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Abstract

A model has been developed for the behavior of an
isolated fluid drop of a single component species im-
mersed into another single component species in finite,
quiescent surroundings at supercritical conditions. The
model is based upon fluctuation theory which accounts
for both Soret and Dufour effects in the calculation of
the transport matrix relating molar and heat fluxes to
the transport properties and the thermodynamic vari-
ables. The contribution of the chemical potentials to
the fluxes is fully included and accounts for potentially
non-unity mass diffusion factors and transport effects
of enthalpy and molar volumes with temperature gra-
dients and pressure gradients, respectively. This model
has been used as a building block in a formulation
describing interactions of fluid drops induced by drop
proximity. Heat and mass transfer to the cluster are

modeled using the Nusselt number concept. Calcula-
tions were performed for the LO, -- H,system; the
transport properties have been modeled over a wide
range of pressure and temperature variation applica-
ble to LO_-- H2 conditions in rocket engine combus-
tion chambers, and the equations of state have been
calculated using a previously-derived, computationally-
efficient and accurate protocol. The results show that
the supercritical behavior is essentially one of diffusion.
The temperature profile relaxes fastest followed by the
density and lastly by the mass fraction profile. To un-
derstand heat and mass transfer, an effective Lewis
number was calculated for situations where tempera-
ture and mass fractions gradients are very large. Re-
sults show that the effective Lewis number can be 2
to 40 times larger than the traditional Lewis number
and that the spatial variation of the two numbers is
different; the reason for these Lewis number effects is
discussed. Parametric simulations as a function of pres-
sure show that length scales decrease with increasing
pressure. This hinders interdiffusion for isolated fluid
drops, but enhances it for clusters of drops due to the
additional effect of increasing cluster volume.

YCopyright © 1998 by the American Institute of Acronantics
and Astronautics, Inc. All rights reserved.

Introduction

Liquid rocket engine design is not a mature technol-
ogy in that the issues of reliability and efficiency are
unresolved. Current designs are still based upon em-
pirical knowledge and theory that does not portray the
complexities of the physical processes and of the en-
vironment in the combustion chambers. The extensive
review on liquid propellant rocket instabilities compiled
by Harrje and Reardon [1] more than twenty years ago
remains the base of rocket design despite the increased
understanding that many of the approximations made
in performing the calculations compromise the validity
of the results.

One of the foundations of liquid rocket instabili-
ties is the theory of isolated drop evaporation and com-
bustion in an infinite medium [I], [2]. The early ver-
sion of that theory was based on the assumption of
guasi-steady gas behavior with respect to the liquid
phase, an assumption strictly valid only at low pres-
sures where the liquid density is three orders of magni-
tude larger than that of the gas. Recognizing that at
the elevated pressures of liquid rocket chambers the lig-
uid density approaches that of the gas, the quasi-steady
assumption was relaxed in other investigations [3], [4],
[5], [6], [7). However, it is only recently that the de-
scription of the full complexity of combustion chambers
processes was sought; this includes not only the com-
plete unsteady treatment of the conservation equations
but also appropriate equations of state with consistent
mixing rules and transport properties valid over trans-
critical/supercritical conditions. Recent studies related
to these aspects are those of Yang et al. [8], Hsiao et
al. [9], Delplanque and Sirignano [10] and Haldenwang
et al. [11].

Isolated drop behavior, although very relevant to
understanding phenomena in rocket engine motors, is
by itself insufficient for deriving the necessary insight
into controlling liquid rocket combustion operation.
Experimental observations of atomization of coaxial
jets (such as those used in liquid rocket engines) by
Hardalupas et al. [12] and Engelbert et al. [13] reveal
the initial formation of ligaments, each ligament quickly
disintegrating into a cluster of drops. Similarly, visual-
izations of impinging liquid jets [I] have shown that un-



der both cold and hot flow conditions the jets break up
in a periodic manner into ligaments which further break
up into drops thereby creating clusters of drops. Recent
observations by Ryan et al. [14] have documented this
typical breakup process while also yielding information
regarding the breakup length and the drop size for both
laminar and turbulent impinging jets. Poulikakos [15]
made similar observations.

