ+& , )( tt Δ+θ& , 

)( ttx Δ+ , )( tty Δ+  and )( tt Δ+θ  from the last step are given as starting conditions, 

)(tx&& , )(ty&& , )(tθ&& ), ( )(tx& , )(ty& , )(tθ& , )(tx , )(ty  and )(tθ  for the new step.  The iterative 

method discussed above is then repeated to compute the variables at the end of the new 

time step.   

 

4.5 IMPLEMENTATION 

The scheme of the block model is implemented in a computer code programmed 

in the C programming language.  The program is named rect1.cpp and details on the 

program including input, output files and flow charts are discussed .in the sections below.   

4.5.1 Input and Output  

The program reads from an input file named rect.in.  The parameters specified in 

the input file and their physical meanings are summarized in Table 4.2.  The numerical 

results are written into a file named output.out.  The variables written into output.out and 

their physical meanings are listed in Table 4.3. 
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Table 4.2  Input parameters and physical meanings 
 
Parameter Physical meaning 
dt Time increment for the time integration scheme tΔ  (second) 
timelimit Time limit on the sliding process (second) 
errorlimit The allowance of errors when iterative methods are involved 
H Height of block H  (meter) 
L Length of block L  (meter) 
Cohesion The static shear strength of soil at the interface of block and underlying ground 

yτ  (pa) 

viscosity Non-dimensional constant related to the strain rate effect of shear strength sμ  

roughness The height of roughness at the interface of block and underling ground rh  (m) 

pou Total density of soil in the block sρ  ( 3kg/m ) 

lamida 
The absolute value of the ratio of the lowest pressure along the top surface to the 

stagnation pressure λ  

 
headratio The ratio of block’s height at the leading edge to its average height (This ratio 

only influences the area where the kinetic pressure along the leading edge is 
applied.) 

toppressurerange The ratio of the length where negative kinetic pressure is applied to the height of 
the block β  

totaldensityofground The total density of soil in the underlying ground gρ  ( 3kg/m ) 

E The effective young’ modulus of soil in the underlying ground (pa) 
poisson The effective poisson’s ratio of soil in the underlying ground 
velox The initial velocity of the block in the x direction )0(x&  (m/s) 

step  
posi The x  coordinate of the starting position for a step (m) 
fei The slope angle of the surface of the underlying ground (degree) 
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Table 4.3 Output variables and physical meanings 
 
Variable Physical meaning 
time Time t ( s ) 
accx0 The acceleration in the x direction x&&  ( 2/ sm ) 
accy0 The acceleration in the y direction y&&  ( 2/ sm ) 

acctheta0 The angular acceleration in the yox −− plane θ&&  ( 2/ srad ) 

velox The velocity in the x  direction x&  ( sm / ) 
veloy The velocity in the y  direction y&  ( sm / ) 

velotheta The angular velocity in the yox −− plane θ&  ( srad / ) 

x The x coordinate of the center of the block ( m ) 
y The y coordinate of the center of the block ( m ) 

theta The rotation of the block θ   
front The force on the leading edge of the block due to kinetic pressure ( mN / )  
tail The force on the trailing edge of the block due to kinetic pressure ( mN / )  
top The force on the top surface of the block due to viscous shear ( mN / )  
bottomf The force on the bottom surface of the block due to viscous shear ( mN / )  
bottomp The force on the bottom surface of the block due to kinetic pressure ( mN / )  
toppressure The force on the top surface of the block due to kinetic pressure ( mN / )  
Nf The support by underlying ground at the front end ( mN / )  
Nt The support by underlying ground at the tail end ( mN / )  
totalcohesion The resistance on the block by underlying ground ( mN / )  
M The total moment on the block ( mmN /⋅ )  
soildampingfront The damping force applied by underlying ground at the front end ( mN / ) 
soildampingtail The damping force applied by underlying ground at the tail end ( mN / ) 
waterdampingforce The damping force applied by surrounding fluid ( mN / ) 
waterdampingmoment The damping moment applied by surrounding fluid ( mmN /⋅ ) 
 

4.5.2 Flow Chart  

The flow chart for the program rect1.cpp is shown in Figure 4.10.  The subroutine 

force computes all the forces and moments applied on the block.  The major parameters 

involved in this subroutine are listed in Table 4.4 and the flow chart for the subroutine is 

shown in Figure 4.11. 
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Fig. 4.10  Flow chart of program rect1.cpp 
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Table 4.4 Parameters in subroutine force and their physical meanings 
 
