
AlAA 98-0164
Heat and Mass Transfer for Isolated and
Interacting Fluid Drops Under Quiescent
Supercritical Conditions
K. Harstad and J. Bellan
Jet Propulsion Laboratory
Pasadena, CA

36th Aerospace Sciences
Meeting & Exhibit

January 12-15, 1998 / Reno, NV

,
. .



H E A T  A N D  M A S S  T R A N S F E R  F O R  I S O L A T E D  A N D  I N T E R A C T I N G  F L U I D
D R O P S  U N D E R  SUPERCR.ITICAL  C O N D I T I O N S1

K. Harstacl and J. 13ellan
Jet Propulsion I,aboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA. 91109

Abstract

A model has been developed for the behavior of all
isolated fluid drop of a single component species inl-
rnersed into another single component species in finite,
quiescent surroundings at supercritical  conditions. ‘1’he
model is based upon fluctuation theory which accounts
for both Soret and Dufour effects in the calculation of
the transport matrix relating molar and heat fluxes to
the transport properties and the thermodynamic vari-
ables. The contribution of the chemical potentials to
the fluxes is fully included and accounts for potentially
non-unity mass diffusion factors and transport effects
of enthalpy and molar volumes with temperature gra-
dients and pressure gradients, respectively. This model
has been used as a building block in a fornnrlatiol~
describing interactions of fluid drops inducecl  by drop
proximity. Heat and mass transfer to the cluster are
modeled using the hTusselt  number concept. Calcula-
tions were performed for the 1,0= -- H2 systeIn; the
transport properties have been mocleled  over a wide
range of pressure and temperature variation applica-
ble to L O= -- Hz conditions in rocket engine combus-
tion chambers, and the equations of state have becx)
calculated using a previously-derived, conlputationally-
efflcient and accurate protocol. The results show that
the supercritical  behavior is essentially one of diffusion.
The temperature profile relaxes fastest followed by the
density and lastly by the mass fraction profile. To un-
derstand heat and mass transfer, an effective Lewis
number was calculated for situations where tenlpera-
ture and mass fractions gradients are very large. Re-
sults show that the effective Lewis number can be 2
to 40 times larger than the traditional Lewis number
and that the spatial variation of the two numbers is
different; the reason for these Lewis number effects is
discussed. Parametric simulations as a function of pres-
sure show that length scales decreasse  with increasing
pressure. This hinders interdiffusion for isolated fluid
clrops, but enhances it for clusters of drops due to the
additional effect of increasing cluster volume.

Introduction

Licluicl  rocket engine design is not a mature technol-
ogy in that the issues of reliability and efhciency are
unresolved. Current designs are still based upon enl-
pirical knowledge and theory that does not portray the
complexities of the physical processes and of the en-
vironment in the combustion chambers. The extensive
review on liquid propellant rocket instabilities compiled
by Harrje and Reardon [I] more than twenty years ago
remains the base of rocket design despite the increased
understanding that many of the approximations made
in perforlniug the calculations compromise the validity
of the results.

One of the foundations of liquid rocket instabili-
ties is the theory of isolated drop evaporation and com-
bustion in an infinite meclium [I], [2]. The early ver-
sion of that theory was based on the assumption of
quasi-steady gas behavior with respect to the liquid
phase, an assumption strictly valid only at low pres-
sures where the liquid density is three orders of magni-
tude larger than that of the gas. Recognizing that at
the elevated pressures c)f liquid rocket chambers the liq-
uid density approaches that of the gas, the quasi-steady
assumption was relaxed in other investigations [3], [4],
[5], [6], [7]. However, it is only recently that the de-
scription of the full complexity of combustion chambers
processes was sought; this includes not only the com-
plete unsteady treatnlellt of the conservation equations
but also appropriate equations of state with consistent
mixing rules and transport properties valid over trans-
critical/supercritical  conditions. Recent studies related
to these aspects are those of Yang et al. [8], Hsiao et
al. [9], Dclplanclue  and Sirignano [10] and Haldenw’ang
et al. [11].