These observations indicate that fluid drops cre-
ated during atomization in liquid rocket chambers clo
not behave as isolated and instead have a collective be-
havior. This realization is very important for control-
ling high frequency combustion instabilities because the
response function must incorporate this fluid drop in-
teraction.

Fluid drop interaction at high pressure has been
modeled by Jiang and Chiang [16] using the concept
of ‘sphere of influence’ of Bellan and Cuftel [17] and
results were obtained for n-pentane adiabatic drop ar-
rays where the drops are uniformly distributed and sta-
tionary. The model of Jiang and Chiang [16] does
not include the intricacies of high pressure transport
processes, and thus it is not appropriate for the su-
percritical regime where Fick’'s and Fourier's laws are
110 longer solely able to completely describe the t rans-
port matrix [18]. Additionally, the interdrop distance
might not have similar values under subcritical and su-
percritical conditions since in the former situation the
liquid drops have a motion distinct from that of the sur-
rounding gas whereas in the latter situation, because
the densities of the two fluids are more similar, their

motion is also more similar. Moreover, the dense spray
effects identified at subcritical conditions were the con-

sequence of both high mass and relatively high volume
loading; insupercritical conditions, the relatively high
volume loading is not necessarily accompanied by high
mass loading because of the density ratio effect. This
indicates that dense spray effects might be encountered
in supercritical conditions only for interdrop distances
much smaller than in subcritical conditions. In fact,
dense spray effects will visually manifest as small scale
density variations, consistent with the discussed obser-
vations for coaxial and impinging jets atomization [12],
[13], [14] and [15].

This study is devoted to both establishing, from
first principles, a set of conservat ion equations describ-
ing isolated fluid drop behavior and to establishing a
model of fluid drop interactions. These models consti-
tute the frame work for identifying the major differences
in behavior between that known for liquid drops at sub-
critical conditions and that found here for fluid drops
under supercritical conditions.

Model

The model of the conservation equations for the isolated
fluid drop is based on the fluctuation theory of Keizer
[19], also described by Peacock-Lopez and Woodhouse

[20]. The advantage of this theory is that it inher-
ently accounts for nonequilibrium processes and nat-
urally leads to the most general fluid equations by re-
lating the partial molar fluxes, J i, and the heat flux,
7, to thermodynamic quantities. These equations have
been derived in detail in Harstad and Bellan [18], and
therefore it is only a brief description that will be pro-
vided here.

Fluctuation theory relates 71‘ and ? to the trans-
port matrix L through

N N
-
Ji= LigVB-Y LijV(Buy), @ = LegVB->  Le;V(Bu;)
i=1 i=1
@
Here Lij are the Fick's diffusion elements, Lgq is the
Fourier thermal diffusion element, L;q are the Soret dif-
fusion and Lg; are the Dufour diffusion elements, g; is
a chemical potential and 8 =1/(R,T) where T is the
temperature and R, is the universal gas constant. The
Onsager relations state that Li; = L,and Lig= Ly;.
Additionally, conservation of fluxes and mass in the sys-
tem imply that Zf/m;j i= 0 and E‘:'/Lijmi: O for
J€[1, Nland j = g, where 7 are the molar masses.
Using the thermodynamic relationship

N-1
d(Bpy) = Blvsdp — hydInT) + (Y ap;idX:)/X; (2)

i=1

where

api; = ﬂXia;ti/an == c’)Xi/an—kX,-aln'y,./an (3)

—
are the mass diffusion factors, one can calculate J i
from Eqs. 1 and 2. Here v; are the partial molar vol-
umes, p is the pressure, fi; are the molar enthalpies, Vi
are the activity coefficients and X; are the molar frac-
tions. This formalism proceeds with the definition of
a symmetric matrix whose elements are the pair-wise
mass diffusion coefficients for the mixture D2 and
an antisymmetric matrix whose elements are the ther-
mal diffusion factors &. The main result is that the
transport matrix has the following form:

3 =%, A4 vY; 4 B,VT +CyVp
g= AVT +32;Caj VY, +BVp

, (4)
where p is the dynamic pressure, and the A'‘s, B ‘'s and
C's are functions of the dependent variables. The terms
proportional to the gradient of the dynamic pressure in
the expressions for J and q will be neglected in the fol-
lowing because that gradient is proportional to Ma?,
where Ma is the Mach number, and Ma << 1; while
coefficients C;and By are no larger than other coef-
ficients in the equations. Spatial variations of p' were



confirmed tobe small by results from calculations of
isolated entities of LO, in fluid H2 at high pressures
[18].