Variable Physical meaning 
Cohesion The static shear strength of soil at the interface of block and underlying ground 

yτ (pa) 

viscosity Non-dimensional constant related to the strain rate effect of shear strength sμ  

E The effective young’ modulus of soil in the underlying ground (pa) 
poisson The effective poisson’s ratio of soil in the underlying ground 
toppressurerange The ratio of the length where negative kinetic pressure is applied to the height of 

the block β  

totaldensityofground The total density of soil in the underlying ground gρ  ( 3kg/m ) 

roughness The height of roughness at the interface of block and underling ground rh  (m) 

pou Total density of soil in the block sρ  ( 3kg/m ) 

lamida 
The absolute value of the ratio of the lowest pressure along the top surface to the 

stagnation pressure λ  

 
headratio The ratio of block’s height at the leading edge to its average height (This ratio 

only influences the area where the kinetic pressure along the leading edge is 
applied.) 

H Height of block H (meter) 
L Length of block L (meter) 
currentfei The slope angle the underlying ground for current position (rad) 
hydroplaning The variable marks the onset of hydroplaning.  This variable is 0 before 

hydroplaning occurs and 1 after hydroplaning occurs. 
velox The velocity in the x  direction x& ( sm / ) 
veloy The velocity in the y  direction y& ( sm / ) 

velotheta The angular velocity in the yox −− plane θ&  ( srad / ) 

x The x coordinate of the center of the block( m ) 
y The y coordinate of the center of the block( m ) 

theta The rotation of the block θ   
front The force on the leading edge of the block due to kinetic pressure ( mN / ) 
tail The force on the trailing edge of the block due to kinetic pressure ( mN / ) 
top The force on the top surface of the block due to viscous shear ( mN / ) 
bottomf The force on the bottom surface of the block due to viscous shear ( mN / ) 
bottomp The force on the bottom surface of the block due to kinetic pressure ( mN / ) 
toppressure The force on the top surface of the block due to kinetic pressure( mN / ) 
Nf The support by underlying ground at the front end ( mN / ) 
Nt The support by underlying ground at the tail end  ( mN / ) 
totalcohesion The resistance on the block by underlying ground ( mN / ) 
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Variable Physical meaning 
M The total moment on the block ( mmN /⋅ ) 
soildampingfront The damping force applied by underlying ground at the front end ( mN / ) 
soildampingtail The damping force applied by underlying ground at the tail end ( mN / ) 
waterdampingforce The damping force applied by surrounding fluid ( mN / ) 
waterdampingmoment The damping moment applied by surrounding fluid ( mmN /⋅ ) 
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Fig. 4.11  Flow chart of subroutine force 
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4.6 SUMMARY 

In this chapter, a block model has been developed for the dynamic response of 

submarine slides.  The occurrence of hydroplaning was simulated by monitoring and 

comparing the displacement of the block in the direction normal to the underlying ground 

with the height of roughness rh  at the interface between the block and underlying 

ground.  The effective weight of the block, the kinetic pressures and viscous shears by 

surrounding fluid, the support and resistance by underlying ground, and the forces due to 

kinetic and soil damping effects were considered in the block model.  The influence of 

hydroplaning was also accounted for by making the forces on the block compatible with 

the contact condition between the block and underlying ground.  The sliding process of 

the block was disretisized into a step-by-step phenomenon using Newmark scheme.  The 

block model has been implementated by programming in the C programming language.  

In order to validate the block model, it is compared with the laboratory experiments by 

Mohrig, et al. (1999) as discussed in the next chapter.   
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Chapter 5: Validation of the Block Model 

 In this chapter, the block model is compared with the laboratory experiments by 

Mohrig et al. (1999).  The conditions of Mohrig, et al.’s experiments are first summarized 

and the input parameters for the block model are discussed.  Numerical results from the 

block model are then compared with the experimental data.  The occurrence of 

hydroplaning of the slide mass is also analyzed.    

 

5.1 EXPERIMENTAL CONDITIONS 

Mohrig, et al. (1999) performed laboratory experiments on subaqueous slides.  In 

their experiments, they released soil from a large box into a channel with transparent 

sides.  The box from which soil was released was at the upper end of the channel and had 

a slot 20 mm high and 170 mm wide.  The channel was approximately 10 m long, 3 m 

deep and 20 cm wide.  It was segmented with a break in slope, the upper and lower slope 

angles being 6 and 1 degrees, respectively.  The break in slope was located approximately 

5.7 m downslope from the position where the soil was released.   The bottom surface of 

the channel was a rubber mat which was crenelated into rectangular ridges and grooves.  

