DRAFT

10003 Ilmenite Basalt (low K) 213 grams

Figure 1: Photo of 10003,25. Sample is 5 cm across. NASA S76-25545.

Introduction

Lunar sample 10003 is a low-K, high-Ti basalt (figure 1). It is about 3.9 b.y. old, with a cosmic ray exposure age of 137 m.y. Its location on the lunar surface was not recorded. It was returned in ALSRC #1004, and was one of the first lunar samples studied.

Petrography

Schmitt et al. (1970) termed 10003 a "medium-grained, vuggy subophitic basalt" while Beaty and Albee (1978) and Gamble et al. (1978) described the texture as "ophitic". McGee et al. (1977) described sample 10003 as a "medium-grained porphyritic pyroxene basalt characterized by anhedral phenocrysts of pyroxene (1.0 - 2.7mm) set in a subophitic matrix of plagioclase,

pyroxene and ilmenite" (figure 2). The mesostasis includes cristobalite, K-rich glass, troilite with metallic iron blebs, and small amount of pore space. Tablet-shaped plagioclase (0.1 - 0.6 mm) occurs both subophitically intergrown with pyroxene phenocrysts and as an interstitial phase between phenocrysts. Ilmenite typically occurs as blocky, irregularly shaped bodies (0.5 - 1.0 mm) intergrown with pyroxene phenocrysts.

Mineralogy

Olivine: Olivine cores are found in some pyroxene (Beaty and Albee 1978).

Figure 2: Photomicrographs of thin section 10003,37 (plane polarized and crossed polarized). Width is 2.6 mm. NASA S70-49473-49474.

Pyroxene: Hafner and Virgo (1970), Beaty and Albee (1978) and Gamble et al. (1978) determined pyroxene composition of 10003 (figure 3). Single crystal X-ray diffraction studies show that the pyroxene is an intergrowth of pigeonite and augite (Ross et al. 1970). The distribution of cations in pyroxene sites was studied by Hafner and Virgo. They determined that there was no Fe⁺³.

Figure 3: Pyroxene and olivine composition of 10003 (replotted from Beaty and Albee 1978 and Gamble et al. 1978).

Plagioclase: The chemical composition of plagioclase was found to be zoned from An_{93} to An_{67} by Beaty and Albee (1978). The composition of plagioclase (An_{85}) can also be estimated from the crystallographic data by Stewart et al. (1970).

Ilmenite: Gamble et al. (1978) describe the ilmenite in 10003 as elongate and euhedral. They found some grains were low in Mg, while others were high in Mg (up to 6.3% MgO). Stewart et al. (1970) determined the crystallographic data for ilmenite in 10003.

Rutile: Haggerty et al. (1970) studied the nature of rutile inclusions in ilmenite host in 10003.

Chemistry

The K and Rb content of 10003 is low while REE content is intermediate (figure 5). The modern analysis by Rhodes and Blanchard (1980) confirmed earlier work.

Radiogenic age dating

Papanastassiou and Wasserburg (1975b) determined the age of 10003 by Rb/Sr (figure 6) which agreed closely

Mineralogical Mode for 10003										
-	James and Jackson 70	Beaty and Albee 1978	Haggerty et al. 1970	Gamble et al. 1978	Bailey et al. 1970					
Olivine	0.5	0.52			tr.					
Pyroxene	48.7	50	51.7	48.6	50					
Plagioclase	34.8	34.2	29	33.5	33.8					
Ilmenite	14.1	13.3	18.2	14.9	14					
mesostasis				0.8						
silica	1	1.06	0.3	1.4	1.2					
troilite	0.5	0.68		0.8						
phosphate	0.2	0.25								

Lunar Sample Compendium C Meyer 2005

Figure 4: Composition of 10003 compared with that of other Apollo lunar samples.

Figure 5: Normalized rare-earth-element composition for low-K basalt 10003 (the line) compared with that of low-K basalt 10020 and high-K basalt 10049 (the dots) (data from Wiesmann et al. 1975).

with that of Stettler et al. (1974) and Turner (1970) by the Ar/Ar technique. Perhaps the most reliable age is that obtained by Ar/Ar plateau of the plagioclase 3.91 \pm 0.03 b.y. (figure 7).