To obtain the system of conservation equations,
the flux mat rix is used into the Navier-Stokes equa-
tions. Within this self consistent derivation, the ther-
modynamically related transport coefficients are nat-
urally defined: Dy — — L;;(m?/mm;)v/(XiX;) are
the mass diffusion coefficients (7 is the molar mass and
v is the molar volume) and A= 8L,,/7" is the thermal
conductivity. Also, the ratios between the thermal and
mass diffusivities a{”) are related to the mass diffusion
coefficients and the elements of the transport matrix
through ,BTIlULiq/X,; :EZj;éi 77leja‘7?j)D1(:;j)'

The general form of the flux matrix indicates that
even in the simplified case when there are only two
single-component substances, which is the focus of this
study, the traditional calculation of the Lewis number,
Le = Dp/Dp = A/(pCpDp), may not be appropriate
for a general fluid (D7 is the thermal diffusivity and Dy,
is the mass diffusivity). This is because even if there is
only one diffusion coefficient, the characteristic length
scales for heat and mass transfer are no longer given
by the multiplying factors of the Fourier and Fick’s dif-
fusion terms. In fact, due to the general form of the
flux matrix, these scales are not immediately appar-
ent and additional analysis is necessary to find them.
Harstad and Bellan [21] present such au analysis that
leads to the Lewis number calculation from a general
form, Lees f = Xefs /(PCpDess). The analysis is valid
under the assumptions of quasi-steadiness, large gradi-
ents, and large emission rates from the fluid drop. The
final result of the detailed analysis is that A.fs con-
tains an additional, positive contribution with respect
to A, whereas D,y is reduced by a negative contribu-
tion with respect to D,,. The results presented below
will emphasize the impact of these findings.

Finally, the model for the cluster of drops is ob-
tained by coupling the isolated fluid drop equations
with a set of conservation equations for the entire clus-
ter. The derivation has been described in detail in
Harstad and Bellan [22], and it is only the fundamental
concept is discussed here: Whereas the isolated fluid
drop equations are solved in a finite domain where the
far field boundary is located at a distance that changes
as a function of time due to processes related to that
sphere of influence, for interacting drops this distance
changes as a function of processes in all spheres of influ-
ence and is a solution of the cluster conservation equa-
tions. In the same manner, whereas the far field values
of the dependent variables are prescribed for the iso-
lated fluid drop, for interacting drops they are found as
a function of time from the solution of the global cluster
conservation equations.

Boundary Conditions

For spherical drops, boundary conditions arc applied at
three different locations for the isolated fluid drop: the
drop center, the interface separating initially the two
pure substances, ancl the far field; for the cluster, an
additional boundary condition is imnposed at the cluster
boundary with its surroundings.

At the center of each fluid drop, spherical symme-
try conditions prevail, whereas at the edge of the sphere
of influence the dependent variables are prescribed.

The conditions at the interface express not only
conservation of mass, species, momentum and energy,
but also nonequilibrium evaporation (when applicable)
and solvation. Initially, the fluid drop exists for r < g
and at t= O, a predominantly different fluid surrounds
the drop (7‘>Rd)- In cent rast to the purely subcritical
situation [17] where the interface is well defined by a
surface where there is a sharp change in density, here
there is an arbitrariness in defining an interface that
should be followed in time. As we show in the Results
section, the gradients of the mass fraction and density
do not coincide, so that following the pure drop inter-
face is not equivalent to following the maximum density
gradient, which is what is optically detected. Since at
supercritical conditions the physical phase change inter-
face does not exist, we are free to choose an interface
that we want to follow; by choice, here we follow the
interface of the initially pure fluid drop.