The width of each ridge and groove was 6.4 mm, and the elevation difference between 

them was 3.2 mm.   

In each experiment, approximately 30 liters of soil were released.  The total time 

to empty the soil box was about 3.5 s.  The properties of the soil are summarized in Table 

5.1.  The water content of the soil was 63.9%.  The soil consisted of a mixture of 40% 

kaolin, 40% silt and 20% sand by dry weight.  The total density of the soil, sρ , was 

approximately 1.6 3/ mt .  The static shear strength of the soil yτ  varied from 33 to 49 Pa.  

The effect of strain rate on the shear strength c was considered as follows: 
γμτ &syc +=  (5.1)
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Where sμ is a constant and γ&   is shear strain rate.  The constant sμ varied from 0.019 to 

0.035 11 −−⋅ smkg .  A grain-size analysis was conducted on the soil and 95D was 0.7 mm.   
 
 
Table 5.1 Input parameters for experimental cases 

Run 
Bottom 

surface of 
channle 

Static shear 
strength yτ  

(Pa) 

sμ  
( 11 −−⋅ smkg ) 

Height of the 
slide mass H  
(mm) 

1w Clean 49 0.035 18 
2w Clean 49 0.035 18 
3w Clean 36 0.023 16 
4w Soil 49 0.035 6.5 
5w Soil  33 0.019 16 

Mohrig, et al performed five experiments named Run 1w to Run 5w.  For Runs 

1w to 3w, the bottom surface of the channel was clean when the soil was released.  For 

Runs 4w and 5w, a layer of soil was placed on the bottom of the channel.  For all five 

runs, the heights of the slide masses H were measured and listed in Table 5.1.  The 

velocities, U , of the front of the slide mass were reported as functions of run-out 

distances, x , and are plotted in Figure 5.1.   

 

Fig. 5.1  Reported front velocity vs run-out distance (Mohrig, et al. (1999)) 
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5.2 INPUT PARAMETERS 

The input parameters used for the block model were based on the experimental 

conditions reported by Mohrig, et al. (1999).  Some parameters were determined directly 

based on the data reported by Mohrig, et al; other parameters were determined by trial 

and error.  The parameters are listed in Table 5.2 and discussed below.     
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Table 5.2 Input parameters for block model 
 

Run 3w 1w 2w 4w 5w 
Slope angle δ  6˚ for the first 5.7m downslope, and  1˚ for the rest 
Head ratio α  2 

Non-dimensional constant λ  5 
Non-dimensional constant β  0.5 

The modulus of elasticity for the underlying 
ground E  (kpa) 8000 

Poisson’s ratio for the underlying ground ν  0.4 
Density of soil sρ ( 3/ mkg ) 1600  

Height of roughness rh (mm) 3.2 3.2 3.2 0.7 0.7 
Static shear strength yτ (Pa) 36 49 49 49 33 

sμ ( 11 −−⋅ smkg ) 2.3E-02 3.5E-02 3.5E-02 3.5E-02 1.9E-02 
Height of the block H (m) 1.6E-02 1.8E-02 1.8E-02 6.5E-03 1.6E-02 

Initial velocity (m/s) 3.0 2.5 1.5 0.6 0.8 
Dynamic viscosity of surrounding fluid 

μ (Pa s) 2.3E-03 3.5E-03 3.5E-03 3.5E-03 1.9E-03 

Time increment tΔ (s) 1.0E-04 1.0E-04 1.0E-04 1.0E-05 1.0E-05 
Block length L (m) 0.46 0.52 0.52 0.17 0.46 
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5.2.1 Parameters Determined Directly 

The height of roughness rh  was assumed to be equal to the elevation difference of 

the ridges and grooves for the runs where the bottom surface of the channel was clean.   

For the runs where the bottom of the channel was covered by soil, the height of 

roughness rh  was assumed to be 95D  of the soil.  The head ratio α  of the block is based 

on the frontal shape of the sliding mass as shown in Figure 5.2.  The non-dimensional 

constants λ  and β  are based on the frontal shape of the sliding mass and the numerical 

modeling of hydrodynamic stresses.  The modulus of elasticity for the underlying ground 

E  and the Poisson’s ratio for the underlying ground ν  are based on general properties 

for loose sandy silt (Das, B. 1999).  Considering mixing of soil and surrounding fluid, the 

viscosity of the surrounding fluid μ  was taken as 10% of the quantity sμ .  The height of 

the block H  was assumed to be the average height of the slide mass over the length of 

the channel with a slope of 6 degrees.  The initial velocity of the block is based on Figure 

5.1.  The plot of front velocity vs run-out distance was extrapolated to estimate the initial 

front velocity at a run-out distance of zero.  The estimated front velocity is assumed to be 

the initial velocity of the block.   