Isolated drop behavior, although very relevant to
understanding phenolnena in rocket engine motors, is
by itself insutlcient  for deriving the necessary insight
into controlling licluicl  rocket combustion operation.
Experimental observations of atomization of coaxial
jets (SUC1l as those used in liquid rocket engines) by
Harclalupas et al. [12] and Engelbert  et al. [13] reveal
tile initial formation of ligaments, each ligament quickly
disintegrating into a cluster of clrops. Similarly, visual-
izations of impinging licluicl  jets [I] have shown that un-
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dcr both cold and hot flow collditiolls  the: jets  break up
it~ a ~mriodic  matl~wr iuto ligamcxlts  which furtlwr t)reak
UIJ illto clro~)s thcxcby crcntirlg clusters of clrops. Recent
obsrwvatiolls by RyaIL  et al. [14] have docml~cl~ted this
typical breakup process ~vhile also yielding informatiol~
regarding t}le breakup length and the drop size for both
laminar ancl  turbulent inlpinging  jets. Poulikakos  [15]
made similar observations.

These observations indicate that fluid drops cre-
ated during atomization in liquid rocket chambers C1O

not behave as isolated and instead have a collective be-
havior. This realization is very important for control-
ling high frequency colnbustion  instabilities because the
response function must incorporate this fluicl drop in-
teraction.

Fluid drop interaction at high pressure has been
modeled by Jiang and Chiang [16] using the concept
of ‘sphere of influence’ of Bellan and Cuffel [17] and
results were obtained for n-pentane adiabatic drop ar-
rays where the drops are uniformly distributed and sta-
tionary. The model of Jiang and Chiang [16] does
not include the intricacies of high pressure transport
processes, and thus it is not appropriate for the su-
percritical  regime where Fick’s and Fourier’s laws are
I LO longer solely able to completely describe the t rans-
port matrix [18]. Additionally, the interdrop distance
xnight  not have similar values under subcritical and su-
percritical  conditions since in the former situation the
liquid drops have a motion distinct from that of the sur-
rounding gas whereas in the latter situation, because
the densities of the two fluids are more similar, their
motion is also more similar. Moreover, the dense spray
effects icientifled at subcx-itical conclitiolls  were the con-
sequence of both high mass and relatively high volume
loading; ilk supercritical  conditiolls,  the relatively high
volume loading is not necessarily accompanied by high
Inass loading because of the density ratio effect. This
indicates that dense spray effects might be encountered
in supercritical  conditions only for interdrop distances
much smaller than in subcritical conditions. In fact,
dense spray effects will visually manifest as small scale
density variations, consistent with the discussed obser-
vations for coaxial and impinging jets atomization [12],
[13], [14] and [15].

This study is clevoted to both establishing, from
first principles, a set of conservat ion equations describ-
ing isolateci fluid drop behavior and to establishing a
model of fluid drop interactions. These models consti-
tute the frame work for identifying the major differences
in behavior between that known for liquid drops at sub
critical conditions and that found here for fluid drops
under supercritical  conditions.

M o d e l

‘1’he model of the conservation equatiom  for the isolated
fluid drop is based on the fluctuation theory of Keizer
[19], also described by Peacock-Lopez and Woodhouse

[20]. The advantage of this theory is that it inher-
mltly accounts for lloIleclLlilit>ritll[l  I)roccsscs and nat-
urally leads to tllc Illost gc~mral fluid cquatiolls by re-
lating the partial ~nolar  fluxes, ~i, and the heat flux,
~“’, to tiwrmodynamic  quantities. These equations have
been derivecl ill detail in Harstad and Bellan [18], and
therefore it is only a brief clescription that will be pro-
vided here. +

Fluctuation theory relates J i and ~’ to the trans-
port matrix L through

j=l j=l

(1)
Ilere Lij are the Fick’s difhrsion elements, L~~ is the
Fourier thermal diffusion element, Liq are the Soret dif-
fusion and L~j are the Dufour  diffusion elements, /lj is
a chemical potential and ,8- l/(lK!’)  where T is the
temperature and & is the universal gas constant. The
Onsager relations state that Lij = Lji and Liq = Lqi.
Additionally, conservatio:l  of fluxes and mass in the sys-
tem imply that ~ nti J i = ~ and N Lij7ni = O for
j E [1, ~ and j = g, where ?~li are the molar masses.