For a spherical cluster, the gradients at the clus-
ter boundary may be approximated by a difference
across an external length scale, r-,, which is related
to what is equivalent to a Nusselt number, Nuc, by
re= Re/Nuc, where R¢ is the cluster radius. A pri-
ori, the assumption was made that r. is the same for
heat and mass transfer, although the results found be-
low show that the mass transfer scales are larger than
those for heat transfer. However, there was no previous
information leading to appropriate heat and mass trans-
fer length scales, and thus it did not seem justifiable to
make an ad hoc assumption about their ratio. To study
the impact of transport to the cluster, parametric simu-
lations were performed [22] with Nusselt numbers over
the range 10°- 10°and it was found that the vari-
ation in the results was minimal; this is due to heat
transfer from the cluster interstitial region to the drops
being much faster than that from the surroundings to
the cluster.

Equations of State and Transport Properties

The actuations of state (EOS) were calculated according
to the procedure described in Harstad et al. [23] in or-
der to extend the experimentally derived EOS’S beyond
the range of the data and also to obtain analytic forms
suitable to using mixing rules.

The calculation of viscosities, thermal conductiv-
ities and diffusivities is described in detajl in Harstad



and Bellan [18]. Essent ially, for each put-c subst ante,
both viscosities and thermal conductivitics are calcu-
lated using a protocol whereby it is first the low p limit
that is correlated, then this function is subtracted from
the high p data to create an excess function, and finally
the high pdata is correlated. The corresponding states
formalism of Teja and Rice [24] is used to calculate the
mixture properties.

The diffusion coefficients are calculated in four
steps [18]: (1) binary infinite dilution diffusion coef-
ficients for a gas, (2) infinite dilution diffusion coefhi-
clents for a liquid, (3) infinite dilution coefficients for a
fluid under general conditions, and (4) binary diffusion
coeflicients using the corresponding states formalism of
Teja and Rice [24].

Results

The results presented here are for the LO; - H,sys-
tem for which the critical conditions are the following:
T, is 154.6 K and 33.2 K respectively and p. is 5.043
MPa and 1.313 MPa respectively. Table 1 contains a
summary of the initial conditions used in the simula-
tions; N is the number of drops in the cluster (N ==
represents the isolated drop). For isolated drops, the
pressure and temperature at the edge of the sphere of
influence (the far field; subscript si) are constant dur-
ing the calculation. For clusters of drops, the initial
interstitial temperature and pressure is always that of
the cluster surroundings, but the interstitial values are
functions of time according to the global, cluster con-
servation equations. Other initial conditions used are:
fluid drop radius of 50x 107cm, fluid drop tempera-
ture of 100 K and fluid hydrogen temperature of 1000
K.

The presentation of the results is organized as fol-
lows: First a baseline behavior of the isolated fluid drop
is discussed. Then a baseline cluster behavior is ana-
lyzed for the same initial conditions; a study of the
fluid drop interaction follows as the initial radius of the
sphere of influence is varied. Finally, we explore the in-
fluence of the pressure on both isolated ancf interacting
drops.

Baseline behavior of isolated drops

Run 2 represents the baseline situation whose results
are illustrated in Fig. 1 where the spatial variation
of T, p and Y,(i= 1 refers to LO;) is shown as a
function of time. Comparisons between the variation of
these quantities show that the density gradient is the
steepest, however it does not remain steep during the
entire time necessary for drop heating. It is this den-
sity gradient that is captured in optical measurements;
since the gradient eventually relaxes, the optical mea-
surement yields increasingly uncertain results as t in-
creases. Also, the density gradient does not correspond
to the Y,gradient indicating that it is not the evolu-

tion of the pure LO; fluid drop that is followed in the
measurements, but that of an entity into which hydro-
gen has diffused. The pure LO; fluiddrop shrinks very
fast and eventually disappears as shown in Fig. 1 by
Yi(r= 0) <1. It is important to realize that not only
clo gradients of Y; anti T occur at different locations,
but also that early-time gradients of T are steeper than
gradients of Y,whereas at later time the opposite is
true. The relaxation of the T and p profiles occurs
much faster than that of Y,because D7 is considerably
larger than Ds, as shown by their ratio, the traditional
Le plotted in Fig. 2. Moreover, the effective Lewis
number, LCe/f, also illustrated in Fig.2, is about a fac-
tor of 40 larger than the traditional Le indicating that
the ratio of heat to mass diffusion is even larger than
indicated by Le. Comparisons between our results and
those of Yang et al. [8] for Le shows that we predict
similar Le variations, although our values are huger for
a given pressure, as will be discussed in the parametric
variations below.