Fig. 5.2 Frontal shape of the sliding soil mass (Mohrig, et al. 1999) 
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5.2.2 Parameters determined by trial and error 

The increment of time tΔ  used in the block model computations was determined 

by trial and error.  Three values for tΔ  of 0.001 s, 0.0001 s and 0.00001 s were tried.  For 

Runs 1w to 3w, the numerical results for  st 001.0=Δ  are the same as those for 

st 0001.0=Δ .  Thus using tΔ  of 0.0001 s was assumed to be sufficient.  For Runs 4w 

and 5w, the numerical results for st 001.0=Δ  were different from those for 

st 0001.0=Δ .  However, the numerical results for st 0001.0=Δ  were the same as 

those for st 00001.0=Δ .  Thus using tΔ  of 0.00001 s was assumed to be sufficient.   

The length of the block L  was also determined by trial and error.  For every 

experiment, the length of the slide mass was zero at the beginning of the experiment, but 

it increased as the soil slide down in the channel.  At the end of the experiment, the length 

of the slid mass was equal to the run-out distance.  However, in the block model, the 

length of the block was assumed to be constant.  In order to determine the appropriate 

lengths L  of the block for every experiment, it was assumed that the length-to-height 

ratios of the block HL /  were the same for all five experiments.  As shown in Figure 5.1, 

over run-out distances smaller than 2 meters, more data points were reported for Run 3w 

than most of the other runs.  Therefore, Run 3w was analyzed as a representative case to 

find the optimum length-to-height ratio HL /  for all runs.  Five values for length-to-

height ratio HL /  were tried.  d the length-to-height ratio of the block HL / is assumed to 

be constant for all the runs.  The length-to-height ratios and corresponding lengths of the 

block are listed in Table 5.3.  The computed front velocities vs run-out distances are 

shown in Figure 5.3.  The reported velocities vs run-out distances for Run 3w are also 

shown in Figure 5.3.  It can be seen that when the length of the block L is 0.46 m and 

length-to-height ratio HL /  is 28.75, the numerical results fit the reported experimental 

values the best.  Therefore the length-to-height ratio HL /  is assumed to be 28.75 for all 

the runs.  The lengths of the block L  calculated based on the length-to-height ratio HL /  

as 28.75 for all the runs are listed in Table 5.2.   
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  Table 5.3 Trial for length-to-height ratio HL /   
 
Length-to-height ratio HL /  18.75 25.00 28.75 31.25 37.50 
Length of the Block L  (m) 0.30 0.40 0.46 0.50 0.60 

 

5.3 COMPARISON OF NUMERICAL RESULTS WITH EXPERIMENTAL DATA 

Mohrig, et al. reported the front velocities vs run-out distances for the five tests.  

They also observed that hydroplaning occurred in all five of the tests.  The calculated 

front velocities vs run-out distances are compared with the experimental data and the 

occurrence of hydroplaning predicted by the block model are discussed in this section. 

5.3.1 Front Velocity vs Run-out Distance 

The calculated and measured front velocities vs run-out distances for Run 3w are 

shown in Figure 5.3.  The calculated front velocities vs run-out distances for runs 1w, 2w, 
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Fig. 5.3 Front velocity vs run-out distance for Run 3w 
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4w and 5w are shown in Figures 5.4 to 5.7 together with the reported data.  It can be seen 

that the numerical results agree favorable with the experimental data for all five runs.   
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Fig. 5.4 Front velocity vs run-out distance for Run 1w 
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Fig. 5.5 Front velocity vs run-out distance for Run 2w 
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5.3.2 Occurrence of Hydroplaning 

The calculated displacements, fh and th , in the y  direction normal to the 

underlying slope at the front and tail ends of the block, respectively, are plotted against 

the run-out distances for Runs 1w to 5w in Figures 5.8 to 5.12.  The heights of roughness 

rh  are also plotted in Figures 5.8 to 5.12.  It can be seen that the one or both of the 

displacements fh  and th  are larger than the heights of roughness rh  over a portion of the 
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Fig. 5.6 Front velocity vs run-out distance for Run 4w 
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Fig. 5.7 Front velocity vs run-out distance for Run 5w 
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run-out distance for all five tests.  The ranges of run-out distances over which the 
displacements fh  and th  are larger than the heights of roughness rh  are listed in Table 