Using the thermodynamic relationship

where

are the mass diffusion factors, one can calculate ~’1
from Eqs. 1 and 2. Here vj are the partial molar VOl-

umes, p is the pressure, }Lj are the molar  enthabks,  vi

are the activity coefficients and Xi are the molar frac-
tions. This formalism proceeds with the definition of
a symmetric matrix whose elements are the pair-wise
mass diffusion coefficients for the mixture D$~~~, and
an antisymmetric matrix whose elements are the ther-

“~) The main result is that themal diffusion factors a~ .
transport matrix has the following form:

J  = ~j AJ,j VYj + BJV7’ + cJv~’

q= AqVT + ~j Cq,j V Yj  +B~VP
(4)

where p’ is the dynamic pressure, and the A ‘s, B ‘s and
C‘s are functions of the dependent variables. The terms
proportional to the gradient of the dynamic pressure in
the expressions for J and q will be neglected in the fol-
lou’illg because that gradient is proportional to A4a2,
where Ala is the Mach number, and Ma << 1; while
coefficients CJ al~d  Bq are no larger than other coef-
ficimlts in the equations. Spatial variations of p’ were
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ccnlfirllmf  to bc small by results frcull  calculations of
isdatc(i  entities of LO= in fluid 112 at higl~  ~Jressurcs
[18].

To obtain the systwn of conservation ccluationsj
the flux mat rix is used into the Navier-Stokes eclua-
tions. Within this self cousistel)t clerivation,  tlw ther-
modynamically  related transport coefflciex)ts are nat-

(i~) _urally clcfi~wcl: II,,, — ‘-1.ij(?7L2/?lli? ltj)V/(XiXj) are
thcmassc liffusionc ocfflcients  (7nisthe molar massrmcf
v is the molar volume) and ~ = @L~~/T’ is the thermal
conductivity. Also, the ratios between the thermal and

(ij)mass diffusivities az are related to the mass diffusion
coefficients and the elements of the transport matrix

(a~)~$f~).through ~7~tuLi~/Xi  z ~~j+i~71jxj~T

The general form of the flux matrix indicates that
even in the simplified case when there are only two
single-component substances, whichis the focus of this
study, the traditional calculation of the Lewis number,
Le E DT/Dnt = A/(pCPDn,),  may not be appropriate
for a general fluid (Ilz is the thermal diffusivity and &,
is the mass diffusivity).  This is because even if there is
only one diffusion coefficient, the characteristic length
scales for heat and mass transfer are no longer given
by the multiplying factors of the Fourier and Fick’s  dif-
fusion terms. In fact, due to the general form of the
flux matrix, these scales are not immediately appar-
ent and additional analysis is necessary to find them.
Harstad and Bellan [21] present such au analysis that
leads to the Lewis number calculation froln a general
form , Le.f j = &~f /(PCpD~j~ ). The analysis is valid
under the assumptions of quasi-steadiness, large gradi-
ents, and large emission rates from the fluici drop. !f%e
final result of the detailed analysis is that &Jf con-
tains an additional, positive contrit)ution  with respect
to J, whereas D.ff is reduced by a negative contribu-
tion with respect to D,n. The results presented below
w’ill  emphasize the impact of these findings.

