A Semi-Classical Description of the Shears Mechanism: Analysis of $B(M 1)$ and $B(E 2)$ Values. ${ }^{\dagger}$

A.O. Macchiavelli, R.M. Clark, P. Fallon, M.A. Deleplanque, R.M. Diamond, R. Krücken, I. Y. Lee, F.S. Stephens, S. Asztalos and K. Vetter

The observation of cascades of magnetic dipole (M1) transitions in neutron-deficient Pb nuclei ${ }^{1}$ has generated great interest in the nuclear structure community. These regular sequences of M1 transitions which show a rotational-like spectrum have been interpreted by S.Frauendorf ${ }^{2}$ using the Tilted-Axis-Cranking (TAC) model. The total angular momentum is generated by aligning $h_{9 / 2}$ and $i_{13 / 2}$ protons and $i_{13 / 2}$ neutron-holes in a way that resembles the closing of a pair of shears, hence the name: shears bands. We present here a global analysis of the $B(M 1)$ and $B(E 2)$ values ${ }^{3}$ in ${ }^{198,199} \mathrm{~Pb}$, based on a schematic coupling of two long j-vectors $\left(\vec{j}_{\pi}, \vec{j}_{\nu}\right)$. Defining θ_{π} and θ_{ν} as the angles of the proton and neutron spin vectors with respect to the total angular momentum, $\vec{I}=\vec{j}_{\nu}+\vec{j}_{\pi}$, the shears angle θ that corresponds to a given state in the band can be derived using the semi-classical expression: $\cos \theta=\frac{\overrightarrow{J_{v}} \cdot \overrightarrow{j_{\pi}}}{\left|\overrightarrow{j_{j}}\| \| \vec{j}_{j}\right|}$. Since the $B(M 1)$ values are proportional to the square of the component of the magnetic moment perpendicular to the total angular momentum vector they should show a characteristic drop as the shears close (i.e. $\theta \approx 90^{\circ} \rightarrow \theta \approx 0^{0}$). We find that this dependence is given by

$$
\begin{equation*}
B(M 1)=\frac{3}{4 \pi} g_{e f f}^{2} j_{\pi}^{2} \frac{1}{2} \sin ^{2} \theta_{\pi} \quad\left[\mu_{N}^{2}\right] \tag{1}
\end{equation*}
$$

as a function of the proton angle, θ_{π}, where we have introduced an effective gyromagnetic factor, $g_{e f f}=g_{\pi}-g_{\nu}$. From the measured $B(M 1)$'s we derive a common $g_{\text {eff }} \approx 0.9$ for the different bands in ${ }^{198,199} \mathrm{~Pb}$. This seems consistent with that expected for nuclei in this region where, for example, using the measured values for the configurations $\left(\pi h_{9 / 2} \otimes \pi i_{13 / 2}\right)_{11-}$ and $\left(\nu i_{13 / 2}\right)_{12+}^{-2}$ we estimate $g_{e f f} \approx 1.12$. We can also derive a simi-

Figure 1: $B(M 1)$ and $B(E 2)$ values as a function of the shears angle. The lines are calculated with Eqs. (1) and (2).
lar expression for $B(E 2)$ values:

$$
\begin{equation*}
B(E 2)=\frac{5}{16 \pi}(e Q)_{e f f}^{2} \frac{3}{8} \sin ^{4} \theta_{\pi} \quad\left[e^{2} b^{2}\right] \tag{2}
\end{equation*}
$$

in terms of $(\epsilon Q)_{e f f}=e_{\pi} Q_{\pi}+\left(\frac{j_{\pi}}{i_{\nu}}\right)^{2} e_{\nu} Q_{\nu}$. The $B(E 2)$'s also drop as the shears close and should go to zero because the charge distribution becomes symmetric around the rotation axis. The overall angle dependence is reproduced with an average $(\epsilon Q)_{e f f} \approx 6.5 e b$.

References

† Accepted for publication in Phys. Rev. C, Rapid Communication.
${ }^{1}$ R.M.Clark et al., Phys. Lett. B275 247 (1992); G.Baldsiefen et al., Phys. Lett. B275 252 (1992) and A.Kuhnert et al., Phys. Rev. C46 133 (1992).
${ }^{2}$ S.Frauendorf, Nucl. Phys. A557, 259c (1993).
${ }^{3}$ R.M.Clark et al., Phys. Rev. Lett 781868 (1997).