5.4 for Runs 1w to 5w.  Thus the block model indicated that the slide masses should 

hydroplane in all tests.  This prediction is consistent with the observations by Mohrig, et 

al and provides further confirmation of the block model.   
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Fig. 5.8 Displacements fh and th  vs run-out distance for Run 1w 
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Fig. 5.9 Displacements fh and th  vs run-out distance for Run 2w 
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Fig. 5.10 Displacements fh  and th  vs run-out distance for Run 3w 
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Fig. 5.11 Displacements fh and th  vs run-out distance for Run 4w 
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Table 5.4 Ranges of run-out distance over which the block hydroplanes 

Run 1w 2w 3w 4w 5w 
Minimum run-out distance where 

rtf hhh ≥),max(  (m) 0.02 0.03 0.03 0.01 0.02 

Maximum run-out distance where 
rtf hhh ≥),max(  (m) 7.36 7.05 6.78 7.18 10.62 

 

5.4 CONCLUSIONS 

The block model has been applied to simulate the five experiments for 

subaqueous slides performed by Mohrig, et al.  The numerical results from the block 

model agree well with the experimental data.  The block model also predicted the 

occurrence of hydroplaning successfully.   

 

5.5 SEQUENCE OF SLIDING STAGES 

To illustrate the sliding process, the motion of subaqueous slides can be divided 

into six stages.  The sequence of six stages for Run 1w is illustrated in Figure 5.13.  In 

Stage 1, the slide mass starts moving with an initial velocity down slope.  At Stage 2, the 
slide mass starts to hydroplane when the maximum distance, ),( tf hhmax , between the 
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Fig. 5.12 Displacements fh and th  vs run-out distance for Run 5w 
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bottom surface of the slide mass and the underlying ground is larger than the height of 

roughness, rh , at the interface of the slide mass and the underlying ground.  Stage 3 

represents steady-state hydroplaning where the velocity of the slide mass is constant.  In 

Stage 4, the slide mass decelerates due to the change in inclination of the underlying 

slope.  During Stage 5, the slide mass stops hydroplaning when the maximum distance, 
),( tf hhmax , between the bottom surface of the slide mass and the underlying ground is 

smaller than the height of roughness, rh , at the interface of the slide mass and the 

underlying ground.  Finally, in Stage 6, the final stage of the sliding process, the slide 

mass stops moving.   
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Fig. 5.13 Sequence of sliding stages for Run 1w 
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Chapter 6: Summary and Conclusions 

Many submarine slides travel large distances that are much greater than those of 

comparable subaerial slides.  One possible reason for the large travel distances is that 

hydroplaning occurs.  The research presented in this report was undertaken to understand 

better the mechanism of hydroplaning of submarine slides.   

Previous studies on hydroplaning of submarine slides have two major limitations.  

One limitation is due to a lack of understanding of the hydrodynamic stresses applied on 

the slide mass by the surrounding fluid.  The other limitation is that the onset of 

hydroplaning is based on arbitrary assumptions.  The objective of this research was to 

develop a better understanding of the hydrodynamic stresses and incorporate this into a 

new model for hydroplaning of subaqueous slides. 

 

6.1 SUMMARY OF WORK 

The hydrodynamic stresses, i.e. kinetic pressures and viscous shears, applied on 

the slide mass by the surrounding fluid were studied numerically.  For the numerical 

modeling, the slide mass was assumed to be a streamline shaped rigid body with a 

constant velocity.  Steady two-dimensional flow around the slide mass was simulated 

using commercial software known as, Fluent 6.1.  A Reynolds-Stress turbulent model 

was applied to simulate the flow.  The kinetic pressures and viscous shears along the 

surfaces of the slide mass were analyzed for slide masses with varying slide velocities, 

distances between the slide mass and underlying ground, and height-to-width ratios of the 

front portion of the slide mass.  The study produced a better understanding of the 

interaction between the slide mass and surrounding fluid.  The findings regarding the 

hydrodynamic stresses exerted on the slide mass are summarized in section 6.2.  
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Once the hydrodynamic stresses were understood better a “block model” was 

developed for subaqueous slides, with emphasis on possible hydroplaning.  In the block 

model, the slide mass was represented as a rigid rectangular block which moves and 

rotates in a vertical plane.  The occurrence of hydroplaning was determined by the 

contact condition between the bottom surface of the block and the underlying ground, i.e. 

by comparing the height of roughness at the interface between the block and underlying 

ground with the displacement of the block in the direction normal to the underlying 

ground along the bottom surface of the slide mass.  Conclusions derived for the 

hydrodynamic stresses on the slide mass were applied as stress boundary conditions for 

the block model.  The sliding process of the block was disretisized in a step-by-step 

manner using a Newmark scheme.  A computer program was also writted to implement 

the block model.   