Finally, the model for the cluster of drops is ob
tained by coupling the isolated fluid drop equations
with a set of conservation equations for the entire clus-
ter. The derivation has been described in detail in
Harstad and Bellan  [22], and it is only the fundamental
concept is discussed here: Whereas  the isolated fluicl
drop equations are solved in a finite domain where the
far field boundary is located at a distance that changes
as a function of time due to processes related to that
sphere of influence, for interacting drops this distance
changes as a function of processes in all spheres of influ-
ence and is a solution of the cluster conservation equa-
tions. In the same manner, wheretw the far field values
of the dependent variables are prescribed for the is~
Med fluid drop, for interacting drops they are found M
a function of time from the solution of the global cluster
conservation equations.

Boundary Conditions

F’or sl)flcrical  dro~)s, bOU1lClilry  colditious arc applied at
three cliffcrent locations for the isolated fluid drop: the
clrop center, the interface separating initially tl~e two
pure substances, ancl the far field; for the cluster, an
additional bounclary condition  is itnposed  at the cluster
boundary with its surroundings.

At the center of each fluicl drop, spherical symme-
try conditions prevail, Ivhereas at the edge of the sphere
of influence the dependent variables are prescribed.

The conditions at the interface express not only
conservation of masss, species, momentum and energy,
but also nonecluilibrium  evaporation (when applicable)
and solvation. Initially, the fluid drop exists for r < &
and at t = O, a predominantly different fluid surrounds
the drop (r > ~d). In cent rast to the purely subcritical
situation [17] where the interface is well defined by a
surface where there is a sharp change in density, here
there is an arbitrariness in defining an interface that
should be followed in time. As we show in the Results
section, the gradients of the mass fraction and density
do not coincide, so that following the pure drop inter-
face is not equivalent to following the maximum density
gradient, which is what is optically detected. Since at
supercritical  conditions the physical phase change inter-
face does not exist, we are free to choose an interface
that we want to follow; by choice, here we follow the
interface of the initially pure fluid drop.

For a spherical cluster, the gradients at the clus-
ter boundary may be approximated by a difference
across an external length scale, r-e, which is related
to what is equivalent to a Nusselt number, IVuc,  by
re = Rc/Nuc, where & is the cluster radius. A pri-
07-i, the assumption was made that re is the same for
heat and mass transfer, although the results found be-
low show that the mass transfer scales are larger than
those for heat transfer. However, there was no previous
information leading to appropriate heat and mass trans-
fer length scalw,  and thus it did not seem justifiable to
make an ad hoc assumption about their ratio. To study
the impact of transport to the cluster, parametric simu-
lations were performed [22] with Nusselt  numbers over
the range 102 – 1 05 atld it was found that the vari-
ation in the results was millimal;  this is due to heat
transfer from the cluster interstitial region to the drops
being much faster than that from the surroundings to
the cluster.

Equations of state and Transport Properties

The actuations of state (EOS)  were calculated according
to the procedure described in Harstacl et al. [23] in or-
cler to extend the experimentally derived EOS’S beyond
tlm range of the data and also to obtail~ analytic forms
suitat)lc to using mixing rules.

The calculation of viscosities, thenual couductiv-
itics and diffusivitics  is clcscribcd  in det~l in Harstad
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d 13clhm [18]. F,sscnt idly,  for each put-c subst ante,
both viscosities and thermal conductivitics  arc calcu-
Mcd using a protocol whereby it is first the low p lilnit
that is correlated, then this function is subtracted from
the high p data to create an excess function, and finally
the high p clata is correlated. The corresponding states
formalism of Teja and Rice [24] is used to calculate the
Inixture properties.

The diffusion coefficients are calculated in four
steps [18]: (1) binary infinite dilution diffusion coef-
ficients for a gas, (2) infinite dilution diffusion coeffi-
cients for a licluid, (3) infinite dilution coefficients for a
fluid under general conditions, and (4) binary diffusion
coeflcients  using the corresponding states formalism of
Teja and Rice [24].