Cosmogenic isotopes and exposure ages

O'Kelley et al. (1970) determined the cosmic ray induced activity of ²²Na (41 dpm/kg), ²⁶Al (74 dpm/kg), ⁴⁶Sc (13 dpm/kg), ⁵⁴Mn (35 dpm/kg) and ⁵⁶Co (43 dpm/kg). Perkins et al. (1970) determined ²²Na (49 dpm/kg), ²⁶Al (75 dpm/kg), ⁴⁶Sc (8 dpm/kg) and ⁵⁴Mn (60 dpm/kg). Wrigley and Quaide (1970) determined ²²Na (56 dpm/kg) and ²⁶Al (74 dpm/kg).

Turner et al. (1970) and Hintenberger et al. (1971) reported ³⁸Ar exposure ages of 150 m.y and 140 m.y. (respectively). Arvidson et al. (1975) reported a ⁸¹Kr exposure age of 140 m.y. (determined by Schwaller 1971). Eugster et al. (1984) reported ⁸¹Kr exposure age of 137 m.y.

Other Studies

Oxygen isotopes were reported for mineral separates of 10003 by Onuma et al. (1970) and Taylor and Epstein (1970).

The concentrations of Sm, Nd, Lu and Hf and the isotopic ratios of $^{143}Nd/^{144}Nd$ and $^{176}Hf/^{177}Hf$ were determined by Unruh et al. (1984).

The abundance and isotopic composition of rare gases in 10003 were determined by Hintenberger et al. (1970) and Eugster et al. (1984). Price and O'Sullivan (1970) studied the gradient of cosmic ray tracks and obtained the erosion rate by micrometeorite bombardement.

Processing

Apollo 11 samples were originally described and cataloged in 1969 and "re-cataloged" by Kramer et al. (1977). 10003 was sawn with a circular saw (figure 9 shows the pieces).

List of Photo #s for 10003

S69-45005-006 B&W PET S69-45009 S69-45016 S69-45019 S69-45021 S69-45192-193 S70-49473-474 S70-50549-552 color TS S75-28696-699 ,9,12 S75-20468-469 ,38,74,119 S76-25538 S76-25540 S76-25545 S76-25547 .25 S76-26304 - 305 B&WTS S79-27075-077 TS color

Figure 6: Rb/Sr internal mineral isochron for 10003 (from Papanastassiou and Wasserburg 1975b abs.).

Figure 7: Argon release pattern for plagioclase seperated from 10003 (from Stettler et al. 1974).

 $\label{eq:bound} \begin{array}{ll} Rb/Sr & Ar/Ar \ (plag) \\ \mbox{Papanastassiou and Wasserburg 1975} & 3.84 \pm 0.08 \ b.y. \\ \mbox{Stettler et al. 1974} & 3.91 \pm 0.03 \\ \mbox{Turner 1970} & 3.92 \pm 0.07 \\ \mbox{Disclaimer: Uncorrected for new decay constants.} \end{array}$

Summary of Age Data for 10003

Figure 8: Argon release pattern for low K phases in 10003 (from Stettler et al. 1974).