The spatial variation of Le.ss is essentially differ-
ent of that of Le in that it is nonmonotonic even af-
ter the memory of the initial condition is lost. This is
because Le, s implicitly accounts for Y,and T gradi-
ents effects; these Y,and T gradients do not occur at
the same location under supercritical conditions. Thus,
the spatial variation of Leeyy is directly related to the
variation of Y,and T gradients as follows: For small
r, the shallow part of the curves corresponds mostly
to the large 0T/0r, Y,being mostly uniform, and the
temporal increase of Le.,is due to the increased T.
The strongly increasing branch of Le.ss corresponds
to the region of large 8Y; /9r and the location of the
maximum Leejf is directly related to the maximum
Y; gradient. Finally, the decreasing part of the Le.ss
curves corresponds to the decreasing 0Y) /Or and the
asymptotic leveling of T. In contrast, the Le spatial
variation reflects only the dependence of Dy and D,,
upon composition and 7.

Parametric studies with various values of the ther-
mal diffusion factors (0.0, 0.01 and 0.05) show no sen-
sitivity of the results to Soret and Dufour effects for
the LO, - H2 system. The difference between Le and
Legyy is due to the combined effect of the contribution
of the chemical potentials to the fluxes through a small
mass diffusion factor and transport effects of enthalpy
with temperature gradients.

Clusters of drops behavior

As discussed above, due to the essentially diffusive
behavior at high pressure it is expected that dense
spray effects will be important only for fluid-drops in
closer proximity than in subcritical conditions; there-
fore, k%, =2RYis chosen as a baseline behavior. Fig-
ure 3 illustrates the spatial profiles of T, Y7 and p at
different timmes while Fig. 4 depicts the time evolution
of Tsi, Y180, Peir Ny (drop number density), Rs; and



Ilc. Comparisons betweent he calculated baseline re-
sults and those obtained for RY,=5R%and RY; =10RY
(scc that the results fOr Runs 8 and 2 arc essentially
the same) under otherwise identical conditions are pre-
sented in Fig. 5. While the baseline spatial variation of
T, Y,and p parallels that obtained for the isolated drop
in that it is mainly a diffusion process, the closer drop
proximity induces sinaller density gradients (Fig. 5c),
steeper Y,gradients (Fig. 5b) and larger temperatures
as the initial interstitial temperature is equal to that
of the cluster surroundings. An important difference
among the results obtained with decreasing Ri?i/RS is
the increased accumulation of a non-negligible amount
of LO_in the interstitial region (see Fig. 4a) as the clus-
ter contracts due to heat being transferred faster froimn
the interstitial region to the fluid LO, drops than it is
replenished from the cluster surroundings. This is con-
sistent with the small decrease of Tsi, fsi and R¢ and
the equivalent increase in p,;shown in Fig. 4. Eventu-
ally, Ts; increases due to the increased amount of heat
transferred to the cluster from its surroundings, and
¥1,si accordingly decreases. All these effects are small
for the values used in this baseline calculation; in par-
ticular, the value of Nu¢ is too small for heat transfer
from the cluster surroundings to replenish the heat re-
linquished by the interstitial fluid to the fluid drops. In
fact, just as in subcritical cluster studies [25], the mo-
tion of the cluster boundary is governed by the ratio of
two characteristic times: that of heat transferred from
the interstitial region to the drops (a heat sink), t1,
and that transferred from the cluster surroundings to
the cluster (a heat source), t2; the only difference with
the subcritical studies is the absence of phase change
which requires a substantial heat budget. The latent
heat carried away by the evaporated compound in sub-
critical situations constitutes a major percentage of the
heat input to the gas phase. This explains the present,
relatively undramatic cluster contraction and expan-
sion. However, results from calculations with Nucin
the range 10°to 105 show a surprising insensitivity to
the value of Nug [22]. This results is plausibly due to
the combined effects of: (1) the value of 7. for mass
and heat transfer being taken identical, whereas Lee/f
suggests that it should be considerably larger for mass
transfer, and (2) the modeling of transfer across the
cluster boundary using an equivalent Nusselt number
being somewhat uncertain.