Results

The results presented here are for the LO. – H2 sys-
tem for which the critical conditions are the following:
Tc is 154.6 K and 33.2 K respectively and pc is 5.043
hlPa and 1.313 MPa respectively. Table 1 contains a
summary of the initial conditions used in the simula-
tions; N is the number of drops in the cluster (IV == 1
represents the isolated drop). For isolated drops, the
pressure and temperature at the edge of the sphere of
influence (the far field; subscript si) are constant dur-
ing the calculation. For clusters of drops, the initial
interstitial temperature and pressure is always that of
the cluster surroundings, but the interstitial values are
functions of titne according to the global, cluster con-
servation equations. Other initial conditions used are:
fluid drop radius of 50x 10–4 cm, fluid drop tempera-
ture of 100 1{ and fluid hydrogen temperature of 1000
K.

The presentation of the results is organized as fol-
lows: First a baseline behavior of the isolated fluid drop
is discussed. Then a baseline cluster behavior is ana-
lyzed for the same initial conditions; a study of the
fluid drop interaction follows as the initial radius of the
sphere of influence is varied. Finally, we explore the in-
fluence of the pressure on both isolated ancf interacting
drops.

Baseline behavior of isolated drops

ItLIII 2 represents the baseline situation whose results
are illustrated in Fig. 1 where the spatial variation
of T, p and Y1 (i =- 1 refers to LOZ) is shown as a
function of time. Comparisons between the variation of
these quantities show that the clensity gradient is the
steepest, however it does not remain steep during the
entire time necessary for drop heating. It is this den-
sity graclient that is captured in optical measurements;
since the gradient eventually relaxes, the optical nlea-
surement yields increasingly uncertain results as t in-
creases. Also, the density gradient does not correspond
to the Y1 gradient indicating that it is not the evolu-

tioli of the pure 1.0= fluid dro~) that is followed iu the
measure[llellts,  but that of an entity into which hydro-
gel~ lm.s cfiflusecl. The pure LOX fluicl  chop shrinks very
fkst alicl eventually disappears m shown in Fig. 1 by
Y1 (r = O) <1. It is importal~t  to realize that not only
C1O gradients of Y1 anti T occur at differeut  locations,
but also that early-time gradients of T are steeper than
gradients of Y1 whereas at later time the opposite is
true. The relaxation of the T and p profiles occurs
much faster than that of Y1 because D~  is considerably
larger than D~L zw ShOWIl  by their  ratio, the traditional
Le plotted in Fig. 2. hforeover,  the effective Lewis
number, Lee.~, also illustrated in Fig.2, is about a fac-
tor of 40 larger than the traditional Le indicating that
the ratio of heat to mass diffusion is even larger than
indicated by Le. Comparisons between our results and
those of Yang et al. [8] fcm Le shows that we predict
similar LFS variations, although our values are huger for
a given pressure, as will be discussed in the parametric
variations below.

The spatial variation of Leef~  is essentially differ-
ent of that of Le in that it is nonmonotonic  even af-
ter the memory of the initial condition is lost. This is
because Le. ~ ~ implicitly accounts for Y1 and T gradi-
ents effects; these Y1 and T gradients do not occur at
the same location under supercritical  conditions. Thus,
the spatial variation of Le.ff is directly related to the
variation of Y1 and T gradients as follows: For small
r, the shallow part of the curves corresponds mostly
to the large dT/c9r, Y1 being mostly uniform, and the
temporal increasse  of Le.ff is due to the increased T .
The strongly increasing branch of Le.fj corresponds
to the region of large ~Y1 /t)r and the location of the
maximum Le~ff is directly related to the maximum
Y1 gradient. Finally, the decreasing part of the Le.ff
curves corresponds to the decreasing dY1 /& and the
asymptotic leveling of T. In contrast, the Le spatial
variation reffects only the dependence of D~, and Dn,
upon composition and ‘T.

Parametric studies with various values of the ther-
mal diffusion factors (0.0, 0.01 and 0.05) show no sen-
sitivity of the results to Soret and Dufour effects for
the 1,0= – }12 system. The difference between Le and
Lc.ff is due to the combined effect of the contribution
of the chemical potentials to the fluxes through a small
xnas cliffusion factor and transport effects of enthalpy
with tenlperature gracliel~ts.