Once the block model was developed, laboratory experiments on subaqueous 

slides conducted by Mohrig, et al (1999) were simulated using the model.  The numerical 

results from the block model were compared with data reported by Mohrig, et al, i.e. the 

variation in the computed velocities of the front of the slide mass with run-out distances 

of the slides were compared with measured values.  The occurrence of hydroplaning was 

also analyzed by comparing the calculated displacements of the block normal to the 

underlying ground with the heights of roughness over the run-out distances.  Conclusions 

drawn from the comparison between the block model and experiments are also 

summarized in Section 6.2.    

 

6.2 CONCLUSIONS 

The research reported herein provides a better understanding of subaqueous slides 

by considering the interactions between the slide mass and the surrounding fluid and 

between the slide mass and the underlying ground.  Unlike previous models for 
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subaqueous slides, the block model involves no arbitrary assumptions for the 

hydrodynamic stresses on the slide mass or the on-set condition of hydroplaning.   

The numerical study of the interaction between the slide mass and surrounding 

fluid has produced the following conclusions regarding the hydrodynamic stresses on the 

surfaces of the slide mass:  
 

1. When normalized by the stagnation pressure stagp , the non-dimensional 

kinetic pressures on the surfaces of the slide mass are not influenced by 

the magnitude of the inflow velocity; 

2. Along the top surface of the slide mass, hydrodynamic stresses are not 

influenced by the onset of hydroplaning or the distance between the 

underlying ground and the bottom surface of the slide mass that 

hydroplanes; 

3. The kinetic pressures on the middle portion of the top surface is essentially 

zero for slides in deep water; 

4. The non-dimensional kinetic pressures on the tail portion of the top 

surface of the slide mass increases linearly from zero at the intersection of 

the middle and tail portions to 0.3 at the tail end of the slide mass; 

5. The kinetic pressure is negative along the frontal part of the top surface.  

This kinetic pressure provides a lift on the slide mass.  The magnitude of 

this negative pressure increases as the height-to-width ratio of the slide 

mass increases;  

6. Along the bottom surface of slide mass that hydroplane, the non-

dimensional kinetic pressures vary linearly beginning a short distance 

behind the front nose of the slide mass to the tail end.  The pressures at a 

short distance behind the front nose and at the tail end of the slide mass 

can be estimated using Equation 3.3; 
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7. The shear stress along the top and bottom surfaces of the slide mass can be 

estimated using Equation 3.4; 

Incorporating the above conclusions about hydrodynamic stresses, the block 

model also adjusts the forces applied on the slide mass by the underlying ground 

according to the contact condition between the slide mass and underlying ground.  Using 

the block model, the mechanism of hydroplaning has been successfully simulated by 

analyzing the dynamic response of the slide mass under proper stresses applied by the 

surrounding fluid and underlying ground.  The simulations using the block model have 

also yielded numerical results that agree well with the experimental data reported by 

Mohrig, et al.   

 

6.3 SUGGESTIONS ON FUTURE RESEARCH 

To continue the research reported herein, the understanding of submarine slides 

can be improved by the following approaches: 

1. Case studies can be performed by using the block model to simulate 

natural submarine slides.  Motions of the submarines slides and whether 

hydroplaning occurs can be predicted for comparison with field 

observations.  For slides that hydroplane, the influence of hydroplaning on 

run-out distances can be studied; 

2. The block model can be improved by considering the deformation of the 

slide mass and the influence of the acceleration of the slide mass on 

hydrodynamic stresses.  The dynamic response and deformation of the 

slide mass can be simulated using the finite element method.  The 

hydrodynamic stresses on the surfaces of the slide mass can be studied by 

modeling the unsteady flow around the slide mass.  The new numerical 

model can then be used to simulate subaqueous slides of any scale and 
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predict the deformation and movement of the slide mass in time and space 

based on the initial geometry of the slope when failure occurs, the 

geomorgraphy of the nearby seafloor, and the mechanical properties of the 

slide material (including shear strength, stress-deformation properties and 

unit weight).   
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