The effect of pressure

In Fig. 6 we display results for fixed initial drop size and
surrounding temperature as a function of surrounding
pressure at 2 x 10°s. The slightly larger A but much
larger C,, with increasing p on the LO_side of the inter-
face (not shown) result in smaller Ton the LO, side of
the interface; the opposite occurs on the Hz side of the
interface. Thus, T gradients are greater with increasing
p, Increasing the surrounding p decreases both D,, and

Dy (not shown); however, thereis relatively a larger
reduction on the Hy side of theinterfa ce. The decrease
in 12, explains the smaller Y7 on the M side of the
interface and the steeper gradients with increasing p.
Examination of the p profiles shows the considerably
larger gradients withincreasing p; it is thus inferred
that experiments quantifying the interface motion will
be more accurate when performed at large pressures.
Examination of the variation of Le with increasing p
[21] shows that as p increases, Le remains <1 on the
LO, side of the interface, and decreases with increas-
ing p, whereas Le remains > 1 on the H; side of the
interface and increases with increasing p [21]; the Lewis
number seems insensitive to the pressure in the far field.
This spatial variation with increasing p shows that in-
deed the gradients become steeper with increasing p.

The general variation of the dependent variables
with increasing p for isolated fluid drops indicates that
since the gradients become larger due to a reduction
in scales, high pressure combust ion in practical devices
will have to rely on strong turbulence to enhance mixing
and heat transfer.

To investigate the impact of drop interactions with
surrounding pressure, extensive calculations were per-
formed by varying the surrounding cluster pressure
from 10 MPa to 80 MPa. The results at 10°s are
depicted in Fig. 7. Unlike in the isolated drop situa-
tion where gradients were greater with increasing pres-
sure, here it is exactly the opposite. The effect of the
drop interaction is to smear the gradients by increasing
the cluster volume with increasing pressure. This vol-

ume increase is a direct consequence of the reduction
in pC, with increasing pressure in the predominantly-

LO, side of the interface; this results in a temperature
augmentation in this region, which increases the aver-
age cluster temperature, and thus its volume. A more
minor effect, which increases the available heat source,
is the slight elevation of the interstitial molar enthalpy
with increasing pressure. Thus, the presence of clusters
of drops in burning sprays tends to render the depen-
dent variables more uniform with increasing pressure
whereas the opposite is true for isolated drops. In this
respect, clusters of drops are a desirable aspect because
they aid the interdiffusion of the reactive components.

Conclusions

A model of an isolated fluid drop in quiescent, finite spa-
tial surroundings has been derived using the formalism
of fluctuation theory. ‘I'he model presented here is de-
rived from first principles and incorporates all physical
aspects of high pressure behavior including Soret and
Dufour effects, high pressure mixture-thermodynamics
and mixture transport properties over a wide range of
pressures and temperatures. This model has been fur-
ther used as a building block for a more general fluid
drop cluster model wherein it was coupled to global
conservation equations derived for the entire cluster.



Since the transport matrix is no longer composed of
the Fick and Fourier terms which form the basis of the
t raditional Lewis number calculation, an effect ive Lewis
numnber has been calculated based upon the results of
a simplified analysis that retains the Soret and Dufour
contributions, and includes the effects of the mass diffu-
sion factors as well as transport effects of enthalpy and
molar volumes with temperature gradients and pressure
gradients, respectively.

Results obtained for the LO,--H2 system show
that the supercritical behavior is that of a slow diffu-
sion process. The spatial temperature profile is the first
to relax, followed by the density profile; the mass frac-
tions remain nonuniform long after relaxation of both
temperature and density. Given the long characteris-
tic time associated with diffusion, it is not surprising
that strong turbulence is needed to mix LO, and H,in
liquid rocket engines.