Clusters of drops behavior

As cliscussed above, due to the essentially diffusive
behavior at high pressure it is expected that dense
spray effects will be important only for fluid-drops in
closer proximity thall in subcritical conclitions;  there-
fore, R~i = 2R~ is chc)sen as a baseline behavior. Fig-
ure 3 illustrates the spatial profiles of T, Y1 and p at
clitlerc[lt tilnes while Fig. 4 clepicts the time evolution
o f  T.,, ~’l,si,  P,yi, Nd (clrop nulnher clens!ty),  R~i a n d



r{c. Comparisons bctwmu  t hc calculated fx~scline re-
SUltS and those obtained for R:, = 5R~ and R~i = 10R~
(SCC th~t t]iC results  fOr ~h[ls  8 aIld 2 arc fXSelltiall~
the same) under otherwise identical conditions are pre-
sented in Fig. 5. While the baseline spatial variation of
T, Y1 and p parallels that obtained for the isolated drop
in that it is mainly a diffusion process, the closer drop
proxilnity  induces srnallcr density graciicnts  (Fig. 5c),
steeper Y1 gradients (Fig. 5b) and larger temperatures
as the initial interstitial temperature is equal to that
of the cluster surroundings. An important difference
among the results obtained with decrezwing R~i/@ is
the increased accumulation of a non-negligible amount
of LO= in the interstitial region (see Fig. 4a) as the clus-
ter contracts due to heat being transferred faster froln
the interstitial region to the fluid LOX drops than it is
replenished from the cluster surroundings. This is con-
sistent with the small decrease of T~i, R.i and % and
the equivalent increase in ~~i shc)wn in Fig. 4. Eventu-
ally, Tsi increases due to the increased amount of heat
transferred to the cluster from its surroundings, and
Yl,~i  accordingly decreases. All these effects are small
for the values used in this baseline calculation; in par-
ticular, the value of lVuC is too small for heat transfer
from the cluster surroundings to replenish the heat re-
linquished by the interstitial fluid to the fluid drops. In
fact, just as in subcritical cluster studies [25], the nm-
tion of the cluster boundary is governed by the ratio of
two characteristic times: that of heat transferred from
the interstitial region to the drops (a heat sink), tl,
and that transferred from the cluster surroundings to
the cluster (a heat source), t2; the only difference with
the subcritical studies is the absence of phase change
which requires a substantial heat budget. The latent
heat carried away by the evaporated compound in sub-
critical situations constitutes a major percentage of the
heat input to the gas phase. This explains the present,
relatively undramatic cluster contraction and expan-
sion. However, results from calculations with ZVuc in
the range 103 to 105 show a surprising insensitivity to
the value of Nuc [22]. This results is plausibly due to
the combined effects of: (1) the value of re for mass
ancl heat transfer being taken identical, whereas LeGff
suggests that it should be considerably larger for mass
transfer, and (2) the modeling of transfer across the
cluster boundary using an equivalent Nusselt number
being somewhat uncertain.

The effect of pressure

In Fig. 6 we display results for fixed initial drop size and
surrounding temperature as a function of surrounding
pressure at 2 x 10-2 s. The slightly larger A but much
larger CP with increasing p on the LO= side of the inter-
face (not shown) result in smaller Ton the LO* side of
the interface; the opposite occurs on the H2 side of the
interface. Thus, T gradients are greater with increasing
p, Increasing the surrounding p decreases both D,,, ‘cmcl

D-f (not shown); ho}vever, there is rclati~’ely  a larger
reduction 011 tflc Hz side of tile illterf ace. The ciccre~se
i~l 1~,,, mqdaim tile snwllcr  YI orl tile IIz s ide  o f  the
i[ltcrface and the steeper .graclielks with increasing p.
~xa~Ilinatioll  of t.fle p profiles show’s the considerably
larger gradients with incrcxwing p; it is thus inferred
that experilnents cluantifying  the interface motion will
be more accurate when performed at large pressures.
Examination of the variation of Le with increasing p
[21] shows that as p increases, Le remains <1 on the
LO* side of the interface, and decreases with increas-
ing p, whereas Le remains > 1 on the Hz side of the
interface and increases with increasing p [21]; the Lewis
number seems insensitive to the pressure in the far field.
This spatial variation \vith increasing p shows that in-
deed the gradients become steeper with increasing p.