reference	Gast70	1		Wiesma	ann75		Compsto	on70	Rose	70	Goles	70	Rhodes	80	O'Kelle	ey70	Perkin	s70	Wrigley70	0
Neight SiO2 % TiO2 Al2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % Sum	0.39 0.057	0.053	(a) (b)	0.39 0.057	0.053	(a) (b)	39.76 10.5 10.43 19.8 0.3 6.69 11.13 0.4 0.06 0.12 0.18	(c) (c) (c) (c) (c) (c) (c) (c) (c)	37.8 12 11 19.8 0.29 7.2 11 0.85 0.05	(b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	38.3 11.8 10.2 19.7 0.22 8.1 11.6 0.36	(e) (e) (e) (e) (e) (e) (e)	39.53 10.67 10.44 20.51 0.29 7.1 10.8 0.39 0.06 0.14	$\begin{array}{c} (c) \\ (c) \end{array}$	0.058	(f)	0.046	(f)		
Sc ppm											74 63	(e)	78	(e)						
Cr Co Ni									1779	(d)	1390 14.1	(e) (e)	1620 14	(e) (e)						
Zn Ga Ge ppb As Se Rb Sr Y Zr Nb Mo Ru Rh Pd ppb Ag ppb	0.49 159	0.5 153	(b) (b)	0.49 159	0.5 153	(b) (b)	0.62 161 112 309	(c) (c) (c) (c)			560	(e)								
Cd ppb In ppb Sn ppb Sb ppb Te ppb																				
Cs ppm Ba La Ce	0.022 108 15.5 47.2	106 14.7 45.5	(b) (b) (b) (b)	0.022 108 15.5 47.2	106 14.7 45.5	(b) (b) (b) (b)					220 13.5 37	(e) (e) (e)	15.2 53	(e) (e)						
Pr Nd	40	38.3	(b)	40	38.3	(b)														
Sm Eu	14.4 1.81	14 1.76	(b) (b)	14.4 1.81	14 1.76	(b) (b)					13 1.84	(e) (e)	14.8 1.85	(e) (e)						
Gd Tb	19.5	19	(b)	19.5	19	(b)					35	(e)	33	(e)						
Dy	21.9	21.6	(b)	21.9	21.6	(b)					4	(-)		(-)						
HO Er	13.6	13.4	(b)	13.6	13.4	(b)					4	(e)								
Tm Yb Lu Hf Ta W ppb Re ppb Os ppb Ir ppb	13.2 1	13	(b) (b)	11.7 1	11.6	(b) (b)					15.3 2.62 11.6	(e) (e) (e)	12 1.76 11.4 2	(e) (e) (e)						
Pt ppb Au ppb Th ppm U ppm <i>technique:</i>	(a) AA,	(b) IDM	'S, (a	c) XRF,	(d) semi	mic	1.1 ro XRF, (e	(c) e) <i>IN</i> /	AA, (f) I	radia	0.31 tion coi	(e) unting	1.8 g	(e)	1.01 0.26	(f) (f)	1.08 0.29	(f) (f)	0.9 0.25	(f) (f)

Table 1a. Chemical composition of 10003.

Lunar Sample Compendium C Meyer 2005

Table 1b. Chemical composition of 10003.

reference weight SiO2 % TiO2	Haskin70		Annell70	
AI2O3 FeO MnO MgO CaO Na2O K2O P2O5 S % sum			0.33	(b)
Sc ppm V Cr Co Ni			94 82 1860 15 2.7	(b) (b) (b) (b) (b)
Zn Ga			47	(b)
Ge ppb As			Τ. Ι	(0)
Se Rb Sr Y Zr Nb			1 150 113 380 21	(b) (b) (b) (b)
Mo Ru Rh Pd ppb Ag ppb Cd ppb In ppb Sn ppb Sb ppb Te ppb Cs ppm				
Ba La Ce	14.1 41.3	(a) (a)	160 15	(b) (b)
Pr Nd Sm Eu Gd Tb Dy	42.5 13.1 1.8 17 3.26 22.4	(a) (a) (a) (a) (a)		
nu Er Tm	12	(a)		
Yb Lu Hf	11.9 1.69	(e) (a)		
W ppb Re ppb Os ppb Ir ppb Pt ppb Au ppb Th ppm U ppm technique:	(a) INAA, (b) em	ission spe	Э С .

Figure 9: Group photo of 10003,12 and ,9. Cube is 1 cm. NASA S75-28698

Table 2	U ppm	Th ppm	K ppm	Rb ppm	Sr ppm	Nd ppm	Sm ppm	technique
Papanastassiou 1975b			433	?				idms
Perkins et al. 1970	0.29	1.08	460					rad. Count.
O'Kelley et al. 1970	0.26	1.01	480					rad. Count.
Gast and Hubbard 1970			470	0.49	158.6	40	14.5	idms
Tatsumoto et al. 1970	0.268	1.029						idms
Compston et al. 1970		1.1		0.62	160.9			idms

Lunar Sample Compendium C Meyer 2005