Parametric studies performed for the LO, — H,
system for various drop proximities show that the most
important cluster effect is the accumulation of a non-
negligible amount of LO, with decreasing drop interdis-
tance. The effect of drop proximity decreases with in-
creasing pressure in that the behavior of the fluid drops
in a very dense gas becomes increasingly similar to a
pure diffusion process. For given initial drop proximity,
an increase in pressure results in increased smearing of
the gradients, a desirable aspect because it promotes in-
terdiffusion. This result is exactly the opposite of what
is obtained for isolated fluid drops.

Calculations of the effective Lewis number show
that it can be larger than the Lewis number by a factor
of 40. Additionally, the traditional Lewis number and
effective Lewis number have different spatial variations,
indicating that the traditional Lewis number is not even
a qualitative measure of the relative importance of heat
and mass transfer.
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Run N RS, cm R%, cm p%, MPa
1 1 0.1 10
2 1 0.1 20
3 1 0.1 25
4 1 0.1 40
5 1 0.1 80
6 5.92x10° 100 X10-4 2 20
7 2.36x10° 250x10* 2 20
8 1.18x10° 500 X10-4 2 20
9 5.92x10° 100 X10-4 2 10
10 5.92x10° 100 X10-4 2 15
11 5.92x10° 100 X10-4 2 25
12 5.92x10° 100 X10-4 2 40
13 5.92x10° 100 X10-4 2 80

Table 1: Initial conditions for the simulations.
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Fig. 1 Spatial variation of the isolated fluid drop
temperature, oxygen mass fraction and density at var-
ious times for R9=50 x 1 0%cm, R% = 0.1 cm,
T9, = 100 K , T5; = 1000 K,and p = 20 MPa. The
curves correspond to the following times: 0.0 s (—),
7.5x10°S (- - -), 1.25x10°S (- . — -—), 1.5x107°S
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Fig. 2 Spatial variation of the traditional and an
effective Lewis number for an isolated fluid drop at dif-

ferent times. The initial conditions are those of Fig. 1
caption.
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Fig. 3 Spatial variation of the cluster fluid drop

temperature (a), oxygen mass fraction (b) and density
(c) at various times fong = 501(‘)'2 10"’cm,R2i: 2RO,
R =2cm, T9 = 100K , Nuc-"" 'T% =Te = 1000
K, Pe=20 MPa and Y1, = O. The curves correspond
to the following times: s (—), 2X10-'s (- - ),
6x10°S (- -—-— ), 8x10°S (--- .),1. x10-2 8 (—---),
1.08 X10-2 s( “ =)
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Fig. 4 Time evolution of Tsi and Y1, (a), Psi and

N4 (b).and Ry; and R¢ (c) for the same initial condi-
tions as those in Fig. 3 caption.
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Fig. 5 Spatial variation of the cluster fluid drop
temperature (@), oxygen mass fraction (b) and density
()att = 10° s for R% =10R%[p. = 20 MPa (—),
p. = 80 MPa (- - -)], R = 5R§ [pe = 20 MPa (— —),
pe = 80 MPa ( — --—)} and RY; = 2R [p. = 20 MPa (—
.—+=),pe =80 MPa (----)]. All other initial conditions
are those of Fig. 3 caption.
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Fig. 6 Spatial variation of the isolated fluid
drop temperate, oxygen mass fraction and density at
2x%107 25 for several pressures: 10 MPa (- - -), 20 MPa
(- - ), 25 MPa (. .. -),40 MPa (- --), 80 MPa (

" . RY =50 X 10"
— . .—). other initial 'gondltlons are: ‘4
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Fig. 7 Spatial variation of the cluster fluid drop
temperature (a), oxygen mass fraction (b) and density
(c) at 1X10-2 s for several pressures: 10 MPa (—--),
15 MPa (- - -), 20 MPa (- . — -—),25 MPa (.. . .), 40
MPa (— —-), 80 MPa ( --- -—). Other initial conditions
are those of Fig. 3 caption.