The general variation of the dependent variables
with increasing p for iscJated fluid drops indicates that
since the gradients become larger due to a reduction
in scales, high pressure cornbust ion in practical devicw
will have to rely on strong turbulence to enhance mixing
and heat transfer.

To investigate the impact of drop interactions with
surrounding pressure, extensive calculations were per-
formed by varying the surrounding cluster pressure
from 10 MPa to 80 MPa. The results at 10-2 s are
depicted in Fig. 7. Unlike in the isolated drop situa-
tion where gradients were greater with increasing pres-
sure, here it is exactly the opposite. The effect of the
drop interaction is to smear the gradients by increasing
the cluster volume with increasing pressure. This vol-
ume increase is a direct consequence of the reduction
ill pcP with increasing pressure in the predonlinantly-
LOZ  side of the interface; this results in a temperature
augmentation in this region, which increases the aver-
age cluster temperature, and thus its volume. A more
minor effect, which increases the available heat source,
is the slight elevation c)f the interstitial molar enthalpy
w’ith increasing pressure. Thus, the presence of clusters
of drops in burning sprays tends to render the depen-
dent variables more uniform with increasing pressure
whereas the opposite is true for isolated drops. In this
respect, clusters of drops are a desirable aspect because
they aid the interdiffusion of the reactive components.

Conclusions

A model of an isolated fluicl drop in quiescent, finite spa-
tial surroundings has been derived using the formalism
of fluctuation theory. ‘l’he model presented here is de-
rived from first principles and incorporates all physical
aspects of high pressure behavior including Soret and
Dufour effects, high pressure mixture-thermodynamics
and mixture transport properties over a wide range of
pressures and temperatures. This model has been fur-
ther used as a building block for a more general fluid
drop cluster model wherein it was coupled to global
conservation equations derived for the entire cluster.



Simx the transport nmtrix is no lmlger cwll])oscd  of
tllc Fick rtrlrl Fourier terms whicli for[[l tllc basis of the
t radit iolml 1,mvis num})cr crdculatioll,  an cffcc.t ivc Ixx’is
nu[nber has been crdculatecl based upon the results of
a simplified a]lalysis  that retains the Soret and Dufour
contributions, and includes the effects of the nmss diffu-
sion factors as well as transport effects of enthalpy and
molar volumes with temperature gradients and pressure
.graclients, respectively.

Results obtained for the LO= - }12 system show
that the supercritical  behavior is that of a slow diffu-
sion process. The spatial temperature profile is the first
to relax, followed by the density profile; the mass frac-
tions remain nonuniform long after relaxation of both
temperature and density. Given the long characteris-
tic time associated with diffusion, it is not surprising
that strong turbulence is needed to mix LOX and H2 in
liquid rocket engines.

Parametric studies performed for the LO. – H2

system for various drop proximities show that the most
important cluster effect is the accumulation of a non-
negligible amount of LOZ with decreasing drop interdis-
tance. The effect of drop proximity decreases with in-
creasing pressure in that the behavior of the fluid drops
in a very dense gas becomes increasingly similar to a
pure diffusion process. For given initial drop proximity,
an increase  iri pressure results in increased smearing of
the gradients, a desirable aspect because it promotes irl-
terdiffusion. This result is exactly the opposite of what
is obtainecl  for isolated fluid drops.

Calculations of the effective Lewis number show
that it can be larger than the Lewis number by a factor
of 40. Additionally, the traditicmal  Lewis number and
effective Lewis number have different spatial variations,
indicating that the traditional Lewis number is not even
a qualitative measure of the relative importance of heat
and mass transfer.
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!llhle  1: Initial conditions for the simulations.
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